Speed and Body Mass Colimit Prey Space of Mammalian Predators

Total Page:16

File Type:pdf, Size:1020Kb

Speed and Body Mass Colimit Prey Space of Mammalian Predators PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. https://hdl.handle.net/2066/222180 Please be advised that this information was generated on 2021-10-05 and may be subject to change. Received: 28 August 2019 | Revised: 1 May 2020 | Accepted: 5 May 2020 DOI: 10.1002/ece3.6411 ORIGINAL RESEARCH Rethinking trophic niches: Speed and body mass colimit prey space of mammalian predators Myriam R. Hirt1,2 | Marlee Tucker3,4,5 | Thomas Müller3,4 | Benjamin Rosenbaum1,2 | Ulrich Brose1,2 1EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena- Abstract Leipzig, Leipzig, Germany 1. Realized trophic niches of predators are often characterized along a one-dimen- 2 Institute of Biodiversity, Friedrich Schiller sional range in predator–prey body mass ratios. This prey range is constrained by University Jena, Jena, Germany 3Senckenberg Biodiversity and Climate an “energy limit” and a “subdue limit” toward small and large prey, respectively. Research Centre (BiK-F), Frankfurt, Germany Besides these body mass ratios, maximum speed is an additional key component 4 Department of Biological Sciences, Goethe- in most predator–prey interactions. University, Frankfurt, Germany 2. Here, we extend the concept of a one-dimensional prey range to a two-dimen- 5Department of Environmental Science, Institute for Wetland and Water Research, sional prey space by incorporating a hump-shaped speed-body mass relation. This Radboud University, Nijmegen, the new “speed limit” additionally constrains trophic niches of predators toward fast Netherlands prey. Correspondence 3. To test this concept of two-dimensional prey spaces for different hunting strate- Myriam R. Hirt, German Centre for Integrative Biodiversity Research (iDiv) gies (pursuit, group, and ambush predation), we synthesized data on 63 terrestrial Halle-Jena-Leipzig, Deutscher Platz 5e, mammalian predator–prey interactions, their body masses, and maximum speeds. 04103, Leipzig, Germany. Email: [email protected] 4. We found that pursuit predators hunt smaller and slower prey, whereas group hunters focus on larger but mostly slower prey and ambushers are more flex- Funding information Deutsche Forschungsgemeinschaft, Grant/ ible. Group hunters and ambushers have evolved different strategies to occupy Award Number: FZT 118; Robert Bosch a similar trophic niche that avoids competition with pursuit predators. Moreover, Stiftung our concept suggests energetic optima of these hunting strategies along a body mass axis and thereby provides mechanistic explanations for why there are no small group hunters (referred to as “micro-lions”) or mega-carnivores (referred to as “mega-cheetahs”). 5. Our results demonstrate that advancing the concept of prey ranges to prey spaces by adding the new dimension of speed will foster a new and mechanistic under- standing of predator trophic niches and improve our predictions of predator–prey interactions, food web structure, and ecosystem functions. KEYWORDS ambushing, body mass ratio, food webs, group hunting, mega-carnivores, movement, predator–prey interactions, prey range, pursuit predation This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 7094 | www.ecolevol.org Ecology and Evolution. 2020;10:7094–7105. HIRT ET AL. | 7095 1 | INTRODUCTION (Brose, 2010; Portalier et al., 2019). Maximum prey size is thereby determined by the “subdue limit”: The prey has to be small enough to Pursuing and capturing prey is as vital to the predator as it is to be successfully subdued by the predator (Radloff & Du Toit, 2004). the prey to avoid capture. Thus, animals have evolved a variety of These limits differ depending on the movement mode of the pred- morphological traits and behavioral strategies that either maximize ator and the dimensionality of the ecosystem (Brose et al., 2019; capture success or minimize predation risk (Cortez, 2011; Walker, Pawar, Dell, Lin, Wieczynski, & Savage, 2019; Portalier et al., 2019). Ghalambor, Griset, McKenney, & Reznick, 2005; Wilson et al., 2018). For typical terrestrial mammalian predators, these limits imply that Predator avoidance strategies of prey have been intensely stud- prey body masses are between one and four orders of magnitude ied (Lima, 1998), but less attention has been paid to the behavior lower (Figure 1a, typical predator–prey body mass structure, Brose of the predator (Lima, 2002). More recent studies have focused on et al., 2006, Tucker & Rogers, 2014). However, there are exceptions the interplay between predator and prey, and the determinants of to this pattern where predator–prey body mass ratios are inverted predatory success in specific predator–prey pursuits, such as those and predators are able to consume much larger prey (Figure 1a, in- between lion and zebra, or cheetah and impala (Wilson et al., 2015, verse predator–prey body mass structure), such as lions (~200 kg) hunt- 2018). Locomotor abilities such as speed and maneuverability are ing African buffaloes (~650 kg). Lions are able to effectively subdue critical components in these interactions as well as body mass and their larger prey because usually multiple group members are simul- hunting strategy (Bailey, Myatt, & Wilson, 2013; Bro-Jørgensen, taneously attacking it. 2013; Caro, 2005; Wilson et al., 2018). While the determinants and Besides body mass constraints, movement speed as well as ac- success of specific predator–prey pursuits have thereby been ana- celeration, deceleration, and maneuverability play an important role lyzed explicitly, general determinants of predator–prey interactions during the hunting process (Wilson et al., 2018). Primarily, the pred- and trophic niches are less explored. From the predator's perspec- ator needs to be fast enough to be able to catch its prey, which we tive, this addresses the question: “which prey could possibly be cap- refer to as the “speed limit.” Under the assumption that maximum tured and subdued?” speed follows a power–law relationship with body mass (Bejan & Traditionally, this question on trophic niches was answered Marden, 2006; Hedenström, 2003; Peters, 1986), predators would by placing predator and prey on a single body mass axis and set- generally not be able to catch prey that is much larger than they are, ting lower and upper limits to the prey range predators can exploit since it would always be faster. Therefore, the traditional concept of (Brose, 2010; Portalier, Fussmann, Loreau, & Cherif, 2019; Schneider, predator–prey body mass ranges cannot provide satisfying answers Scheu, & Brose, 2012). Minimum prey size is determined by the “en- for the questions of (1) how the smaller predators manage to success- ergetic limit”: The prey has to be large enough to meet the energy fully catch their prey if the body mass structure of the interaction is demands of the predator. This means that the energetic costs of inverse (Figure 1a) and (2) why there are no pursuit predators that hunting and attacking the prey should not exceed the energetic gain are larger than mega-herbivores (e.g., mega-cheetahs). Therefore, a Predator-prey body mass structure Maximum speed and body mass (a) (b) Prey smaller Prey larger TypicalInverse and faster and faster Predator d spee Log Prey smaller Prey larger and slower and slower Log bodymass FIGURE 1 Concept of the prey space Hypothecal prey spaces of different hunting strategies. (a) Typical and inverse body mass ratio of predators and their prey. (b) Scaling of maximum (c) Pursuit predaon (d) Grouphunng (e) Ambushing speed with body mass in terrestrial Energy limit mammals. (c–e) Hypothesized prey space of pursuit predation (c), group hunting (d), Subdue limit and ambushing (e) set by the energetic, subdue, and speed limit. Panels c, d, and e Speed limit have the same axes as panel b. Note that these limits are drawn as conceptual lines to illustrate our a priori expectations 7096 | HIRT ET AL. trophic niche concept that goes beyond simple predator–prey body studies (Brose, 2010; Petchey, Beckerman, Riede, & Warren, 2008; mass ranges is necessary for a mechanistic understanding of interac- Schneider, Brose, Rall, & Guill, 2016), our concept focuses on the tions for both typical and inverse body mass structures (Figure 1a). trophic dimension of the species’ niches. We illustrate our concept Recent food web studies have revealed that the movement type and test its hypotheses by compiling a database comprising data on (e.g., running, flying, swimming) of predator and prey is an import- body masses and maximum speeds of terrestrial mammalian preda- ant factor constraining their interactions (Brose et al., 2019; Jacob tors and their dominant prey. Our empirical data is mostly limited by et al., 2011). Interestingly, the maximum speed of animals follows the availability of maximum-speed data. Due to the further restric- a hump-shaped pattern with body mass (Garland, 1983; Hirt, Jetz, tion to species pairs that are engaged in trophic interactions, our Rall, & Brose, 2017; Figure 1b), enabling medium-sized predators database comprises only 63 predator–prey links. While information to catch larger and therefore slower prey. This pattern adds a new on additional predator–prey interactions as well as
Recommended publications
  • Insectivory Characteristics of the Japanese Marten (Martes Melampus): a Qualitative Review
    Zoology and Ecology, 2019, Volumen 29, Issue 1 Print ISSN: 2165-8005 Online ISSN: 2165-8013 https://doi.org/10.35513/21658005.2019.1.9 INSECTIVORY CHARACTERISTICS OF THE JAPANESE MARTEN (MARTES MELAMPUS): A QUALITATIVE REVIEW REVIEW PAPER Masumi Hisano Faculty of Natural Resources Management, Lakehead University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada Corresponding author. Email: [email protected] Article history Abstract. Insects are rich in protein and thus are important substitute foods for many species of Received: 22 December generalist feeders. This study reviews insectivory characteristics of the Japanese marten (Martes 2018; accepted 27 June 2019 melampus) based on current literature. Across the 16 locations (14 studies) in the Japanese archi- pelago, a total of 80 different insects (including those only identified at genus, family, or order level) Keywords: were listed as marten food, 26 of which were identified at the species level. The consumed insects Carnivore; diet; food were categorised by their locomotion types, and the Japanese martens exploited not only ground- habits; generalist; insects; dwelling species, but also arboreal, flying, and underground-dwelling insects, taking advantage of invertebrates; trait; their arboreality and ability of agile pursuit predation. Notably, immobile insects such as egg mass mustelid of Mantodea spp, as well as pupa/larvae of Vespula flaviceps and Polistes spp. from wasp nests were consumed by the Japanese marten in multiple study areas. This review shows dietary general- ism (specifically ‘food exploitation generalism’) of the Japanese marten in terms of non-nutritive properties (i.e., locomotion ability of prey). INTRODUCTION have important functions for martens with both nutritive and non-nutritive aspects (sensu, Machovsky-Capuska Dietary generalists have capability to adapt their forag- et al.
    [Show full text]
  • Evaluating the Ecology of Spinosaurus: Shoreline Generalist Or Aquatic Pursuit Specialist?
    Palaeontologia Electronica palaeo-electronica.org Evaluating the ecology of Spinosaurus: Shoreline generalist or aquatic pursuit specialist? David W.E. Hone and Thomas R. Holtz, Jr. ABSTRACT The giant theropod Spinosaurus was an unusual animal and highly derived in many ways, and interpretations of its ecology remain controversial. Recent papers have added considerable knowledge of the anatomy of the genus with the discovery of a new and much more complete specimen, but this has also brought new and dramatic interpretations of its ecology as a highly specialised semi-aquatic animal that actively pursued aquatic prey. Here we assess the arguments about the functional morphology of this animal and the available data on its ecology and possible habits in the light of these new finds. We conclude that based on the available data, the degree of adapta- tions for aquatic life are questionable, other interpretations for the tail fin and other fea- tures are supported (e.g., socio-sexual signalling), and the pursuit predation hypothesis for Spinosaurus as a “highly specialized aquatic predator” is not supported. In contrast, a ‘wading’ model for an animal that predominantly fished from shorelines or within shallow waters is not contradicted by any line of evidence and is well supported. Spinosaurus almost certainly fed primarily from the water and may have swum, but there is no evidence that it was a specialised aquatic pursuit predator. David W.E. Hone. Queen Mary University of London, Mile End Road, London, E1 4NS, UK. [email protected] Thomas R. Holtz, Jr. Department of Geology, University of Maryland, College Park, Maryland 20742 USA and Department of Paleobiology, National Museum of Natural History, Washington, DC 20560 USA.
    [Show full text]
  • Anthropogenic Noise Compromises Anti-Predator Behaviour in European Eels
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided14/07/2014 by Open Research 22:36 Exeter Anthropogenic noise compromises anti-predator behaviour in European eels Stephen D. Simpson1*, Julia Purser2 & Andrew N. Radford2 1Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom 2School of Biological Sciences & Cabot Institute, University of Bristol, Woodland Road, Bristol, BS8 1UG, United Kingdom *Corresponding author, email: [email protected], telephone: +44 1392 722714 Running title: Noise compromises anti-predator behaviour Keywords: Noise pollution, global change, fitness consequences, survival, shipping Article type: Primary Research Article Abstract Increases in noise-generating human activities since the Industrial Revolution have changed the acoustic landscape of many terrestrial and aquatic ecosystems. Anthropogenic noise is now recognised as a major pollutant of international concern, and recent studies have demonstrated impacts on, for instance, hearing thresholds, communication, movement and foraging in a range of species. However, consequences for survival and reproductive success are difficult to ascertain. Using a series of laboratory-based experiments and an open-water test with the same methodology, we show that acoustic disturbance can compromise anti-predator behaviour – which directly affects survival likelihood – and explore potential underlying mechanisms. Juvenile European eels (Anguilla anguilla) exposed to additional noise (playback of recordings of ships passing through harbours), rather than control conditions (playback of recordings from the same harbours without ships), performed less well in two simulated predation paradigms. Eels were 50% less likely and 25% slower to startle to an “ambush predator” and were caught more than twice as quickly by a “pursuit predator”.
    [Show full text]
  • Locomotor Evolution in the Carnivora (Mammalia): Evidence from the Elbow Joint
    Locomotor evolution in the Carnivora (Mammalia): evidence from the elbow joint Ki Andersson Thesis for the degree of Filosofie Licentiat, 2003 Department of Earth Sciences Historical Geology and Paleontology Uppsala University Norbyvägen 22, SE-752 36 Uppsala, Sweden 2 Locomotor evolution in the Carnivora (Mammalia): evidence from the elbow joint KI ANDERSSON Introduction .................................................................................................................... 5 Forearm function ........................................................................................................ 5 Skeletal scaling in mammals ......................................................................................... 5 Body mass estimation ................................................................................................. 6 Carnivore hunting strategy and cursoriality ................................................................... 7 Pursuit predators in the past ........................................................................................ 7 Shape analysis ............................................................................................................ 9 Summary of papers ......................................................................................................... 9 Paper I ....................................................................................................................... 9 Paper II ...................................................................................................................
    [Show full text]
  • Wiki Education Foundation Monthly Report, October 2015
    Wiki Education Foundation Monthly Report, October 2015 Highlights "WikiConference USA 2015 Group Photo 32" by Geraldshields11 - Own work. Licensed under CC BY-SA 4.0 via Wikimedia Commons -https://commons.wikimedia.org/wiki/File:WikiConference_USA_2015_Group_Photo_32.JPG #/media/File:WikiConference_USA_2015_Group_Photo_32.JPG • The Wiki Education Foundation was a proud co-sponsor, alongside the National Archives and Record Administration and the National Archives Foundation, of WikiConference USA 2015. We consider this event a resounding success in achieving its stated goal: Connecting Wikipedians, educators, cultural institution staff, and others to share the work that connects and inspires them. We are grateful to the Wikimedia DC and Wikimedia NYC volunteers whose work made the event possible. • While in Washington, D.C., Wiki Ed hosted its first external fundraising event. Wiki Ed board members and staff made meaningful connections and discussed potentials for future collaborations and funding opportunities. We were immediately invited to host another event, a luncheon in New York, for early November. • We launched a new question-and-answer tool online, ask.wikiedu.org. The tool allows program participants to pose questions about Wikipedia; Wiki Ed staff or volunteers can respond to these questions. This tool has already been used by instructors, and should have an impact on our ability to scale our staff support by providing a database of the most commonly asked questions and answers. • The Classroom Program is now supporting more than 3,000 students in October. This is the largest number of students we have supported to date, and our ability to support quality work from this large of a student group is testament to our great digital tools and staff.
    [Show full text]
  • Predator and Prey Functional Traits
    F1000Research 2017, 6(F1000 Faculty Rev):1767 Last updated: 17 JUL 2019 REVIEW Predator and prey functional traits: understanding the adaptive machinery driving predator–prey interactions [version 1; peer review: 2 approved] Oswald Schmitz School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, CT, 06515, USA First published: 27 Sep 2017, 6(F1000 Faculty Rev):1767 ( Open Peer Review v1 https://doi.org/10.12688/f1000research.11813.1) Latest published: 27 Sep 2017, 6(F1000 Faculty Rev):1767 ( https://doi.org/10.12688/f1000research.11813.1) Reviewer Status Abstract Invited Reviewers Predator–prey relationships are a central component of community 1 2 dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and version 1 prey species, but characterizing the interaction this way is insufficient to published predict the complexity and context dependency inherent in predator–prey 27 Sep 2017 relationships. Recent approaches have begun to explore predator–prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving F1000 Faculty Reviews are written by members of context-dependent expression of functional traits that influence their the prestigious F1000 Faculty. They are biomechanics. Functional traits are defined as any morphological, commissioned and are peer reviewed before behavioral, or physiological trait of an organism associated with a biotic publication to ensure that the final, published version interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator is comprehensive and accessible.
    [Show full text]
  • Piter Kehoma Boll
    UNIVERSIDADE DO VALE DO RIO DOS SINOS PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA Diversidade e Manejo da Vida Silvestre DOUTORADO Piter Kehoma Boll INVESTIGANDO A ECOLOGIA TRÓFICA DE PLANÁRIAS TERRESTRES NEOTROPICAIS: ECOMORFOLOGIA, DESENVOLVIMENTO E COMPORTAMENTO São Leopoldo 2019 Piter Kehoma Boll INVESTIGANDO A ECOLOGIA TRÓFICA DE PLANÁRIAS TERRESTRES NEOTROPICAIS: ECOMORFOLOGIA, DESENVOLVIMENTO E COMPORTAMENTO Tese apresentada como requisito parcial para a obtenção do título de Doutor em Biologia, área de concentração: Diversidade e Manejo da Vida Silvestre, pela Universidade do Vale do Rio dos Sinos. Orientadora: Profª. Drª. Ana Maria Leal-Zanchet São Leopoldo 2019 B691i Boll, Piter Kehoma. Investigando a ecologia trófica de planárias terrestres neotropicais : ecomorfologia, desenvolvimento e comportamento / Piter Kehoma Boll. – 2019. 87 f. : il. ; 30 cm. Tese (doutorado) – Universidade do Vale do Rio dos Sinos, Programa de Pós-Graduação em Biologia, 2019. “Orientadora: Profª. Drª. Ana Maria Leal-Zanchet.” 1. Comportamento. 2. Ecomorfologia. 3. Geoplanidae. 4. Hábitos alimentares. I. Título. CDU 573 Dados Internacionais de Catalogação na Publicação (CIP) (Bibliotecária: Amanda Schuster – CRB 10/2517) AGRADECIMENTOS À minha mãe, Rosali Dhein Boll, pelo apoio e especialmente pelo empenho em me ajudar na coleta, em seu quintal, de muitos espécimes que foram essenciais para a conclusão desta tese. Ao meu esposo, Douglas Marques, pelo companheirismo na vida familiar e acadêmica, pelo apoio, pelos ensinamentos, pela paciência em me ouvir discorrer sobre as planárias e pelo auxílio em diversas questões centrais para a tese. À Drª. Ana Maria Leal-Zanchet pela orientação e pela oportunidade para que eu pudesse seguir pesquisando este grupo fascinante, mas ainda negligenciado, de predadores tropicais.
    [Show full text]
  • The Repeated Evolution of Dental Apicobasal Ridges in Aquatic-Feeding Mammals and Reptiles
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Biological Journal of the Linnean Society, 2019, 127, 245–259. With 7 figures. The repeated evolution of dental apicobasal ridges in aquatic-feeding mammals and reptiles MATTHEW R. MCCURRY1,2*, ALISTAIR R. EVANS3,4, ERICH M. G. FITZGERALD4, 5,6,7 8 9,10 COLIN R. MCHENRY , JOSEPH BEVITT and NICHOLAS D. PYENSON Downloaded from https://academic.oup.com/biolinnean/article/127/2/245/5427318 by guest on 27 September 2021 1Australian Museum Research Institute, Sydney, NSW 2010, Australia 2PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia 3School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia 4Geosciences, Museums Victoria, Melbourne, VIC 3001, Australia 5School of Engineering, University of Newcastle, Newcastle, NSW 2308, Australia 6School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW 2308, Australia 7Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia 8Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia 9Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA 10Mammalogy and Paleontology, Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA Received 17 November 2018; revised 12 February 2019; accepted for publication 13 February 2019 Since the Permian, Earth’s aquatic ecosystems have been ecologically dominated by numerous lineages of predatory amniotes. Many of these groups evolved elevated ridges of enamel that run down the apical–basal axis of their teeth, referred to here as apicobasal ridges. This trait is commonly used as a taxonomic tool to identify fossil species and higher groupings, but the function of the ridges and their associated ecological significance are poorly understood.
    [Show full text]
  • Aspects of Locomotor Evolution in the Carnivora (Mammalia)
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 877 Aspects of locomotor evolution in the Carnivora (Mammalia) BY KI ANDERSSON ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2003 ! ""# $#%"" & & & ' ( ) ' * +' ""#' * & , - .' * ' /00' " ' ' 123 !$4556450$"47 1 & 84 ( & ' ) ( 9 ( : : ' ) & & 9 & 84 ' & & & ( , ' * & - ;"'<"$= ; '55 = ;"'!5 ));"'$#< >"""$ ;! . ( & ( && ? & ' * ( 9 & & & & ' * : - . ( 4 : $'54 5 8' & ( & & ' 1 @ -##'04 #'/ 2. 8 & , ' 1 - #'/4$$' 2. ( @ A ( & ( :' && & & & ( & 3 * ' ( ? ( & ? ' B ( 9 -$6 . & & ( ( & & 84 & ' 1 & A , ' C ( 2 C ' 1 : 4& ( D 48E & ' & 8 ( ' 1 8 , : & & ' 1 & 8 ( & & & 84 & & & ' , , ) ( 9 8 * ) 2 : ! " / Palaeobiology! Norbyv.
    [Show full text]
  • Downloaded and Analyzed in the Combined Dataset and As an Additional Data Partition
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2007 Phylogeny and Character Change in the Feloid Carnivora Jill A. (Jill Alexandra) Holliday Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES PHYLOGENY AND CHARACTER CHANGE IN THE FELOID CARNIVORA By JILL A. HOLLIDAY A Dissertation submitted to the Department in Biological Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Spring Semester, 2007 The members of the Committee approve the dissertation of Jill A. Holliday defended on March 21, 2007. ____________________________________ Scott Steppan Professor Directing Dissertation ____________________________________ William Parker Outside Committee Member ____________________________________ Gregory Erickson Committee Member ____________________________________ Joseph Travis Committee Member ____________________________________ David Swofford Committee Member Approved: _____________________________________________ Tim Moerland, Chair, Department of Biological Science _____________________________________________ Dean, College of Arts and Sciences The office of Graduate Studies has verified and approved the above named committee members. ii ACKNOWLEDGEMENTS I would like to express sincere appreciation to my committee for ongoing discussion and support throughout the course of this project: S. Steppan, G. Erickson,
    [Show full text]
  • Figuring Extinction : Visualising the Thylacine In
    F I Ct N Ct EXT1 N CT( N: Visualising the Thylacine in Zoological and Natural History Works 1808-1936 Carol Freeman Bachelor of Arts (Hons) Volume 1 Submitted in fulfillment of the requirements for the degree of Doctor of Philosophy October 2005 School of Geography and Environmental Studies University of Tasmania ; .49 fiZEENtA*.j PI, D. Statement of Authenticity This thesis contains no material which has been accepted for the award of any other higher degree or graduate diploma in any tertiary institution and, to the best of my knowledge and belief, the thesis contains no copy or paraphrase of material previously published or written by any other persons, except where due reference is made in the text of the thesis or in footnotes. Carol Freeman University of Tasmania •=1'ey 0 5 This thesis is not to be made available for loan or copying for two years following the date this statement was signed. After that time, the thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. //;4",e• Carol Freeman University of Tasmania ,9-0/ / 2 / 0 5 Acknowledgments This thesis is the result of four years work that has benefited from the assistance and support of many individuals and institutions. Those that have contributed substantially to the finished thesis are mentioned below. Research was financially assisted by a three year Australian Postgraduate Award. My supervisors Dr Peter Hay and Dr Elaine Stratford at the Centre for Environmental Studies consistently encouraged me in a project largely outside their fields of interest.
    [Show full text]
  • Outrun Or Outmaneuver: Predator– Prey Interactions As a Model System for Integrating Biomechanical Studies in a Broader Ecological and Evolutionary Context
    Outrun or Outmaneuver: Predator– Prey Interactions as a Model System for Integrating Biomechanical Studies in a Broader Ecological and Evolutionary Context The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Moore, Talia Y., and Andrew A. Biewener. 2015. “Outrun or Outmaneuver: Predator–Prey Interactions as a Model System for Integrating Biomechanical Studies in a Broader Ecological and Evolutionary Context.” Integr. Comp. Biol. (June 27): icv074. doi:10.1093/icb/icv074. Published Version doi:10.1093/icb/icv074 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:25858000 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Outrun or Outmaneuver: Predator-prey interactions as a model system for integrating biomechanical studies in a broader ecological and evolutionary context 5 Talia Y. Moore* and Andrew A. Biewener Concord Field Station, Harvard University, 100 Old Causeway Road, Bedford, MA 01730 USA *[email protected], phone: (781) 275-1725, fax: (781) 275-9613 April 9, 2015 10 Synopsis–Behavioral studies performed in natural habitats provide a context for the development of hypotheses and the design of experiments relevant both to biomechanics and to evolution. In particular, predator-prey interactions are a model system for integrative study because predation success or failure has a direct effect on fitness and drives the evolution of specialized performance in both predator and prey.
    [Show full text]