XVI Congresso Nazionale Di Scienze Planetarie Book of Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

XVI Congresso Nazionale Di Scienze Planetarie Book of Abstracts XVI Congresso Nazionale di Scienze Planetarie Book of Abstracts https://indico.ict.inaf.it/e/CongressoPlanetologia Scientific Organizing Committee • G.Cremonese, chair INAF-Padova - [email protected] • M.Lazzarin, chair, dip.Fisica e Astronomia, Universita’ di Padova - [email protected] • J.Brucato, INAF -Firenze • F.Capaccioni, INAF - IAPS, Roma • M.T.Capria, INAF - IAPS, Roma • A.Cellino, INAF - Torino • R.Claudi, INAF-Padova • S.Debei, CISAS, Universita’ di Padova • F.Esposito, INAF – Napoli • L.Iess, dip.Ingegneria Meccanica e Aerospaziale, Universita’ la Sapienza, Roma • F.Marzari, dip.Fisica e Astronomia, Universita’ di Padova • M.Massironi, dip.Geoscienze, Universita’ di Padova • E.Perozzi, ASI • G.Piccioni, INAF - IAPS, Roma • G.Piotto, dip.Fisica e Astronomia, Universita’ di Padova • G.Pratesi, dip.Scienze della Terra Universita’ di Firenze • R.Ragazzoni, INAF – Padova Local Organizing Committee • R. Spiga, chair, Università di Padova - [email protected] • G. Cremonese, INAF-Osservatorio Astronomico di Padova • M. Lazzarin, Università di Padova • F. La Forgia, Università di Padova • A. Lucchetti, INAF-Osservatorio Astronomico di Padova • G. Munaretto, INAF-Osservatorio Astronomico di Padova • M. Pajola, INAF-Osservatorio Astronomico di Padova • M. Di Martino, INAF-Osservatorio Astrofisico di Torino • R. Pozzobon, Geoscienze UNIPD • A.T. Bologna, Università di Padova • S. Cecconato, Università di Padova • S. Carraro, INAF-OAPD • L. Giacomini, INAF-IAPS • G. Mantovani, INAF-IAPS • V. Mezzalira, Universita di Padova i Programma 3 Febbraio 09.15 • welcome • 09.30 Inizio corso per giornalisti • 11.30 coffe break • 12.00 Saluto autorita’ • 12.30 relazioni programmatiche – Barbara Negri ASI – Francesca Esposito INAF – Luigi Colangeli ESA • 13.30 Pranzo 15.00 • Tavola Rotonda: le prospettive future per la nostra comunità • 16.30 Coffe break • 17.00 Piccoli Corpi: 5 presentazioni chair: Davide Perna – Alessandro Rossi, YORP-Yarkowski evolution of asteroid families – Giovanni Valsecchi, Collisions vs. ejections in the outer planetary region – Elisabetta Dotto, LICIACube: the Light Italian Cubesat for Imaging of Asteroids – Giovanna Rinaldi, Dust properties in the innermost coma of comet 67P/Churyumov- Gerasimenko from VIRTIS-M spectra – Stavro Lambrov Ivanovski, Modelling of rotating non-spherical dust dynamics at cometary and asteroid environments • 18.15 fine sessione Concerto al Conservatorio Pollini alle 19.00 (organizzato e offerto dal prof. F.Seno, Direttore del DFA) 4 Febbraio 09.00 • Piccoli Corpi: 7 presentazioni chair: Monica Lazzarin – Alessandro Rossi, Exploiting orbital resonances for the disposal of objects from Low Earth Orbit – Gabriele Cremonese, First interstellar comet, 2I/Borisov: TNG observations – Gianrico Filacchione, Colour cycling on 67P/CG coma and nucleus – Pamela Cambianica, Time Evolution of Dust in the Hapi Region of Comet 67P/Churyumov-Gerasimenko – Fiorangela La Forgia, Visible and near-IR spectroscopic characterization of different dynamical classes of comets ii – Vito Mennella, An evidence of a link between primitive solar system bodies and interstellar dust through the 3.2 μm band of 67P/CG – Elisabetta Dotto, The EU H2020 programme NEOROCKS • 10.45 coffee break • 11.15 inizio sessione • Piccoli Corpi: 4 presentazioni chair: Maria Cristina De Sanctis – Batiste Rousseau, Ceres surface spectral properties through the VIR/Dawn visible data – Davide Perna, Near-Earth small body nodal encounter mission opportunities – Linda Dimare, In-orbit fragmentation characterization and parent bodies identification by means of orbital distances – Andrea Raponi, Ceres as seen by VIR/Dawn in the 0.4 – 4.1 μm range: spectral modeling and VIS-NIR/Raman spectroscopy on laboratory analogues suggest altered and pristine silicates within carbon chemistry. • Pianeti Marte: 3 presentazioni chair: Davide Grassi – Giacomo Carrozzo, TGO/NOMAD nadir observations of Mars during years 2018- 2019 – Fabrizio Oliva, Vertical distribution of dust in the Martian atmosphere from OMEGA-MEx observations – Simone Silvestro, Aeolian processes on Mars: bed form analysis and implications for climate • 13.00 Pranzo 14.30 • Invited: M.T.Capria, La Società Italiana di Scienze Planetarie • 15.00 Pianeti Marte: 4 presentazioni chair: Matteo Massironi – Paola Manzari, Investigation on the absorption bands around 3.3 micrometers in CRISM data – Maurizio Pajola, Inverted fluvial features in NE Eridania basin, Mars. Origin and timing of fluvial activity – Giovanni Munaretto, First CaSSIS observations of Martian recurring slope lineae: implications for their origin and evolution – Riccardo Pozzobon, Salt tectonics in Arabia Terra bulged craters? Hints from geological mapping, structural analysis and 3D geomodelling of the Crommelin Crater (Mars) • 16.00 coffee break • 16.30 inizio sessione • Pianeti Mercurio: 3 presentazioni chair: Valeria Mangano – Valentina Galluzzi, Asymmetric magnetic anomalies over two young impact craters on Mercury – Stavro Lambrov Ivanovski, Magnetic Reconnection Modelling at the Mercury’s Magnetopause in Preparation for BepiColombo/SERENA Experiment iii – Valeria Mangano, Synergies between the ground-based and space-based observations of the Na exosphere of Mercury • Pianeti Esterni: 3 presentazioni – Davide Grassi, On the spatial distribution of minor species in Jupiter’s troposphere as inferred from Juno JIRAM data – Alessandra Migliorini, JIRAM observation of H3+ and CH4 distributed along the disc of Jupiter – Federico Tosi, Compositional and thermal mapping of Io obtained with Juno/JIRAM • 18.00 fine sessione Cena Sociale al Pedrocchi alle 19.30 (https://www.caffepedrocchi.it) 6 Febbraio 09.0 • Strumentazione e Laboratorio: 2 presentazioni chair: Riccardo Claudi – Maria Cristina De Sanctis, Ma_Miss on Exo Mars 2020: ready to launch – Francesco Sauro, Geological contribution to ESA Analog1 experiment • Esopianeti e Sistemi Planetari: 4 presentazioni – Luca Malavolta, The Italian contribution to field of exoplanets: results and perspectives – Francesco Marzari, Dust distribution in circumstellar disks with two giant planets in resonance. – Francesco Marzari, A violent dance of giant planets and planetesimals in circumstellar disks – Luis Diego Pinto, Young Protoplanetary disks evolving in open clusters: SPH treatment with radiative transfer formalism • 10.30 coffee break • 11.00 inizio sessione • Esopianeti e Sistemi Planetari: 5 presentazioni chair: Nadia Balucani – Angelo Zinzi, Exo-MerCat inclusion in ExoplAn3T: a new way of exploring large exoplanetary databases – Antonio Garrido Rubio, Study of the Balmer Lines on the exoplanetary atmospheres of Kelt-9b through Transmission Spectroscopy – Cecilia Lazzoni, Looking for binary planets, satellites and disks around exoplanets – Silvano Desidera, Young planets at close separations – Claudia Toci, The fate of rings in protoplanetary discs: giant planets in action • Astrobiologia: 2 presentazioni iv – Alessandro Frigeri, Geologic fieldwork supporting ESA ExoMars’ MA_MISS experiment – Teresa Fornaro, Laboratory Analog Studies for Supporting Detection of Molecular Biosignatures on Mars • 12.45 Invited: M.Cirasuolo, the Extremely Large Telescope and the future of European ground-based astronomy • 13.15 Pranzo 14.30 • Sessione poster 2 • 15.15Astrochimica chair: Maria Teresa Capria – Invited: E.Bianchi, The astrochemical link between Sun-like protostars and Solar System comets – Invited: L.Podio, The chemical content of planet-forming disks: towards a comparison with the Outer Solar System Objects and the exoplanets • 16.15 coffee break • 16.45 inizio sessione • Astrobiologia: 7 presentazioni chair: John Brucato – Nadia Balucani, Formation of nitriles and other N-containing organic molecules in the upper atmosphere of Titan – Maria Angela Corazzi, Thermal desorption process of formamide ice – Francesco Ferlin, Experimental Solubility Determination of Organic Compounds in Simulated Titan's Methane Lakes – Vito Squicciarini, Searching for the oxygen footprint of light-harvesting organisms – Maria Cristina De Sanctis, Hydrated sodium chloride on Ceres from recent ascending salty fluids Andrea Meneghin, ABCS: a CubeSat for space environment astrobiology experiments – Claudio Maccone, A mathematical model for Evolution of Life on Earth and Exoplanets (Evo-SETI) • 18.30 fine sessione 7 Febbraio 09.00 • Meteore, Meteoriti e Polvere interplanetaria: 6 presentazioni chair: Cristian Carli – Luigi Folco, Thirty years of Antarctic meteorite research by the Italian Programma Nazionale delle ricerche in Antartide (PNRA) – Jacopo Nava, New perspectives into outburst and sublimation on minor bodies and comets inferred from laboratory experiments on carbonaceous chondrites. – Oliver Christ, Origin of diamond and graphite in ureilites: a timely topic in planetary geology – Anna Barbaro, Study of carbon phases in the Yamato 74123 and Kenna ureilites v – Mara Murri, Multi-methodological approach to quantify hexagonal stacking in natural impact diamonds – Giovanni Poggiali, Laboratory spectroscopic properties of carbonaceus chondrites and minerals at cryogenic temperatures in support of OSIRIS-REx. • 10.30 coffee break • 11.00 inizio sessione • Meteore, Meteoriti e Polvere interplanetaria: 5 presentazioni chair: Giovanni Pratesi – Jacopo Nava, Composition of C-type asteroids inferred from Antarctic fine- grained micrometeorites showing the 3 μm band – Luigi Folco, The extraterrestrial dust flux: size distribution and mass contribution estimates inferred from the Transantarctic
Recommended publications
  • The Surface Operations Framework – Transitioning from Early Analogue Experiments to Future Lunar Missions
    THE SURFACE OPERATIONS FRAMEWORK – TRANSITIONING FROM EARLY ANALOGUE EXPERIMENTS TO FUTURE LUNAR MISSIONS Sebastian Martin(1), Toril Bye Rinnan(2), Mehran Sarkarati(3), Kim Nergaard(4) (1) ESA/ESOC, Robert-Bosch-Straße 5, 64293 Darmstadt, Germany, Email: [email protected] (2) Solenix Deutschland GmbH, Spreestraße 3, 64295 Darmstadt, Germany, Email: [email protected] (3) ESA/ESOC, Robert-Bosch-Straße 5, 64293 Darmstadt, Germany, Email: [email protected] (4) ESA/ESOC, Robert-Bosch-Straße 5, 64293 Darmstadt, Germany, Email: [email protected] ABSTRACT to assess the financial and technical feasibility of new mission concepts, technologies and studies before This paper provides an overview of a family of possibly advancing them to the next phases of activities performed within the European Space implementation of a mission. Operations Centre (ESOC) to prepare for future robotic As the result of one such concurrent design study in missions on the lunar surface and beyond. 2009, the METERON concept was created. METERON – the Multi-purpose End-To-End Robotics Operations Over the course of nearly a decade, ESOC has been Network – was initiated to prepare for future human and gradually building up expertise for future surface robotic exploration scenarios. These future scenarios operations activities. foresee robotic assets controlled on the surface of Moon This paper describes or Mars, with humans operating those assets from an - the activities and corresponding systems prepared orbiting vehicle or by Earth ground control. The benefit from the ground up before concrete missions were of near real-time remote asset operations is to reduce defined, human risks and cost by not having to land humans and - how we are now covering a range of activities return them from the surface, while still being able to where we have requirements from missions in the control robotic assets with short transmission delays definition phases while continuing to build on from an orbiter.
    [Show full text]
  • ESA Strategy for Science at the Moon
    ESA UNCLASSIFIED - Releasable to the Public ESA Strategy for Science at the Moon ESA UNCLASSIFIED - Releasable to the Public EXECUTIVE SUMMARY A new era of space exploration is beginning, with multiple international and private sector actors engaged and with the Moon as its cornerstone. This renaissance in lunar exploration will offer new opportunities for science across a multitude of disciplines from planetary geology to astronomy and astrobiology whilst preparing the knowledge humanity will need to explore further into the Solar System. Recent missions and new analyses of samples retrieved during Apollo have transformed our understanding of the Moon and the science that can be performed there. We now understand the scientific importance of further exploration of the Moon to understand the origins and evolution of Earth and the cosmic context of life’s emergence on Earth and our future in space. ESA’s priorities for scientific activities at the Moon in the next ten years are: • Analysis of new and diverse samples from the Moon. • Detection and characterisation of polar water ice and other lunar volatiles. • Deployment of geophysical instruments and the build up a global geophysical network. • Identification and characterisation of potential resources for future exploration. • Deployment long wavelength radio astronomy receivers on the lunar far side. • Characterisation of the dynamic dust, charge and plasma environment. • Characterisation of biological sensitivity to the lunar environment. ESA UNCLASSIFIED - Releasable to the Public
    [Show full text]
  • Global Exploration Roadmap
    The Global Exploration Roadmap January 2018 What is New in The Global Exploration Roadmap? This new edition of the Global Exploration robotic space exploration. Refinements in important role in sustainable human space Roadmap reaffirms the interest of 14 space this edition include: exploration. Initially, it supports human and agencies to expand human presence into the robotic lunar exploration in a manner which Solar System, with the surface of Mars as • A summary of the benefits stemming from creates opportunities for multiple sectors to a common driving goal. It reflects a coordi- space exploration. Numerous benefits will advance key goals. nated international effort to prepare for space come from this exciting endeavour. It is • The recognition of the growing private exploration missions beginning with the Inter- important that mission objectives reflect this sector interest in space exploration. national Space Station (ISS) and continuing priority when planning exploration missions. Interest from the private sector is already to the lunar vicinity, the lunar surface, then • The important role of science and knowl- transforming the future of low Earth orbit, on to Mars. The expanded group of agencies edge gain. Open interaction with the creating new opportunities as space agen- demonstrates the growing interest in space international science community helped cies look to expand human presence into exploration and the importance of coopera- identify specific scientific opportunities the Solar System. Growing capability and tion to realise individual and common goals created by the presence of humans and interest from the private sector indicate and objectives. their infrastructure as they explore the Solar a future for collaboration not only among System.
    [Show full text]
  • AAS SFMC Manuscript Format Template
    (Preprint) AAS 18-344 REFINED MISSION ANALYSIS FOR HERACLES – A ROBOTIC LUNAR SURFACE SAMPLE RETURN MISSION UTILIZING HUMAN INFRASTRUCTURE Dr.-Ing. Florian Renk,* Dr. rer. nat. Markus Landgraf,† and Lorenzo Bucci‡ In the frame of the International Space Exploration Coordination Working Group the European Space Agency is participating in the planning of future ex- ploration architectures. The mission concept for the robotic lander mission (Human Enhanced Robotic Architecture and Capability for Lunar Exploration and Science – HERACLES) has matured meanwhile. The mission aims for a human assisted sample return from the lunar surface, while at the same time providing a qualification opportunity for technologies required for a crewed lu- nar lander. Human spaceflight rating is required for parts of the mission, since the sample return shall not be via a direct return trajectory, but the samples shall be transported via Orion, and thus docking of the robotic lander to the LOP-G will be required. This paper shall provide an update on the current mission de- sign as agreed between the international partners and the associated mission analysis as all the intermediate and final orbits have been selected for the base- line. The implications of the design decision as well as some alternatives that can serve as a backup scenario will be presented as well. The paper will first present the baseline mission sequence and will then focus on aspects of particu- lar interest as e.g. the strong limitation in the launch window design and the ren- dezvous and docking strategy. INTRODUCTION HERACLES is intended as a human-robotic architecture in the frame of preparations for hu- man exploration activities on the lunar surface.
    [Show full text]
  • SKA-Athena Synergy White Paper
    SKA-Athena Synergy White Paper SKA-Athena Synergy Team July 2018. Edited by: Francisco J. Carrera and Silvia Martínez-Núñez on behalf of the Athena Community Office. Revisions provided by: Judith Croston, Andrew C. Fabian, Robert Laing, Didier Barret, Robert Braun, Kirpal Nandra Authorship Authors Rossella Cassano (INAF-Istituto di Radioastronomia, Italy). • Rob Fender (University of Oxford, United Kingdom). • Chiara Ferrari (Observatoire de la Côte d’Azur, France). • Andrea Merloni (Max-Planck Institute for Extraterrestrial Physics, Germany). • Contributors Takuya Akahori (Kagoshima University, Japan). • Hiroki Akamatsu (SRON Netherlands Institute for Space Research, The Netherlands). • Yago Ascasibar (Universidad Autónoma de Madrid, Spain). • David Ballantyne (Georgia Institute of Technology, United States). • Gianfranco Brunetti (INAF-Istituto di Radioastronomia, Italy) and Maxim Markevitch (NASA-Goddard • Space Flight Center, United States). Judith Croston (The Open University, United Kingdom). • Imma Donnarumma (Agenzia Spaziale Italiana, Italy) and E. M. Rossi (Leiden Observatory, The • Netherlands). Robert Ferdman (University of East Anglia, United Kingdom) on behalf of the SKA Pulsar Science • Working Group. Luigina Feretti (INAF-Istituto di Radioastronomia, Italy) and Federica Govoni (INAF Osservatorio • Astronomico,Italy). Jan Forbrich (University of Hertfordshire, United Kingdom). • Giancarlo Ghirlanda (INAF-Osservatorio Astronomico di Brera and University Milano Bicocca, Italy). • Adriano Ingallinera (INAF-Osservatorio Astrofisico di Catania, Italy). • Andrei Mesinger (Scuola Normale Superiore, Italy). • Vanessa Moss and Elaine Sadler (Sydney Institute for Astronomy/CAASTRO and University of Sydney, • Australia). Fabrizio Nicastro (Osservatorio Astronomico di Roma,Italy), Edvige Corbelli (INAF-Osservatorio As- • trofisico di Arcetri, Italy) and Luigi Piro (INAF, Istituto di Astrofisica e Planetologia Spaziali, Italy). Paolo Padovani (European Southern Observatory, Germany). • Francesca Panessa (INAF/Istituto di Astrofisica e Planetologia Spaziali, Italy).
    [Show full text]
  • Nd AAS Meeting Abstracts
    nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron
    [Show full text]
  • 1950 Da, 205, 269 1979 Va, 230 1991 Ry16, 183 1992 Kd, 61 1992
    Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H. Burbine Index More Information 356 Index 1950 DA, 205, 269 single scattering, 142, 143, 144, 145 1979 VA, 230 visual Bond, 7 1991 RY16, 183 visual geometric, 7, 27, 28, 163, 185, 189, 190, 1992 KD, 61 191, 192, 192, 253 1992 QB1, 233, 234 Alexandra, 59 1993 FW, 234 altitude, 49 1994 JR1, 239, 275 Alvarez, Luis, 258 1999 JU3, 61 Alvarez, Walter, 258 1999 RL95, 183 amino acid, 81 1999 RQ36, 61 ammonia, 223, 301 2000 DP107, 274, 304 amoeboid olivine aggregate, 83 2000 GD65, 205 Amor, 251 2001 QR322, 232 Amor group, 251 2003 EH1, 107 Anacostia, 179 2007 PA8, 207 Anand, Viswanathan, 62 2008 TC3, 264, 265 Angelina, 175 2010 JL88, 205 angrite, 87, 101, 110, 126, 168 2010 TK7, 231 Annefrank, 274, 275, 289 2011 QF99, 232 Antarctic Search for Meteorites (ANSMET), 71 2012 DA14, 108 Antarctica, 69–71 2012 VP113, 233, 244 aphelion, 30, 251 2013 TX68, 64 APL, 275, 292 2014 AA, 264, 265 Apohele group, 251 2014 RC, 205 Apollo, 179, 180, 251 Apollo group, 230, 251 absorption band, 135–6, 137–40, 145–50, Apollo mission, 129, 262, 299 163, 184 Apophis, 20, 269, 270 acapulcoite/ lodranite, 87, 90, 103, 110, 168, 285 Aquitania, 179 Achilles, 232 Arecibo Observatory, 206 achondrite, 84, 86, 116, 187 Aristarchus, 29 primitive, 84, 86, 103–4, 287 Asporina, 177 Adamcarolla, 62 asteroid chronology function, 262 Adeona family, 198 Asteroid Zoo, 54 Aeternitas, 177 Astraea, 53 Agnia family, 170, 198 Astronautica, 61 AKARI satellite, 192 Aten, 251 alabandite, 76, 101 Aten group, 251 Alauda family, 198 Atira, 251 albedo, 7, 21, 27, 185–6 Atira group, 251 Bond, 7, 8, 9, 28, 189 atmosphere, 1, 3, 8, 43, 66, 68, 265 geometric, 7 A- type, 163, 165, 167, 169, 170, 177–8, 192 356 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H.
    [Show full text]
  • On the Habitability of Our Universe
    Chapter for the book Consolidation of Fine Tuning On the Habitability of Our Universe Abraham Loeb Astronomy department, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA E-mail: [email protected] Abstract. Is life most likely to emerge at the present cosmic time near a star like the Sun? We consider the habitability of the Universe throughout cosmic history, and conservatively restrict our attention to the context of “life as we know it” and the standard cosmological model, ΛCDM. The habitable cosmic epoch started shortly after the first stars formed, about 30 Myr after the Big Bang, and will end about 10 Tyr from now, when all stars will die. We review the formation history of habitable planets and find that unless habitability around low mass stars is suppressed, life is most likely to exist near ∼ 0.1M stars ten trillion years from now. Spectroscopic searches for biosignatures in the atmospheres of transiting Earth-mass planets around low mass stars will determine whether present-day life is indeed premature or typical from a cosmic perspective. arXiv:1606.08926v2 [astro-ph.CO] 24 Nov 2016 Contents 1 Introduction2 2 The Habitable Epoch of the Early Universe4 2.1 Section Background4 2.2 First Planets4 2.3 Section Summary and Implications5 3 CEMP Stars: Possible Hosts to Carbon Planets in the Early Universe6 3.1 Section Background6 3.2 Star-forming environment of CEMP stars7 3.3 Orbital Radii of Potential Carbon Planets9 3.4 Mass-Radius Relationship for Carbon Planets 13 3.5 Section Summary and Implications 15 4 Water
    [Show full text]
  • A Possibly Inflated Planet Around the Bright Young Star DS Tucanae A
    A&A 630, A81 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935598 & © ESO 2019 Astrophysics A possibly inflated planet around the bright young star DS Tucanae A?,?? S. Benatti1,2, D. Nardiello3,1, L. Malavolta4, S. Desidera1, L. Borsato3,1, V.Nascimbeni1,3, M. Damasso5, V.D’Orazi1,6, D. Mesa1, S. Messina4, M. Esposito7, A. Bignamini8, R. Claudi1, E. Covino9, C. Lovis10, and S. Sabotta7 1 INAF – Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 2 INAF – Osservatorio Astronomico di Palermo, Piazza del Parlamento, 1, 90134 Palermo, Italy e-mail: [email protected] 3 Dipartimento di Fisica e Astronomia – Universtà di Padova, Vicolo dell’Osservatorio 3, 35122 Padova, Italy 4 INAF – Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy 5 INAF – Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025 Pino Torinese (TO), Italy 6 Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Clayton 3800, Melbourne, Australia 7 Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany 8 INAF – Osservatorio Astronomico di Trieste, via Tiepolo 11, 34143 Trieste, Italy 9 INAF – Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy 10 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland Received 2 April 2019 / Accepted 19 July 2019 ABSTRACT Context. The origin of the observed diversity of planetary system architectures is one of the main topics of exoplanetary research. The detection of a statistically significant sample of planets around young stars allows us to study the early stages of planet formation and evolution, but only a handful are known so far.
    [Show full text]
  • EPSC2017-881-1, 2017 European Planetary Science Congress 2017 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2017
    EPSC Abstracts Vol. 11, EPSC2017-881-1, 2017 European Planetary Science Congress 2017 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2017 Impact Effects Calculator. Orbital Parameters. S.A. Naroenkov(2), D.O. Glazachev(1), A.P. Kartashova(2), I.S. Turuntaev(1), V.V. Svetsov (1), V.V. Shuvalov(1), O.P. Popova(1) and E.D. Podobnaya(1) (1)Institute for Dynamics of Geospheres RAS, Moscow, Russia ([email protected] / Fax: +7-499-1376511), (2)Institute of Astronomy RAS, Moscow, Russia Abstract the ground, formation of craters and plumes are simulated. Results obtained in these simulations will Next-generation Impact Calculator for quick be used to get interpolations for rapid assessment of assessment of impact consequences is being prepared. the impact effects. As an example, in the calculator [3] The estimates of impact effects are revised. The thermal damage from crater-forming impacts is possibility to manipulate with the orbital parameters considered based on nuclear explosions results and and to determine impact point is included. crater plume luminous efficiency estimates but the radiation from the objects decelerated in the atmosphere is not included [3]. For our calculator, the Introduction systematic modeling of the entry of asteroidal and The population of near-Earth objects (NEOs, both cometary bodies of various sizes (20-3000 m), asteroids and comets) contains a wide variety of including the determination of thermal fluxes and bodies with diverse physical and dynamical properties, exposures, was carried out [5], and scaling relations and presents a permanent threat to our civilization [1]. for thermal fluxes on the ground were found [6].
    [Show full text]
  • Apollo 11: 50 Anni Sped
    www.uai.it ASTRONOMIA n. 3 • luglio-settembre 2019 • Anno XLIV La rivista dell’Unione Astrofi li Italiani Apollo 11: 50 anni Sped. in A.P. 45% fi liale di Belluno Taxe perque - Tassa riscossa - Belluno centro Taxe perque - liale di Belluno 45% fi Sped. in A.P. ■ Teneriffe 1 ■ 2018 WV1 ■ Space economy ASTRONOMIA Anno XLIV • La rivista dell’Unione Astrofi li Italiani [email protected] SOMMARIO n. 3 • luglio-settembre 2019 Proprietà ed editore Unione Astrofi li Italiani 24 28 34 Direttore responsabile Franco Foresta Martin Comitato di redazione Consiglio Direttivo UAI Coordinatore Editoriale Giorgio Bianciardi Impaginazione e stampa Tipografi a Piave srl (BL) www.tipografi apiave.it Servizio arretrati EDITORIALE RICERCA Una copia Euro 5,00 3 Voglia di Luna 24 La scoperta del domo Almanacco Euro 8,00 Roberto Battiston dei Montes Teneriffe Versare l’importo come spiegato nella pa- Maurizio Cecchini gina successiva specifi cando la causale. RUBRICHE Inviare copia della ricevuta a 29 L’asteroide 2018 WV1 [email protected] 4 Statio Tranquillitatis un frammento lunare? Maurizio Cecchini Paolo Bacci - Martina Maestripieri ISSN 1593-3814 8 Mezzo secolo fa, i primi passi dell’uomo Copyright© 1998 UAI sulla Luna ESPERIENZE, Tutti i diritti sono riservati a norma Franco Foresta Martin DIVULGAZIONE, DIDATTICA di legge. È vietata ogni forma di 35 Space economy career day © riproduzione e memorizzazione, anche 12 Le colline di Marius (IX) parziale, senza l’autorizzazione scritta Maurizio Cecchini Vincenzo Gallo dell’Unione Astrofi li Italiani. 18 Chryse Planitia 38 Da Torino verso Marte Fabio Zampetti Maurizio Maschio Pubblicazione mensile registrata al Tribunale di Roma al n.
    [Show full text]
  • The Electric Sun Hypothesis
    Basics of astrophysics revisited. II. Mass- luminosity- rotation relation for F, A, B, O and WR class stars Edgars Alksnis [email protected] Small volume statistics show, that luminosity of bright stars is proportional to their angular momentums of rotation when certain relation between stellar mass and stellar rotation speed is reached. Cause should be outside of standard stellar model. Concept allows strengthen hypotheses of 1) fast rotation of Wolf-Rayet stars and 2) low mass central black hole of the Milky Way. Keywords: mass-luminosity relation, stellar rotation, Wolf-Rayet stars, stellar angular momentum, Sagittarius A* mass, Sagittarius A* luminosity. In previous work (Alksnis, 2017) we have shown, that in slow rotating stars stellar luminosity is proportional to spin angular momentum of the star. This allows us to see, that there in fact are no stars outside of “main sequence” within stellar classes G, K and M. METHOD We have analyzed possible connection between stellar luminosity and stellar angular momentum in samples of most known F, A, B, O and WR class stars (tables 1-5). Stellar equatorial rotation speed (vsini) was used as main parameter of stellar rotation when possible. Several diverse data for one star were averaged. Zero stellar rotation speed was considered as an error and corresponding star has been not included in sample. RESULTS 2 F class star Relative Relative Luminosity, Relative M*R *eq mass, M radius, L rotation, L R eq HATP-6 1.29 1.46 3.55 2.950 2.28 α UMi B 1.39 1.38 3.90 38.573 26.18 Alpha Fornacis 1.33
    [Show full text]