<<

Suzuki et al. BMC Evolutionary Biology 2010, 10:209 http://www.biomedcentral.com/1471-2148/10/209

CORRECTION Open Access TheCorrection mitochondrial phylogeny of an ancient lineage of ray-finned (Polypteridae) with implications for the evolution of body elongation, pelvic fin loss, and craniofacial morphology in Osteichthyes

Dai Suzuki1, Matthew C Brandley2 and Masayoshi Tokita*1,3

Correction and cranio-facial morphology (Fig. 3; Fig. four in the orig- After re-evaluation, we have determined that two , inal study). retropinnis and P. mokelembembe, were mis- We note that any reference in the original text to P. ret- identified in our original study [1]. The overall morphol- ropinnis is in fact referring to P. mokelembembe, and vice ogy of both species is very similar, to the point that re- versa. examination of the type series of P. retropinnis demon- Secondly, in our published cranio-facial morphology strated that it consisted of both P. retropinnis and P. figure (Fig. four in the original study), the symbols for P. mokelembembe [2]. Therefore, the placement of these two endlicheri congicus and P. e. endlicheri were switched. We taxa in our published phylogeny should be switched (Fig. have corrected this below (Fig. 3). Because both taxa are 1 below; Fig. two in the original study). This error has characterized by lower jaw protrusion, this correction only minor impact on our analyses of pre-sacral verte- does not substantially change our conclusions. brate evolution (Fig. 2; Fig. three in the original study)

* Correspondence: [email protected] 1 Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502 Japan Full list of author information is available at the end of the article

© 2010 Suzuki et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Suzuki et al. BMC Evolutionary Biology 2010, 10:209 Page 2 of 4 http://www.biomedcentral.com/1471-2148/10/209

0.97 Polypterus delhezi 1 1.0 Polypterus delhezi 2 0.94 Polypterus delhezi 3 Polypterus palmas polli 1 1.0 1.0 Polypterus palmas polli 2 Polypterus palmas polli Polypterus palmas polli 3 1.0 Polypterus senegalus senegalus 1 2 1.0 Polypterus senegalus senegalus Polypterus palmas buettikoferi 1 1.0 Polypterus palmas buettikoferi 3 1.0 Polypterus endlicheri endlicheri Polypterus palmas buettikoferi 4 Polypterus palmas buettikoferi 2 1.0 0.97 Polypterus teugelsi 1.0 Polypterus ornatipinnis 1 1.0 Polypterus ornatipinnis 2 1.0 Polypterus weeksi 1 Erpetoichthys calabaricus Polypterus weeksi 2 0.95 1.0 Polypterus mokelembembe 1 Polypterus mokelembembe 2 0.94 1.0 Polypterus lapradei 1 1.0 Polypterus bichir lapradei 2 0.93 Polypterus bichir bichir 1.0 Polypterus endlicheri endlicheri 1 1.0 Polypterus endlicheri endlicheri 3 1.0 1.0 Polypterus endlicheri endlicheri 2 Polypterus ansorgii 1 1.0 1.0 Polypterus ansorgii 2 0.73 Polypterus endlicheri congicus 2 1.0 1.0 Polypterus endlicheri congicus 3 Polypteridae Polypterus endlicheri congicus 1 1.0 Polypterus retropinnis 1 Polypterus retropinnis 2 1.0 Erpetoichthys calabaricus 1 Erpetoichthys calabaricus 2 1.0 Acipenser 1.0 Polyodon 0.98 Amia Lepisosteus Latimeria Protopterus

Figure 1 Molecular phylogeny of the extant polypterid species inferred from partitioned Bayesian analyses 16SrRNA and cyt b mitochon- drial genes. Branch lengths are means of the posterior distribution. Numbers above or below the node indicate the Bayesian posterior probability that clade is correctly estimated given the model. Posterior probabilities less than 0.50 are not shown. Colors indicate groups defined in Fig. four. Please note that this corrected figure corresponds to Fig. two of the original study. Suzuki et al. BMC Evolutionary Biology 2010, 10:209 Page 3 of 4 http://www.biomedcentral.com/1471-2148/10/209

ErpetoichthysPolypterus calabaricusPolypterus retropinnisPolypterus endlicheriPolypterus ansorgii congicusPolypterus endlicheriPolypterus bichir endlicheri bichirPolypterus bichir lapradeiPolypterus mokelembembePolypterus ornatipinnisPolypterus weeksi Polypterus palmas buettikoferiPolypterus teugelsiPolypterus senegalusPolypterus delhezi senegalus palmas polli 111.5 57.5 57.0 57.0 55.0 67.0 61.0 56.0 58.0 57.0 57.0 64.0 56.0 55.0 53.0

63.4 57.7 58.6 55.6 58.4 58.1 56.0 57.9 58.3 58.1

59.1

Increasing vertebrae 60.2 Decreasing vertebrae 62.2 No change (≤ 0.5) a) 71.8

E. calabaricusP. retropinnisP. e. congicusP. ansorgiiP. e. endlicheriP. b. bichirP. b. lapradeiP. mokelembembeP. ornatipinnisP. weeksiP. p. buettikoferiP. teugelsiP. s. senegalusP. delheziP. p. polli E. calabaricusP. retropinnisP. e. congicusP. ansorgiiP. e. endlicheriP. b. bichirP. b. lapradeiP. mokelembembeP. ornatipinnisP. weeksiP. p. buettikoferiP. teugelsiP. s. senegalusP. delheziP. p. polli

Pelvic girdle present No jaw protrusion

Pelvic girdle absent Lower jaw protrusion P (absent) = 0.2 b) P (present) = 0.8 c)

Figure 2 Extant states and result of ancestral state reconstructions of vertebral number using squared-change parsimony. Please note that this corrected figure corresponds to Fig. three of the original study. Suzuki et al. BMC Evolutionary Biology 2010, 10:209 Page 4 of 4 http://www.biomedcentral.com/1471-2148/10/209 4

A 0 C . 0 5 2 0 . 0 . ) 0 0 ) % 4 % 5 3 . 0 0 9 0 6 . . 0 . 3 0 1 0 ( 5 ( 1 C 1 2 P C 0 . 5 P 0 0 . − 0 − 4

0 r=0.515

. r=0.605 0 0 − 1 . 0 −

25 30 35 40 45 50 55 30 40 50 60 CS CS

B D 6 P. ansorgii 4 0 . 0 . 0 P. bichir lapradei 0 P. delhezi 4 0 . 2 P. endlicheri congicus 0 0 .

0 P. endlicheri endlicheri ) 2 ) P. mokelembembe 0 % . 0 % 0 5

0 P. ornatipinnis . 0 0 0 . 6 P. palmas buettikoferi . 0 0 0 3 . 2 P. palmas polli 0 ( 1 2 ( 0 . 2 P. retropinnis 0 2 2 C − 0 C . P. senegalus senegalus P 0 P 4 − P. teugelsi 0 . 4 0

0 P. weeksii − . 0 − 6 0 . 6 0 0 . − 0 − −0.04 −0.02 0.00 0.02 0.04 −0.10 −0.05 0.00 0.05 PC1 (36.54%) PC1 (51.93%)

Figure 3 Plots of principal component (PC) and centroid size (CS) for morphometric characters of Polypterus. a) CS and PC1 for dorsal view, b) PC1 and PC 2 for dorsal view, c) CS and PC1 for ventral view, d) PC1 and PC2 for ventral view. Grouping corresponds to the clade inferred from molecular phylogenetic analysis (Fig. two): Blue = Polypterus ansorgei, P. bichir lapradei, P. endlicheri endlicheri, and P. e. congicus; Green = P. retropinnis; Purple = P. ornatipinnis, P. mokelembembe, and P. weeksii; Red = P. delhezi, P. palmas buettikoferi, P. p. polli, P. senegalus senegalus, and P. teugelsi. Please note that this corrected figure corresponds to Fig. four of the original study.

Author Details 1Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502 Japan, 2Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8105 USA and 3Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572 Japan

Received: 9 July 2010 Accepted: 12 July 2010 Published: 12 July 2010 This©BMC 2010 isarticleEvolutionary an Suzuki Open is available et Access al; Biology licensee from:article 2010, http:BioMed distributed 10//www.biomedcentral.com/1471-2148/10/209:209 Central under Ltd. the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References 1. Suzuki D, Brandley MC, Tokita M: The mitochondrial phylogeny of an ancient lineage of ray-finned fishes (Polypteridae) with implications for the evolution of body elongation, pelvic fin loss, and craniofacial morphology in Osteichthyes. BMC Evolutionary Biology 2010, 10:21. 2. Schliewen UK, Schäfer F: Polypterus mokelembembe, a new species of bichir from the central Congo River basin (: : Polypteridae). Zootaxa 2006, 1129:23-36.

doi: 10.1186/1471-2148-10-209 Cite this article as: Suzuki et al., The mitochondrial phylogeny of an ancient lineage of ray-finned fishes (Polypteridae) with implications for the evolution of body elongation, pelvic fin loss, and craniofacial morphology in Osteich- thyes BMC Evolutionary Biology 2010, 10:209