Guidelines for Therapeutic Plasma Exchange in Critical Care
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unintentional Platelet Removal by Plasmapheresis
Journal of Clinical Apheresis 16:55–60 (2001) Unintentional Platelet Removal by Plasmapheresis Jedidiah J. Perdue,1 Linda K. Chandler,2 Sara K. Vesely,1 Deanna S. Duvall,2 Ronald O. Gilcher,2 James W. Smith,2 and James N. George1* 1Hematology-Oncology Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 2Oklahoma Blood Institute, Oklahoma City, Oklahoma Therapeutic plasmapheresis may remove platelets as well as plasma. Unintentional platelet loss, if not recognized, may lead to inappropriate patient assessment and treatment. A patient with thrombotic thrombocytopenic purpura- hemolytic uremic syndrome (TTP-HUS) is reported in whom persistent thrombocytopenia was interpreted as continuing active disease; thrombocytopenia resolved only after plasma exchange treatments were stopped. This observation prompted a systematic study of platelet loss with plasmapheresis. Data are reported on platelet loss during 432 apheresis procedures in 71 patients with six disease categories using three different instruments. Com- paring the first procedure recorded for each patient, there was a significant difference among instrument types ,than with the COBE Spectra (1.6% (21 ס P<0.001); platelet loss was greater with the Fresenius AS 104 (17.5%, N) .With all procedures, platelet loss ranged from 0 to 71% .(24 ס or the Haemonetics LN9000 (2.6%, N (26 ס N Among disease categories, platelet loss was greater in patients with dysproteinemias who were treated for hyper- viscosity symptoms. Absolute platelet loss with the first recorded apheresis procedure, in the 34 patients who had a normal platelet count before the procedure, was also greater with the AS 104 (2.23 × 1011 platelets) than with the Spectra (0.29 × 1011 platelets) or the LN9000 (0.37 × 1011 platelets). -
Fluid Resuscitation Therapy for Hemorrhagic Shock
CLINICAL CARE Fluid Resuscitation Therapy for Hemorrhagic Shock Joseph R. Spaniol vides a review of the 4 types of shock, the 4 classes of Amanda R. Knight, BA hemorrhagic shock, and the latest research on resuscita- tive fluid. The 4 types of shock are categorized into dis- Jessica L. Zebley, MS, RN tributive, obstructive, cardiogenic, and hemorrhagic Dawn Anderson, MS, RN shock. Hemorrhagic shock has been categorized into 4 Janet D. Pierce, DSN, ARNP, CCRN classes, and based on these classes, appropriate treatment can be planned. Crystalloids, colloids, dopamine, and blood products are all considered resuscitative fluid treat- ment options. Each individual case requires various resus- ■ ABSTRACT citative actions with different fluids. Healthcare Hemorrhagic shock is a severe life-threatening emergency professionals who are knowledgeable of the information affecting all organ systems of the body by depriving tissue in this review would be better prepared for patients who of sufficient oxygen and nutrients by decreasing cardiac are admitted with hemorrhagic shock, thus providing output. This article is a short review of the different types optimal care. of shock, followed by information specifically referring to hemorrhagic shock. The American College of Surgeons ■ DISTRIBUTIVE SHOCK categorized shock into 4 classes: (1) distributive; (2) Distributive shock is composed of 3 separate categories obstructive; (3) cardiogenic; and (4) hemorrhagic. based on their clinical outcome. Distributive shock can be Similarly, the classes of hemorrhagic shock are grouped categorized into (1) septic; (2) anaphylactic; and (3) neu- by signs and symptoms, amount of blood loss, and the rogenic shock. type of fluid replacement. This updated review is helpful to trauma nurses in understanding the various clinical Septic shock aspects of shock and the current recommendations for In accordance with the American College of Chest fluid resuscitation therapy following hemorrhagic shock. -
Platelet-Rich Plasmapheresis: a Meta-Analysis of Clinical Outcomes and Costs
THE jOURNAL OF EXTRA-CORPOREAL TECHNOLOGY Original Article Platelet-Rich Plasmapheresis: A Meta-Analysis of Clinical Outcomes and Costs Chris Brown Mahoney , PhD Industrial Relations Center, Carlson School of Management, University of Minnesota, Minneapolis, MN Keywords: platelet-rich plasmapheresis, sequestration, cardiopulmonary bypass, outcomes, economics, meta-analysis Presented at the American Society of Extra-Corporeal Technology 35th International Conference, April 3-6, 1997, Phoenix, Arizona ABSTRACT Platelet-rich plasmapheresis (PRP) just prior to cardiopulmonary bypass (CPB) surgery is used to improve post CPB hemostasis and to minimize the risks associated with exposure to allogeneic blood and its components. Meta-analysis examines evidence ofPRP's impact on clinical outcomes by integrating the results across published research studies. Data on clinical outcomes was collected from 20 pub lished studies. These outcomes, DRG payment rates, and current national average costs were used to examine the impact of PRP on costs. This study provides evidence that the use of PRP results in improved clinical outcomes when compared to the identical control groups not receiving PRP. These improved clinical out comes result in subsequent lower costs per patient in the PRP groups. All clinical outcomes analyzed were improved: blood product usage, length of stay, intensive care stay, time to extu bation, incidence of cardiovascular accident, and incidence of reoperation. The most striking differences occur in use of all blood products, particularly packed red blood cells. This study provides an example of how initial expenditure on technology used during CPB results in overall cost savings. Estimated cost savings range from $2,505.00 to $4,209.00. -
Management of Refractory Autoimmune Hemolytic Anemia Via Allogeneic Stem Cell Transplantation
Bone Marrow Transplantation (2016) 51, 1504–1506 © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0268-3369/16 www.nature.com/bmt LETTER TO THE EDITOR Management of refractory autoimmune hemolytic anemia via allogeneic stem cell transplantation Bone Marrow Transplantation (2016) 51, 1504–1506; doi:10.1038/ urine output and nausea. Physical examination was otherwise bmt.2016.152; published online 6 June 2016 normal. Her laboratory evaluation was notable for a hematocrit of 17%, reticulocyte count of 6.8%, haptoglobin below assay limits and an Waldenström’s macroglobulinemia (WM) represents a subset LDH (lactate dehydrogenase) that was not reportable due to of lymphoplasmacytic lymphomas in which clonally related hemolysis (Table 1). Creatinine was 1.1 mg/dL, total bilirubin was lymphoplasmacytic cells secrete a monoclonal IgM Ab.1 6.7 mg/dL with a direct bilirubin of 0.3 mg/dL and lactate was Overproduced IgMs can act as cold agglutinins in WM. Upon 5 mmol/L. Over 4 h, her hematocrit decreased to 6% and her exposure to cooler temperatures in the periphery, they cause creatinine rose to 1.6 mg/dL. Given concern for acute hemolytic anemia via binding to the erythrocyte Ii-antigen group and anemia due to cold agglutinins, she was warmed and received classical complement cascade initiation.2 Treatment of seven units of warmed, packed RBC, broad-spectrum antibiotics, cold-agglutinin-mediated autoimmune hemolytic anemia (AIHA) high-dose steroids and underwent emergent plasmapheresis. She in WM typically targets the pathogenic B-cell clone1–4 or the also underwent hemodialysis for presumed pigment nephropathy. -
Patient Information Leaflet – Plasma Exchange Procedure
Therapeutic Apheresis Services Patient Information Leaflet – Plasma Exchange Procedure Introduction Antibodies, which normally help to protect you from infection, can begin to attack your own This leaflet has been written to give patients healthy cells, or an over production of proteins can information about plasma exchange (sometimes cause your blood to become thicker and slow down called plasmapheresis). If you would like any more the blood flow throughout your body. A plasma information or have any questions, please ask the exchange can help improve your symptoms, doctors and nurses involved in your treatment at although this may not happen immediately. the NHS Blood and Transplant (NHSBT) Therapeutic Apheresis Services Unit. Although plasma exchange may help with symptoms, it will not normally cure your condition When you have considered the information given as it does not switch off the production of the in this leaflet, and after we have discussed the harmful antibodies or proteins. It is likely that procedure and its possible risks with you, we will this procedure will form only one part of your ask you to sign a consent form to indicate that you treatment. are happy for the procedure to go ahead. Before any further procedures we will again check that you are happy to proceed. How do we perform Plasma Exchange? What is a plasma exchange? Plasma exchange is performed using a machine Blood is made up of red cells, white cells and called a Blood Cell Separator which can separate platelets which are carried around in fluid called blood into its various parts. The machine separates plasma. -
Intraoperative Fluid Therapy and Pulmonary Complications
■ Feature Article Intraoperative Fluid Therapy and Pulmonary Complications KRZYSZTOF SIEMIONOW, MD; JACEK CYWINSKI, MD; KRZYSZTOF KUSZA, MD, PHD; ISADOR LIEBERMAN, MD, MBA, FRCSC abstract Full article available online at ORTHOSuperSite.com. Search: 20120123-06 The purpose of this study was to evaluate the effects of intraoperative fl uid therapy on length of hospital stay and pulmonary complications in patients undergoing spine surgery. A total of 1307 patients were analyzed. Sixteen pulmonary complications were observed. Patients with a higher volume of administered crystalloids, colloids, and total intravenous fl uids were more likely to have postoperative respiratory com- plications: the odds of postoperative respiratory complications increased by 30% with an increase of 1000 mL of crystalloid administered. The best cutoff point for total fl uids was 4165 mL, with a sensitivity of 0.8125 and specifi city of 0.7171, for postoperative pulmonary complications. A direct correlation existed between fl uids and length of stay: patients who received Ͼ4165 mL of total fl uids had an average length of stay of 3.88Ϯ4.66 days vs 2.3Ϯ3.9 days for patients who received Ͻ4165 mL of total fl uids (PϽ.0001). This study should be considered as hypothesis-generating to design a prospective trial comparing high vs low intraoperative fl uid regiments for patients undergoing spine surgery. Dr Siemionow is from the Department of Orthopaedic Surgery, University of Illinois, Chicago, Illinois; Dr Cywinski is from the Department of Anesthesia, Cleveland Clinic, Cleveland, Ohio; Dr Kusza is from the Department of Anesthesia, Centrum Medyczne Bydgoszcz, Bydgoszcz, Poland; and Dr Lieberman is from Texas Back Institute, Plano, Texas. -
Update on Volume Resuscitation Hypovolemia and Hemorrhage Distribution of Body Fluids Hemorrhage and Hypovolemia
11/7/2015 HYPOVOLEMIA AND HEMORRHAGE • HUMAN CIRCULATORY SYSTEM OPERATES UPDATE ON VOLUME WITH A SMALL VOLUME AND A VERY EFFICIENT VOLUME RESPONSIVE PUMP. RESUSCITATION • HOWEVER THIS PUMP FAILS QUICKLY WITH VOLUME LOSS AND IT CAN BE FATAL WITH JUST 35 TO 40% LOSS OF BLOOD VOLUME. HEMORRHAGE AND DISTRIBUTION OF BODY FLUIDS HYPOVOLEMIA • TOTAL BODY FLUID ACCOUNTS FOR 60% OF LEAN BODY WT IN MALES AND 50% IN FEMALES. • BLOOD REPRESENTS ONLY 11-12 % OF TOTAL BODY FLUID. CLINICAL MANIFESTATIONS OF HYPOVOLEMIA • SUPINE TACHYCARDIA PR >100 BPM • SUPINE HYPOTENSION <95 MMHG • POSTURAL PULSE INCREMENT: INCREASE IN PR >30 BPM • POSTURAL HYPOTENSION: DECREASE IN SBP >20 MMHG • POSTURAL CHANGES ARE UNCOMMON WHEN BLOOD LOSS IS <630 ML. 1 11/7/2015 INFLUENCE OF ACUTE HEMORRHAGE AND FLUID RESUSCITATION ON BLOOD VOLUME AND HCT • COMPARED TO OTHERS, POSTURAL PULSE INCREMENT IS A SENSITIVE AND SPECIFIC MARKER OF ACUTE BLOOD LOSS. • CHANGES IN HEMATOCRIT SHOWS POOR CORRELATION WITH BLOOD VOL DEFICITS AS WITH ACUTE BLOOD LOSS THERE IS A PROPORTIONAL LOSS OF PLASMA AND ERYTHROCYTES. MARKERS FOR VOLUME CHEMICAL MARKERS OF RESUSCITATION HYPOVOLEMIA • CVP AND PCWP USED BUT EXPERIMENTAL STUDIES HAVE SHOWN A POOR CORRELATION BETWEEN CARDIAC FILLING PRESSURES AND VENTRICULAR EDV OR CIRCULATING BLOOD VOLUME. Classification System for Acute Blood Loss • MORTALITY RATE IN CRITICALLY ILL PATIENTS Class I: Loss of <15% Blood volume IS NOT ONLY RELATED TO THE INITIAL Compensated by transcapillary refill volume LACTATE LEVEL BUT ALSO THE RATE OF Resuscitation not necessary DECLINE IN LACTATE LEVELS AFTER THE TREATMENT IS INITIATED ( LACTATE CLEARANCE ). Class II: Loss of 15-30% blood volume Compensated by systemic vasoconstriction 2 11/7/2015 Classification System for Acute Blood FLUID CHALLENGES Loss Cont. -
Fluid Resuscitation for Hemorrhagic Shock in Tactical Combat Casualty Care TCCC Guidelines Change 14-01 – 2 June 2014
Fluid Resuscitation for Hemorrhagic Shock in Tactical Combat Casualty Care TCCC Guidelines Change 14-01 – 2 June 2014 Frank K. Butler, MD; John B. Holcomb, MD; Martin A. Schreiber, MD; Russ S. Kotwal, MD; Donald A. Jenkins, MD; Howard R. Champion, MD, FACS, FRCS; F. Bowling; Andrew P. Cap, MD; Joseph J. Dubose, MD; Warren C. Dorlac, MD; Gina R. Dorlac, MD; Norman E. McSwain, MD, FACS; Jeffrey W. Timby, MD; Lorne H. Blackbourne, MD; Zsolt T. Stockinger, MD; Geir Strandenes, MD; Richard B, Weiskopf, MD; Kirby R. Gross, MD; Jeffrey A. Bailey, MD ABSTRACT This report reviews the recent literature on fluid resusci- to hypotensive resuscitation, the use of DP, adverse ef- tation from hemorrhagic shock and considers the appli- fects resulting from the administration of both crystal- cability of this evidence for use in resuscitation of combat loids and colloids, prehospital resuscitation with thawed casualties in the prehospital Tactical Combat Casualty plasma and red blood cells (RBCs), resuscitation from Care (TCCC) environment. A number of changes to the combined hemorrhagic shock and traumatic brain in- TCCC Guidelines are incorporated: (1) dried plasma jury (TBI), balanced blood component therapy in DCR, (DP) is added as an option when other blood compo- the benefits of fresh whole blood (FWB) use, and re- nents or whole blood are not available; (2) the wording suscitation from hemorrhagic shock in animal models is clarified to emphasize that Hextend is a less desir- where the hemorrhage is definitively controlled prior to able option than whole blood, blood components, or resuscitation. DP and should be used only when these preferred op- tions are not available; (3) the use of blood products Additionally, recently published studies describe an in certain Tactical Field Care (TFC) settings where this increased use of blood products by coalition forces in option might be feasible (ships, mounted patrols) is dis- Afghanistan during Tactical Evacuation (TACEVAC) cussed; (4) 1:1:1 damage control resuscitation (DCR) Care and even in TFC. -
Albumin Stewardship for Fluid Replacement in Plasmapheresis Kamarena Sankar, Pharm.D
Albumin stewardship for fluid replacement in plasmapheresis Kamarena Sankar, Pharm.D. PGY-1 Resident Pharmacist Holmes Regional Medical Center Disclosure Statement .These individuals have nothing to disclose concerning possible financial or personal relationships with commercial entities (or their competitors) that may be referenced in this presentation: .Kamarena Sankar, Pharm.D. .Jay Pauly, Pharm.D. .Michael Sanchez, Pharm.D. Presentation Objective .Understand the post-implementation safety and cost data of an Albumin Stewardship Initiative for fluid replacement in plasmapheresis Background .Definition: Plasmapheresis is removal of a patient’s own plasma .Varies between patients .This also removes potentially harmful substances: .Immunoglobulin .Autoantibodies .Immune complexes .Monoclonal paraproteins .Protein-bound toxins Hollie M. Reeves Br J Haematol. 2014;164.3:342-351. Indications Guillain-Barré Syndrome, ANCA glomerulonephritis, Myasthenia Gravis, Autoimmune Encephalitis, Renal First-Line Transplantation, Thrombotic Thrombocytopenic Purpura (TTP) Cryoglobinemia, Familial Hypercholesterolemia, Second-Line Multiple Sclerosis Role Not Heparin-induced Thrombocytopenia (HIT), Nephrogenic Established Systemic Fibrosis Ineffective or Psoriasis, Dermatomyositis/Polymyositis Harmful J Schwartz. J Clin Apher. 2016;31.3:149-338. Background .Fluid Replacement during plasmapheresis: .Necessary to avoid hypotension .Institution practice: .Albumin 5% 3,000 mL .IV room processing time .Multiple manipulations .High cost J Schwartz. J Clin Apher. 2016;31.3:149-338. Background Literature .Yamada (2017) .Albumin in combination with normal saline .5:1, 4:1, 5:2, 1:1 .3 patients, 12 procedures .No blood pressure differences .Albumin only fluid replacement .Albumin-normal saline combination replacement .McCullough (1982) .Options for fluid replacement .Normal saline .Albumin Chisa Yamada. J Clin Apher. 2017;32.1:5-11. J McCullough. Vox Sang. -
Recommendations for Collecting Red Blood Cells by Automated Apheresis Methods
Guidance for Industry Recommendations for Collecting Red Blood Cells by Automated Apheresis Methods Additional copies of this guidance document are available from: Office of Communication, Training and Manufacturers Assistance (HFM-40) 1401 Rockville Pike, Rockville, MD 20852-1448 (Tel) 1-800-835-4709 or 301-827-1800 (Internet) http://www.fda.gov/cber/guidelines.htm U.S. Department of Health and Human Services Food and Drug Administration Center for Biologics Evaluation and Research (CBER) January 2001 Technical Correction February 2001 TABLE OF CONTENTS Note: Page numbering may vary for documents distributed electronically. I. INTRODUCTION ............................................................................................................. 1 II. BACKGROUND................................................................................................................ 1 III. CHANGES FROM THE DRAFT GUIDANCE .............................................................. 2 IV. RECOMMENDED DONOR SELECTION CRITERIA FOR THE AUTOMATED RED BLOOD CELL COLLECTION PROTOCOLS ..................................................... 3 V. RECOMMENDED RED BLOOD CELL PRODUCT QUALITY CONTROL............ 5 VI. REGISTRATION AND LICENSING PROCEDURES FOR THE MANUFACTURE OF RED BLOOD CELLS COLLECTED BY AUTOMATED METHODS.................. 7 VII. ADDITIONAL REQUIREMENTS.................................................................................. 9 i GUIDANCE FOR INDUSTRY Recommendations for Collecting Red Blood Cells by Automated Apheresis Methods This -
6 Alternatives to Allogeneic Blood Transfusions
Best Practice & Research Clinical Anaesthesiology Vol. 21, No. 2, pp. 221–239, 2007 doi:10.1016/j.bpa.2007.02.004 available online at http://www.sciencedirect.com 6 Alternatives to allogeneic blood transfusions Andreas Pape* Dr. med. Clinic of Anaesthesiology, Intensive Care Medicine and Pain Management, J. W. Goethe University Hospital Frankfurt am Main, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany Oliver Habler Professor Dr. med. Department Head Clinic of Anaesthesiology, Surgical Intensive Care Medicine and Pain Management, Nordwest-Krankenhaus, Steinbacher Hohl 2-26, 60488 Frankfurt am Main Germany Inherent risks and increasing costs of allogeneic transfusions underline the socioeconomic rel- evance of safe and effective alternatives to banked blood. The safety limits of a restrictive trans- fusion policy are given by a patient’s individual tolerance of acute normovolaemic anaemia. Iatrogenic attempts to increase tolerance of anaemia are helpful in avoiding premature blood transfusions while at the same time maintaining adequate tissue oxygenation. Autologous trans- fusion techniques include preoperative autologous blood donation (PAD), acute normovolaemic haemodilution (ANH), and intraoperative cell salvage (ICS). The efficacy of PAD and ANH can be augmented by supplemental iron and/or erythropoietin. PAD is only cost-effective when based on a meticulous donation/transfusion plan calculated for the individual patient, and still carries the risk of mistransfusion (clerical error). In contrast, ANH has almost no risks and is more cost-effective. A significant reduction in allogeneic blood transfusions can also be achieved by ICS. Currently, some controversy regarding contraindications of ICS needs to be resolved. Artificial oxygen carriers based on perfluorocarbon (PFC) or haemoglobin (haemoglobin-based oxygen carriers, HBOCs) are attractive alternatives to allogeneic red blood cells. -
Crossmatching and Issuing Blood Components; Indications and Effects
CrossmatchingCrossmatching andand IssuingIssuing BloodBlood Components;Components; IndicationsIndications andand Effects.Effects. Alison Muir Blood Transfusion, Blood Sciences, Newcastle Trust TopicsTopics CoveredCovered • Taking the blood sample • ABO Group • Antibody Screening • Compatibility testing • Red cells • Platelets • Fresh Frozen Plasma (FFP) • Cryoprecipitate • Other Products TakingTaking thethe BloodBlood SpecimenSpecimen Positively identify the patient Ask the patient to state their name and date of birth Inpatients - Look at the wristband for the Hospital Number and to confirm the name and date of birth are correct Outpatients – Take the hospital number from the notes or other documentation having confirmed the name and d.o.b. Take the blood specimen Label the tube AT THE BEDSIDE. the label must be hand-written The specimen bottle should be labelled with: First Name Surname Hospital number Date of Birth Ensure the Declaration is signed on the request form Taking blood from the wrong patient can lead to a fatal transfusion reaction RequestRequest FormForm Transfusion Sample Timings? Patients who have recently been transfused may form red cell antibodies. A new sample is required at the following times before any transfusion when: Patient Transfused or Sample required within Pregnant within the 72 hours before preceding 3 months: transfusion Uncertain or information Sample required within unavailable of transfusion or 72 hours before pregnancy: transfusion Patient NOT transfused or Sample valid for 3 pregnant within the months preceding 3 months: ABOABO GroupGroup TestingTesting •Single most important serological test performed on pre transfusion samples. Guidelines for pre –transfusion compatibility procedures •Sensitivity and security of testing systems must not be compromised. AntibodyAntibody ScreeningScreening • Antibody screening - the most reliable and sensitive method for the detection of red cell antibodies.