SY 5 2018 Osa 2 3 Itämeren Rannikko

Total Page:16

File Type:pdf, Size:1020Kb

SY 5 2018 Osa 2 3 Itämeren Rannikko Itämeren rannikko 3 Martina Reinikainen Terhi Ryttäri Tiina Kanerva Hannele Kekäläinen Kasper Koskela Panu Kunttu Maija Mussaari Mikael von Numers Leena Rinkineva-Kantola Marko Sievänen Kimmo Syrjänen Örskärs ören, Parainen. Kuva: Terhi Ryttäri 100 Suomen ympäristö 5 | 2018 Osa 2 Itämeren rannikko SISÄLLYS | 3 ITÄMEREN RANNIKKO R1 Itämeren kivikkorannat .............................................................................................. 105 R1.01 Itämeren kivikko- ja lohkarerannat ............................................................................ 105 R1.02 Itämeren sora- ja somerikkorannat ........................................................................... 106 R2 Itämeren hiekkarannat ja dyynit ......................................................................... 107 R2.01 Itämeren hiekkarannat .................................................................................................. 107 R2.02 Liikkuvat alkiovaiheen dyynit ....................................................................................... 109 R2.03 Liikkuvat rantavehnädyynit ...........................................................................................111 R2.04 Harmaat dyynit ...............................................................................................................112 R2.05 Variksenmarjadyynit .......................................................................................................114 R2.06 Dyynialueiden kosteat soistuneet painanteet ...........................................................116 R2.07 Metsäiset dyynit ..............................................................................................................118 R2.08 Dyynien deflaatiokentät ................................................................................................119 R3 Itämeren luontaiset niittyrannat .......................................................................... 121 R3.01 Itämeren kivikkoiset niittyrannat ............................................................................... 122 R3.02 Itämeren epilitoraalikedot ........................................................................................... 124 R3.03 Itämeren suurruohostot............................................................................................... 126 R4 Merenrantojen ilmaversoiskasvustot ................................................................. 128 R4.01 Merenrantaruovikot ...................................................................................................... 128 R4.02 Merenrantakaislikot ...................................................................................................... 129 R4.03 Merenrantaosmankäämiköt ......................................................................................... 130 R5 Eloperäiset rantavallit .................................................................................................. 131 R5.01 Hauruvallit ....................................................................................................................... 132 R5.02 Ruokovallit ....................................................................................................................... 134 R5.03 Meriajokasvallit............................................................................................................... 135 R6 Rannikon ja saariston pensaikot ja metsät ..................................................... 137 R6.01 Tyrnipensaikot ................................................................................................................ 138 R6.02 Suomyrttipensaikot ....................................................................................................... 139 R6.03 Merenrantapajukot ........................................................................................................ 140 R6.04 Merenrannan leppävyöt ja -pensaikot ....................................................................... 141 R6.05 Merenrantakatajikot ...................................................................................................... 142 R6.06 Ulkosaariston lehtipuumetsiköt.................................................................................. 143 R6.07 Rannikon kosteat leppälehdot..................................................................................... 145 Suomen ympäristö 5 | 2018 Osa 2 101 R6.08 Rannikon tuoreet lehtipuuvaltaiset lehdot ............................................................... 147 R6.09 Rannikon kuivat lehtipuuvaltaiset lehdot .................................................................. 149 R6.10 Rannikon lehtomaiset kuusikot ................................................................................... 151 R6.11 Rannikon lehtomaiset lehtimetsät .............................................................................. 152 R6.12 Rannikon tuoreen kankaan kuusikot ......................................................................... 154 R6.13 Rannikon tuoreen kankaan koivikot .......................................................................... 155 R6.14 Rannikon kuivan kankaan kuusikot ............................................................................ 157 R6.15 Rannikon kuivan kankaan männiköt ........................................................................... 158 R6.16 Rannikon kuivan kankaan koivikot ............................................................................. 160 R6.17 Rannikon karukkokankaiden kuusikot ....................................................................... 161 R6.18 Rannikon karukkokankaiden männiköt ..................................................................... 162 R6.19 Rannikon karukkokankaiden koivikot........................................................................ 164 R7 Merenrantojen kalliolammikot .............................................................................. 165 R8 Rannikon luontotyyppiyhdistelmät ..................................................................... 167 R8.01 Itämeren dyynisarjat ..................................................................................................... 167 R8.02 Maankohoamisrannikon metsien kehityssarjat ........................................................ 170 R8.03 Maankohoamisrannikon karujen saarten kehityssarjat .......................................... 172 R8.04 Ulkosaariston saaret ja luodot .................................................................................... 174 R8.05 Lintusaaret ...................................................................................................................... 176 R8.06 Itämeren harjusaaret ..................................................................................................... 178 Kiitokset ........................................................................................................................................ 181 Kirjallisuus ................................................................................................................................... 181 102 Suomen ympäristö 5 | 2018 Osa 2 Itämeren rannikko 3 Itämeren rannikko Ranta on maan ja veden yhtymäkohta, jonka pystys- laajimmillaan lounaissaaristossa, jossa siihen sisältyy uuntainen (vertikaalinen) vyöhykkeisyys määräytyy myös koko Ahvenanmaa. Kapeimmillaan rannikkovyö- sekä vedenkorkeuden ja sen vaihteluiden että rannan hyke on Selkämeren alueella, jossa sen leveys on vain topografian mukaan. Varsinainen ranta eli litoraali on noin 10 km. Suomen rannikon rantaviivan pituudeksi on keskimääräisen ylimmän ja alimman vedenkorkeuden laskettu 46 000 km 1:20 000 mittakaavassa (Granö ym. välinen osa rantavyöhykettä (kuva 3.1). Jyrkkäprofiili- 1999). Eniten rantaviivaa on Saaristomerellä ja Ahvenan- silla rannoilla vedenkorkeuden vaihtelu ei merkittävästi maalla sekä Merenkurkussa. Rannikon pinta-alaksi on vaikuta rantavyöhykkeen leveyteen. Alavilla rannoilla arvioitu 38 000 km². Saarien määrä on Granön ym. (1999) rantaviiva voi siirtyä korkean veden aikaan jopa satoja laskelmissa yli 73 000 (taulukko 3.1). Maastotietokannan metrejä. Toisaalta rantaluontotyypit muotoutuvat pit- (2016) mukaan Suomen merialueilla on noin 97 000 saar- kälti maaperän laadun mukaan. Niukkakasvustoisten ta, joista alle 1 000 m² kokoisia on noin 58 000 ja yli 1 000 rantojen luontotyypit vastaavat melko suoraan geologi- m² kokoisia noin 39 000. sia rantatyyppejä, joita ovat kallio- ja kivikkorannat sekä Suomen rannikolla vallitsevana rantatyyppinä ovat sora- ja hiekkarannat. Viimemainituilla kasvillisuuden kallio- ja moreenirannat, joita molempia on noin 42 % kehittymiseen vaikuttaa suuresti kasvualustan jatkuva eli yhteensä 84 % koko rantaviivasta. Hiekka- ja sora- liikkuminen jäiden, aaltojen ja tuulen vaikutuksesta. rantoja on erityisesti alueilla, joille on keskittynyt gla- Suojaisilla rannoilla kasvualustan merkitys on vähäi- sifluviaalista eli jäätikön sulamisvirtojen muodostamaa sempi, jolloin karkearakeisillekin kivikkorannoille voi ainesta. Pieniä hiekkarantoja on lisäksi kaikkialla, missä syntyä sulkeutunutta niittykasvillisuutta. Hienojakoi- rantavoimat ovat lajitelleet ja erottaneet moreenista hie- simmille, suojaisille hiekka-, savi-, lieju- ja mutarannoil- nojakoisen maa-aineksen. Hiekka- ja sorarantoja on noin le syntyy pääsääntöisesti niittykasvillisuutta, joka vai- 5 % rantaviivastamme. Hienojakoisempia siltti-, savi- ja hettuu sisämaahan mentäessä erilaisten pensaikko- ja mutapohjaisia rantoja on noin 10 %. lepikkovaiheiden kautta metsäisiksi
Recommended publications
  • The Use of Dna Barcoding to Address Major Taxonomic Problems for Rare British Bryophytes
    THE USE OF DNA BARCODING TO ADDRESS MAJOR TAXONOMIC PROBLEMS FOR RARE BRITISH BRYOPHYTES FINAL REVISED REPORT FEBRUARY 2013 David Bell David Long Pete Hollingsworth Royal Botanic Garden Edinburgh With major contribution from D.T. Holyoak (Bryum) CONTENTS 1. Executive summary……………………………………………………………… 3 2. Introduction……………………………………………………………………… 4 3. Methods 3.1 Sampling……………………………………………………………….. 6 3.2 DNA extraction & sequencing…………………………………………. 7 3.3 Data analysis…………………………………………………………… 9 4. Results 4.1 Sequencing success…………………………………………………….. 9 4.2 Species accounts 4.2.1 Atrichum angustatum ………………………………………… 10 4.2.2 Barbilophozia kunzeana ………………………………………13 4.2.3 Bryum spp……………………………………………………. 16 4.2.4 Cephaloziella spp…………………………………………….. 26 4.2.5 Ceratodon conicus …………………………………………… 29 4.2.6 Ditrichum cornubicum & D. plumbicola …………………….. 32 4.2.7 Ephemerum cohaerens ……………………………………….. 36 4.2.8 Eurhynchiastrum pulchellum ………………………………… 36 4.2.9 Leiocolea rutheana …………………………………………... 39 4.2.10 Marsupella profunda ……………………………………….. 42 4.2.11 Orthotrichum pallens & O. pumilum ……………………….. 45 4.2.12 Pallavicinia lyellii …………………………………………... 48 4.2.13 Rhytidiadelphus subpinnatus ……………………………….. 49 4.2.14 Riccia bifurca & R. canaliculata ………………………........ 51 4.2.15 Sphaerocarpos texanus ……………………………………... 54 4.2.16 Sphagnum balticum ………………………………………… 57 4.2.17 Thamnobryum angustifolium & T. cataractarum …………... 60 4.2.18 Tortula freibergii …………………………………………… 62 5. Conclusions……………………………………………………………………… 65 6. Dissemination of results…………………………………………………………
    [Show full text]
  • Taxonomical and Nomenclatural Notes on the Moss Ceratodon Conicus (Ditrichaceae, Bryophyta) Author(S): Marta Nieto-Lugilde, Olaf Werner & Rosa M
    Taxonomical and Nomenclatural Notes on the Moss Ceratodon conicus (Ditrichaceae, Bryophyta) Author(s): Marta Nieto-Lugilde, Olaf Werner & Rosa M. Ros Source: Cryptogamie, Bryologie, 39(2):195-200. Published By: Association des Amis des Cryptogames https://doi.org/10.7872/cryb/v39.iss2.2018.195 URL: http://www.bioone.org/doi/full/10.7872/cryb/v39.iss2.2018.195 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non- commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Cryptogamie, Bryologie, 2018, 39 (2): 195-200 © 2018 Adac. Tous droits réservés taxonomical and nomenclatural notes on the moss Ceratodon conicus (ditrichaceae, Bryophyta) marta nıeTo-lUGılDe, olaf Werner &rosa m. ros * Departamento de Biologíavegetal, Facultad de Biología, Universidad de murcia, Campus de espinardo, 30100 murcia, spain Abstract – Arevision of the nomenclatural and taxonomical data related to Ceratodon conicus (Hampe ex Müll. Hal.) Lindb. and its synonyms published by Burley &Pritchard (1990) was carried out.
    [Show full text]
  • Volume 1, Chapter 2-7: Bryophyta
    Glime, J. M. 2017. Bryophyta – Bryopsida. Chapt. 2-7. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-7-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 10 January 2019 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-7 BRYOPHYTA – BRYOPSIDA TABLE OF CONTENTS Bryopsida Definition........................................................................................................................................... 2-7-2 Chromosome Numbers........................................................................................................................................ 2-7-3 Spore Production and Protonemata ..................................................................................................................... 2-7-3 Gametophyte Buds.............................................................................................................................................. 2-7-4 Gametophores ..................................................................................................................................................... 2-7-4 Location of Sex Organs....................................................................................................................................... 2-7-6 Sperm Dispersal .................................................................................................................................................. 2-7-7 Release of Sperm from the Antheridium.....................................................................................................
    [Show full text]
  • An Analysis of the Environmental and Hormonal Effects on the Growth and Development of the Moss Ceratodon Purpureus Megan Knight Butler University
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Commons @ Butler University Butler University Digital Commons @ Butler University Undergraduate Honors Thesis Collection Undergraduate Scholarship 4-24-2009 An analysis of the environmental and hormonal effects on the growth and development of the moss Ceratodon purpureus Megan Knight Butler University Follow this and additional works at: http://digitalcommons.butler.edu/ugtheses Part of the Environmental Sciences Commons Recommended Citation Knight, Megan, "An analysis of the environmental and hormonal effects on the growth and development of the moss Ceratodon purpureus" (2009). Undergraduate Honors Thesis Collection. Paper 41. This Thesis is brought to you for free and open access by the Undergraduate Scholarship at Digital Commons @ Butler University. It has been accepted for inclusion in Undergraduate Honors Thesis Collection by an authorized administrator of Digital Commons @ Butler University. For more information, please contact [email protected]. Knight, 1 An analysis of the environmental and hormonal effects on the growth and development of the moss Ceratodon purpureus A Thesis Presented to the Department of Biological Sciences College of Liberal Arts and Sciences and The Honors Program of Butler University In Partial Fulfillment of the Requirements for Graduation Honors Megan Knight 4/24/09 Knight, 2 Introduction Moss is a simple plant that lacks conventional roots, stems, and leaves. This simplicity makes it an optimal choice for developmental research. The true mosses are in the phylum Bryophyta and have a unique life cycle comprised of an alternation of generations. The life-cycle of a typical moss is shown in Figure 1.
    [Show full text]
  • Species List For: Labarque Creek CA 750 Species Jefferson County Date Participants Location 4/19/2006 Nels Holmberg Plant Survey
    Species List for: LaBarque Creek CA 750 Species Jefferson County Date Participants Location 4/19/2006 Nels Holmberg Plant Survey 5/15/2006 Nels Holmberg Plant Survey 5/16/2006 Nels Holmberg, George Yatskievych, and Rex Plant Survey Hill 5/22/2006 Nels Holmberg and WGNSS Botany Group Plant Survey 5/6/2006 Nels Holmberg Plant Survey Multiple Visits Nels Holmberg, John Atwood and Others LaBarque Creek Watershed - Bryophytes Bryophte List compiled by Nels Holmberg Multiple Visits Nels Holmberg and Many WGNSS and MONPS LaBarque Creek Watershed - Vascular Plants visits from 2005 to 2016 Vascular Plant List compiled by Nels Holmberg Species Name (Synonym) Common Name Family COFC COFW Acalypha monococca (A. gracilescens var. monococca) one-seeded mercury Euphorbiaceae 3 5 Acalypha rhomboidea rhombic copperleaf Euphorbiaceae 1 3 Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer negundo var. undetermined box elder Sapindaceae 1 0 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Actaea pachypoda white baneberry Ranunculaceae 8 5 Adiantum pedatum var. pedatum northern maidenhair fern Pteridaceae Fern/Ally 6 1 Agalinis gattingeri (Gerardia) rough-stemmed gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia parviflora swamp agrimony Rosaceae 5 -1 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Agrostis elliottiana awned bent grass Poaceae/Aveneae 3 5 * Agrostis gigantea redtop Poaceae/Aveneae 0 -3 Agrostis perennans upland bent Poaceae/Aveneae 3 1 Allium canadense var.
    [Show full text]
  • Antarctic Moss Biflavonoids Show High Antioxidant and Ultraviolet-Screening Activity Melinda J
    University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers: Faculty of Science, Medicine and Health part A 2017 Antarctic moss biflavonoids show high antioxidant and ultraviolet-screening activity Melinda J. Waterman University of Wollongong, [email protected] Ari Satia Nugraha University of Wollongong, [email protected] Rudi Hendra University of Wollongong, [email protected] Graham E Ball University of New South Wales, [email protected] Sharon A. Robinson University of Wollongong, [email protected] See next page for additional authors Publication Details Waterman, M. J., Nugraha, A. S., Hendra, R., Ball, G. E., Robinson, S. A. & Keller, P. A. (2017). Antarctic moss biflavonoids show high antioxidant and ultraviolet-screening activity. Journal of Natural Products, 80 (8), 2224-2231. Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Antarctic moss biflavonoids show high antioxidant and ultraviolet- screening activity Abstract Ceratodon purpureus is a cosmopolitan moss that survives some of the harshest places on Earth: from frozen Antarctica to hot South Australian deserts. In a study on the survival mechanisms of the species, nine compounds were isolated from Australian and Antarctic C. purpureus. This included five biflavonoids, with complete structural elucidation of 1 and 2 reported here for the first time, as well as an additional four known phenolic compounds. Dispersion-corrected DFT calculations suggested a rotational barrier, leading to atropisomerism, resulting in the presence of diastereomers for compound 2. All isolates absorbed strongly in the ultraviolet (UV) spectrum, e.g., biflavone 1 (UV-A, 315-400 nm), which displayed the strongest radical- scavenging activity, 13% more efficient than the standard rutin; p-coumaric acid and trans-ferulic acid showed the highest UV-B (280-315 nm) absorption.
    [Show full text]
  • Phylogeny of Three East Antarctic Mosses
    University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2013 Phylogeny of Three East Antarctic Mosses Rhys A. Wyber University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Wyber, Rhys A., Phylogeny of Three East Antarctic Mosses, Bachelor of Medical Biotechnology Advanced - Honours thesis, , University of Wollongong, 2013. https://ro.uow.edu.au/theses/4646 Research Online is the open access institutional repository for the University of Wollongong.
    [Show full text]
  • Volume 1, Chapter 7-6: Water Relations: Rehydration and Repair
    Glime, J. M. 2017. Water Relations: Rehydration and Repair. Chapt. 7-6. In: Glime, J. M. Bryophyte Ecology. Volume 1. 7-6-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 7-6 WATER RELATIONS: REHYDRATION AND REPAIR TABLE OF CONTENTS Uniqueness of Bryophytes .................................................................................................................................. 7-6-2 Duration survival ................................................................................................................................................. 7-6-4 Resumption of Activity ....................................................................................................................................... 7-6-4 Leakage and Membrane Repair ................................................................................................................. 7-6-10 Protein Degradation and Ubiquitin ............................................................................................................ 7-6-12 Respiration ................................................................................................................................................. 7-6-12 Reactive Oxygen Species ........................................................................................................................... 7-6-12 Photosynthesis ...........................................................................................................................................
    [Show full text]
  • Phytochrome Diversity in Green Plants and the Origin of Canonical Plant Phytochromes
    ARTICLE Received 25 Feb 2015 | Accepted 19 Jun 2015 | Published 28 Jul 2015 DOI: 10.1038/ncomms8852 OPEN Phytochrome diversity in green plants and the origin of canonical plant phytochromes Fay-Wei Li1, Michael Melkonian2, Carl J. Rothfels3, Juan Carlos Villarreal4, Dennis W. Stevenson5, Sean W. Graham6, Gane Ka-Shu Wong7,8,9, Kathleen M. Pryer1 & Sarah Mathews10,w Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives. 1 Department of Biology, Duke University, Durham, North Carolina 27708, USA. 2 Botany Department, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany. 3 University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720, USA. 4 Royal Botanic Gardens Edinburgh, Edinburgh EH3 5LR, UK. 5 New York Botanical Garden, Bronx, New York 10458, USA.
    [Show full text]
  • <I>Ceratodon Purpureus</I>
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 3-23-2018 Effect of Microbes on the Growth and Physiology of the Dioecious Moss, Ceratodon purpureus Caitlin Ann Maraist Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biology Commons, and the Plant Sciences Commons Let us know how access to this document benefits ou.y Recommended Citation Maraist, Caitlin Ann, "Effect of Microbes on the Growth and Physiology of the Dioecious Moss, Ceratodon purpureus" (2018). Dissertations and Theses. Paper 4353. https://doi.org/10.15760/etd.6246 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Effect of Microbes on the Growth and Physiology of the Dioecious Moss, Ceratodon purpureus by Caitlin Ann Maraist A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology Thesis Committee: Sarah M. Eppley, Chair Todd N. Rosenstiel Mitchell B. Cruzan Bitty A. Roy Portland State University 2018 © 2018 Caitlin Ann Maraist ABSTRACT The microorganisms colonizing plants can have a significant effect on host phenotype, mediating such processes as pathogen resistance, stress tolerance, nutrient acquisition, growth, and reproduction. Research regarding plant-microbe interactions has focused almost exclusively on vascular plants, and we know comparatively little about how bryophytes – including mosses, liverworts, and hornworts – are influenced by their microbiomes. Ceratodon purpureus is a dioecious, cosmopolitan moss species that exhibits sex-specific fungal communities, yet we do not know whether these microbes have a differential effect on the growth and physiology of male and female genotypes.
    [Show full text]
  • The Moss Flora of Mauritius
    Moss Flora of Mauritius 1 The Moss Flora of Mauritius Jan-Peter Frahm1, Brian J. O'Shea 2 & Boon-Chuan Ho1 1Nees Institut für Biodiversität der Pflanzen, Universität Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany; 2141 Fawnbrake Avenue, London SE24 0BG, United Kingdom. Abstract: The mosses reported from Mauritius were compiled from the literature and are listed with localities and references. Included are collections by the first author made in 2007 on the island. Barbula indica, Campylopus flavicoma, Racopilum ayresii and Ectropothecium chenagonii, Groutiella tomentosa, Schlotheimia ferruginosa and Trichostomum crispulum are reported as new to Mauritius. The list includes 238 species. A short survey of the bryological exploration of the island is given. Introduction Mauritius is (with Rodriguez and Réunion) part of the Mascarenes and situated east of Madagascar on 21° S. The climate is determined by the SE winds, resulting in a distinct dry period from May to October and a rainy season from October to April. The rocks are volcanic and originated about 20 million years ago (as in Rodriguez and Réunion). The island is relatively small, about 60 km from W to E and 80 km from N to S, and also relatively low with only a few mountains reaching 800 m altitude. Due to massive habitat destruction and deforestation, the natural forest is almost totally destroyed. Already Renauld (1897) stated "l'extension des cultures a forcément diminué la richesse de la vegetation spontanée". The lower altitudes are almost totally converted to sugar cane plantations. The largest semi-natural part of the island is the Black River National Park in the SW of the island, a high plateau with partial swampy forests, which is eroded by deep gorges.
    [Show full text]
  • Water Relations: Winter Physiology
    Glime, J. M. 2017. Water Relations: Winter Physiology. Chapt. 7-9. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological 7-9-1 Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Ebook last updated 7 March 2017 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 7-9 WATER RELATIONS: WINTER PHYSIOLOGY TABLE OF CONTENTS Problems in Winter ............................................................................................................................................. 7-9-2 Frost Damage............................................................................................................................................... 7-9-3 Ice Crystals................................................................................................................................................. 7-9-10 Desiccating Conditions ..................................................................................................................................... 7-9-11 Desiccation Tolerance....................................................................................................................................... 7-9-13 Ice-nucleating Proteins...................................................................................................................................... 7-9-16 Atmospheric Source................................................................................................................................... 7-9-17 Nucleating
    [Show full text]