A New Polypterid Fish: Polypterus Faraou Sp. Nov. (Cladistia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
History of Fishes - Structural Patterns and Trends in Diversification
History of fishes - Structural Patterns and Trends in Diversification AGNATHANS = Jawless • Class – Pteraspidomorphi • Class – Myxini?? (living) • Class – Cephalaspidomorphi – Osteostraci – Anaspidiformes – Petromyzontiformes (living) Major Groups of Agnathans • 1. Osteostracida 2. Anaspida 3. Pteraspidomorphida • Hagfish and Lamprey = traditionally together in cyclostomata Jaws = GNATHOSTOMES • Gnathostomes: the jawed fishes -good evidence for gnathostome monophyly. • 4 major groups of jawed vertebrates: Extinct Acanthodii and Placodermi (know) Living Chondrichthyes and Osteichthyes • Living Chondrichthyans - usually divided into Selachii or Elasmobranchi (sharks and rays) and Holocephali (chimeroids). • • Living Osteichthyans commonly regarded as forming two major groups ‑ – Actinopterygii – Ray finned fish – Sarcopterygii (coelacanths, lungfish, Tetrapods). • SARCOPTERYGII = Coelacanths + (Dipnoi = Lung-fish) + Rhipidistian (Osteolepimorphi) = Tetrapod Ancestors (Eusthenopteron) Close to tetrapods Lungfish - Dipnoi • Three genera, Africa+Australian+South American ACTINOPTERYGII Bichirs – Cladistia = POLYPTERIFORMES Notable exception = Cladistia – Polypterus (bichirs) - Represented by 10 FW species - tropical Africa and one species - Erpetoichthys calabaricus – reedfish. Highly aberrant Cladistia - numerous uniquely derived features – long, independent evolution: – Strange dorsal finlets, Series spiracular ossicles, Peculiar urohyal bone and parasphenoid • But retain # primitive Actinopterygian features = heavy ganoid scales (external -
Sensory Biology of Aquatic Animals
Jelle Atema Richard R. Fay Arthur N. Popper William N. Tavolga Editors Sensory Biology of Aquatic Animals Springer-Verlag New York Berlin Heidelberg London Paris Tokyo JELLE ATEMA, Boston University Marine Program, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA Richard R. Fay, Parmly Hearing Institute, Loyola University, Chicago, Illinois 60626, USA ARTHUR N. POPPER, Department of Zoology, University of Maryland, College Park, MD 20742, USA WILLIAM N. TAVOLGA, Mote Marine Laboratory, Sarasota, Florida 33577, USA The cover Illustration is a reproduction of Figure 13.3, p. 343 of this volume Library of Congress Cataloging-in-Publication Data Sensory biology of aquatic animals. Papers based on presentations given at an International Conference on the Sensory Biology of Aquatic Animals held, June 24-28, 1985, at the Mote Marine Laboratory in Sarasota, Fla. Bibliography: p. Includes indexes. 1. Aquatic animals—Physiology—Congresses. 2. Senses and Sensation—Congresses. I. Atema, Jelle. II. International Conference on the Sensory Biology - . of Aquatic Animals (1985 : Sarasota, Fla.) QL120.S46 1987 591.92 87-9632 © 1988 by Springer-Verlag New York Inc. x —• All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York 10010, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of Information storage and retrieval, electronic adaptation, Computer Software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc. -
Bichir External Gills Arise Via Heterochronic Shift That Accelerates
RESEARCH ARTICLE Bichir external gills arise via heterochronic shift that accelerates hyoid arch development Jan Stundl1,2, Anna Pospisilova1, David Jandzik1,3, Peter Fabian1†, Barbora Dobiasova1‡, Martin Minarik1§, Brian D Metscher4, Vladimir Soukup1*, Robert Cerny1* 1Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic; 2National Museum, Prague, Czech Republic; 3Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia; 4Department of Theoretical Biology, University of Vienna, Vienna, Austria *For correspondence: Abstract In most vertebrates, pharyngeal arches form in a stereotypic anterior-to-posterior [email protected] progression. To gain insight into the mechanisms underlying evolutionary changes in pharyngeal (VS); arch development, here we investigate embryos and larvae of bichirs. Bichirs represent the earliest [email protected] (RC) diverged living group of ray-finned fishes, and possess intriguing traits otherwise typical for lobe- Present address: †Eli and Edythe finned fishes such as ventral paired lungs and larval external gills. In bichir embryos, we find that Broad CIRM Center for the anteroposterior way of formation of cranial segments is modified by the unique acceleration of Regenerative Medicine and Stem the entire hyoid arch segment, with earlier and orchestrated development of the endodermal, Cell Research, University of mesodermal, and neural crest tissues. This major heterochronic shift in the anteroposterior Southern California, Los Angeles, developmental sequence enables early appearance of the external gills that represent key ‡ United States; The Prague breathing organs of bichir free-living embryos and early larvae. Bichirs thus stay as unique models Zoological Garden, Prague, for understanding developmental mechanisms facilitating increased breathing capacity. -
Observations on Fish Scales
OBSERVATIONS ON FISH SCALES By T. D. A. Cockerell University of Colorado, Boulder, Colorado OBSERVATIONS ON FISH SCALES. By T. D. A. COCKERELL, University of Colorado, Bo~,lder, Colo • .;t. INTRODUCTION, In a paper on "The Scales of Freshwater Fishes" (Biological Bulletin of the Marine Biological Laboratory at Woods Hole, Mass., vol. xx, May, 19II) I have given an account of the recent work on teleostean fish scales and have discussed some of the problems presented by the scales of freshwater fishes. Until recently it has been impos sible to do much with the scales of marine fishes, owing to the difficulty of obtaining adequate materials. For the same reason very little was done on the spiny-rayed freshwater groups, the Percidre, Centrarchidre, etc. During the summer of 1911, however, I was enabled to continue the work in the laboratory of the Bureau of Fisheries at Woods Hole, where the director, Dr. F. B. Sumner, afforded me every possible facility and put at my disposal a large series of fishes representing many families. I have also been very greatly indebted to the Bureau of lfisheries, through Dr. Hugh M. Smith and Dr. B. W. Evermann, for numerous and important specimens from the collections at Washington. At the National Museum Mr. B. A. Bean and Mr. A. C. Weed gave me much help and supplied scales of some important genera, while other very valuable materials were secured from the Museum of Comparative Zoology, through the kindness of Dr. S. Garman. As in former years, I have been indebted to Dr. Boulenger for some of the rarest forms. -
Title the Mitochondrial Phylogeny of an Ancient Lineage of Ray- Finned Fishes (Polypteridae) with Implications for the Evolution
The mitochondrial phylogeny of an ancient lineage of ray- finned fishes (Polypteridae) with implications for the evolution Title of body elongation, pelvic fin loss, and craniofacial morphology in Osteichthyes. Author(s) Suzuki, Dai; Brandley, Matthew C; Tokita, Masayoshi Citation BMC evolutionary biology (2010), 10(1) Issue Date 2010 URL http://hdl.handle.net/2433/108263 c 2010 Suzuki et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Right Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Type Journal Article Textversion publisher Kyoto University Suzuki et al. BMC Evolutionary Biology 2010, 10:21 http://www.biomedcentral.com/1471-2148/10/21 RESEARCH ARTICLE Open Access The mitochondrial phylogeny of an ancient lineage of ray-finned fishes (Polypteridae) with implications for the evolution of body elongation, pelvic fin loss, and craniofacial morphology in Osteichthyes Dai Suzuki1, Matthew C Brandley2, Masayoshi Tokita1,3* Abstract Background: The family Polypteridae, commonly known as “bichirs”, is a lineage that diverged early in the evolutionary history of Actinopterygii (ray-finned fish), but has been the subject of far less evolutionary study than other members of that clade. Uncovering patterns of morphological change within Polypteridae provides an important opportunity to evaluate if the mechanisms underlying morphological evolution are shared among actinoptyerygians, and in fact, perhaps the entire osteichthyan (bony fish and tetrapods) tree of life. However, the greatest impediment to elucidating these patterns is the lack of a well-resolved, highly-supported phylogenetic tree of Polypteridae. -
On the Authorship of Actinopteri and Actinopterygii
Ichthyological note On the authorship of Actinopteri and Actinopterygii by SFI © Werner SCHWARZHANS* (1), Gary STRINGER (2) & Ronald FRICKE (3) Submitted: 11 May 2019 Accepted: 14 Nov. 2019 Editor: R. Causse this citation for the Actinopterygii came into being. Indeed, the name ‘Actinopterygia’ was introduced by Cope (1887: 1017) and Résumé. – Taxonomie et taxinomie des taxons Actinopteri et Acti- was meant to be an amendment of his earlier name ‘Actinopteri’, nopterygii. albeit with a slight modification of the scope, i.e., by excluding the Chondrostei. Woodward (1889: xxiv and 1891: xxxviii and 423) Actinopteri a été décrit par Cope, 1871 et Actinopterygii est changed ‘Actinopterygia’ to ‘Actinopterygii’ but kept Cope’s origi- compris aujourd’hui sensu Goodrich, 1930. nal extent of the ‘Actinopteri’, e.g., including the Chondrostei and Key words. – Zoological nomenclature – Usage – Authorship. excluding the Cladistia. There seems to be no publication by Cope in 1891 mentioning ‘Actinopterygia’ or ‘Actinopterygii’. Apparent- ly the first to change the meaning of the Actinopterygii to encom- pass also the Cladistia was Goodrich (1930: xvii), as explained in Finding the correct authorship for higher taxonomic units in Rosen et al. (1981, who however erroneously listed on page 261 fishes (Pisces) can be difficult and involve significant literature th “Actinopterygii Cope, 1891”). Rosen et al. (1981) resurrected research. Most of the entities were introduced during the 19 cen- the term Actinopteri Cope (1871) for ray-finned fishes excluding tury, and alternative concepts and changes in scope and definition Cladistia and emended the Actinopterygii as a higher hierarchy to are common. The names ‘Actinopteri’ and ‘Actinopterygii’ rep- include Cladistia in the sense of Goodrich (1930). -
On the Homology of the Posteriormost Gill Arch in Polypterids (Cladistia, Actinopterygii)
Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2003 1384 495503 Original Article POLYPTERUS GILL ARCH HOMOLOGYR. BRITZ and G. D. JOHNSON Zoological Journal of the Linnean Society, 2003, 138, 495–503. With 3 figures On the homology of the posteriormost gill arch in polypterids (Cladistia, Actinopterygii) RALF BRITZ1,2* AND G. DAVID JOHNSON2 1Lehrstuhl für Spezielle Zoologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany 2Division of Fishes, National Museum of Natural History, Washington D.C. 20560, USA Received October 2002; accepted for publication December 2002 Polypterids are unusual among ray-finned fishes in possessing only four rather than five gill arches. We review the two current hypotheses regarding the homology of the last gill arch in polypterids: that it represents (1) the fifth or (2) the fourth arch of other actinopterygians. Arguments for the alternative hypotheses drawn from different ana- tomical systems are compiled and evaluated. We conclude that in polypterids the last arch represents the fourth arch of other Actinopterygii and the fifth arch is absent. © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society, 2003, 138, 495–503. ADDITIONAL KEYWORDS: branchial circulation – branchial muscles – branchial nerves – Erpetoichthys – Polypterus. INTRODUCTION cialized anatomy of the pectoral fins, a particular type of sexually dimorphic anal fin associated with a unique The African freshwater fish family Polypteridae com- mating behaviour, and a reduced number of gill arches prises two genera, Polypterus (bichirs), with ten spe- (Müller, 1846; Greenwood, 1984; Gardiner & Schaeffer, cies, and the monotypic Erpetoichthys (reedfish) (Poll 1989; Britz & Bartsch, 1998). -
HANDBOOK of FISH BIOLOGY and FISHERIES Volume 1 Also Available from Blackwell Publishing: Handbook of Fish Biology and Fisheries Edited by Paul J.B
HANDBOOK OF FISH BIOLOGY AND FISHERIES Volume 1 Also available from Blackwell Publishing: Handbook of Fish Biology and Fisheries Edited by Paul J.B. Hart and John D. Reynolds Volume 2 Fisheries Handbook of Fish Biology and Fisheries VOLUME 1 FISH BIOLOGY EDITED BY Paul J.B. Hart Department of Biology University of Leicester AND John D. Reynolds School of Biological Sciences University of East Anglia © 2002 by Blackwell Science Ltd a Blackwell Publishing company Chapter 8 © British Crown copyright, 1999 BLACKWELL PUBLISHING 350 Main Street, Malden, MA 02148‐5020, USA 108 Cowley Road, Oxford OX4 1JF, UK 550 Swanston Street, Carlton, Victoria 3053, Australia The right of Paul J.B. Hart and John D. Reynolds to be identified as the Authors of the Editorial Material in this Work has been asserted in accordance with the UK Copyright, Designs, and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs, and Patents Act 1988, without the prior permission of the publisher. First published 2002 Reprinted 2004 Library of Congress Cataloging‐in‐Publication Data has been applied for. Volume 1 ISBN 0‐632‐05412‐3 (hbk) Volume 2 ISBN 0‐632‐06482‐X (hbk) 2‐volume set ISBN 0‐632‐06483‐8 A catalogue record for this title is available from the British Library. Set in 9/11.5 pt Trump Mediaeval by SNP Best‐set Typesetter Ltd, Hong Kong Printed and bound in the United Kingdom by TJ International Ltd, Padstow, Cornwall. -
Linnean 22(3) July 2006 Final.P65
NEWSLETTER AND PROCEEDINGS OF THE LINNEAN SOCIETY OF LONDON VOLUME 22 • NUMBER 3 • JULY 2006 THE LINNEAN SOCIETY OF LONDON Registered Charity Number 220509 Burlington House, Piccadilly, London W1J 0BF Tel. (+44) (0)20 7434 4479; Fax: (+44) (0)20 7287 9364 e-mail: [email protected]; internet: www.linnean.org President Secretaries Council Professor David F Cutler BOTANICAL The Officers and Dr Sandy Knapp Dr Louise Allcock Vice-Presidents Prof John R Barnett Professor Richard M Bateman ZOOLOGICAL Prof Janet Browne Dr Jenny M Edmonds Dr Vaughan R Southgate Dr Joe Cain Prof Mark Seaward Prof Peter S Davis Dr Vaughan R Southgate EDITORIAL Mr Aljos Farjon Dr John R Edmondson Dr Michael F Fay Treasurer Dr Shahina Ghazanfar Professor Gren Ll Lucas OBE COLLECTIONS Dr D J Nicholas Hind Mrs Susan Gove Mr Alastair Land Executive Secretary Dr D Tim J Littlewood Mr Adrian Thomas OBE Librarian & Archivist Dr Keith N Maybury Miss Gina Douglas Dr George McGavin Head of Development Prof Mark Seaward Ms Elaine Shaughnessy Deputy Librarian Mrs Lynda Brooks Office/Facilities Manager Ms Victoria Smith Library Assistant Conservator Mr Matthew Derrick Ms Janet Ashdown Finance Officer Mr Priya Nithianandan THE LINNEAN Newsletter and Proceedings of the Linnean Society of London Edited by Brian G Gardiner Editorial .......................................................................................................................1 Society News............................................................................................................... 1 The Linnean -
Molecular Synapomorphies Resolve Evolutionary Relationships of Extant Jawed Vertebrates
Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates Byrappa Venkatesh*†, Mark V. Erdmann‡, and Sydney Brenner* *Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609; and ‡Department of Integrative Biology, University of California, Berkeley, CA 94720 Contributed by Sydney Brenner, August 7, 2001 The evolutionary relationships of gnathostomes (jawed verte- brates), which comprise chondrichthyans (cartilaginous fishes), lobe-finned fishes (coelacanths and lungfishes), tetrapods, and actinopterygians (ray-finned fishes), have been debated for almost a century. Phylogenetic analyses based on fossils, morphology, and molecular sequences have generated different models of relation- ships that remain unresolved. We identified 13 derived shared molecular markers (synapomorphies) that define clades in the vertebrate lineage and used them to resolve the phylogenetic relationships of extant jawed vertebrates. Our markers include the presence or absence of insertions and deletions in coding se- quences, nuclear introns, and alternatively spliced transcripts. The synapomorphies identified by us are congruent with each other and give rise to a single phylogenetic tree. This tree confirms that chondrichthyans are basal to all living gnathostomes, that lung- fishes (Dipnoi) are the closest living relatives of tetrapods, and that bichirs (Cladistia) are the living members of the most ancient family of ray-finned fishes. Our study also provides molecular evidence to support the monophyly of living tetrapods and teleosts. Fig. 1. Alternative models of evolutionary relationships of gnathostomes he jawed vertebrates (gnathostomes) fall into two major taxa, proposed by earlier studies (4–5). Model a proposes a lungfish ϩ tetrapod Tthe Chondrichthyes (cartilaginous fishes) and Osteichthyes clade, whereas model b supports a lungfish ϩ coelacanth clade (4). -
A Strategic Approach to the Management of Ornamental Fish in Australia Communication Strategy and Grey List Review - a REPORT to OFMIG
A strAtegic ApproAch to the management of ornamental fish in australia communicAtion strAtegy And grey list review - A report TO oFmig A strategic approach to the management of ornamental fish in Australia Communication strategy and grey list review – a report to OFMIG Andy Moore, Nicholas Marton and Alex McNee March 2010 © Commonwealth of Australia 2010 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the Commonwealth Copyright Administration, Attorney General’s Department, Robert Garran Offices, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca. The Australian Government acting through the Bureau of Rural Sciences has exercised due care and skill in the preparation and compilation of the information and data set out in this publication. Notwithstanding, the Bureau of Rural Sciences, its employees and advisers disclaim all liability, including liability for negligence, for any loss, damage, injury, expense or cost incurred by any person as a result of accessing, using or relying upon any of the information or data set out in this publication to the maximum extent permitted by law. Postal address: Bureau of Rural Sciences GPO Box 858 Canberra, ACT 2601 Copies available from: www.brs.gov.au ISBN: 1-921192-37-2 ii Acknowledgements This report was made possible through financial support from the Ornamental Fish Management Implementation Group (OFMIG) which is funded by state, teritory and federal government agencies. -
2003. Fish Biodiversity: Local Studies As Basis for Global Inferences
Fish Biodiversity: Local Studies as Basis for Global Inferences. M.L.D. Palomares, B. Samb, T. Diouf, J.M. Vakily and D. Pauly (Eds.) ACP – EU Fisheries Research Report NO. 14 ACP-EU Fisheries Research Initiative Fish Biodiversity: Local Studies as Basis for Global Inferences Edited by Maria Lourdes D. Palomares Fisheries Centre, University of British Columbia, Vancouver, Canada Birane Samb Centre de Recherches Océanographiques de Dakar-Thiaroye, Sénégal Taïb Diouf Centre de Recherches Océanographiques de Dakar-Thiaroye, Sénégal Jan Michael Vakily Joint Research Center, Ispra, Italy and Daniel Pauly Fisheries Centre, University of British Columbia, Vancouver, Canada Brussels December 2003 ACP-EU Fisheries Research Report (14) – Page 2 Fish Biodiversity: Local Studies as Basis for Global Inferences. M.L.D. Palomares, B. Samb, T. Diouf, J.M. Vakily and D. Pauly (eds.) The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the European Commission concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of frontiers or boundaries. Copyright belongs to the European Commission. Nevertheless, permission is hereby granted for reproduction in whole or part for educational, scientific or development related purposes, except those involving commercial sale on any medium whatsoever, provided that (1) full citation of the source is given and (2) notification is given in writing to the European Commission, Directorate General for Research, INCO-Programme, 8 Square de Meeûs, B-1049 Brussels, Belgium. Copies are available free of charge upon request from the Information Desks of the Directorate General for Development, 200 rue de la Loi, B-1049 Brussels, Belgium, and of the INCO-Programme of the Directorate General for Research, 8 Square de Meeûs, B-1049 Brussels, Belgium, E-mail: [email protected].