Geochronologic and Petrologic Context for Deep Crustal Metamorphic Core Complex Development, East Humboldt Range, Nevada
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
51 Investigation of Nevada's 2009-2010 East Humboldt Range
17th Biennial Symposium Northern Wild Sheep and Goat Council Investigation of Nevada’s 2009-2010 East Humboldt Range and Ruby Mountain Bighorn Dieoff CALEB MCADOO, Nevada Department of Wildlife, 60 Youth Center Road, Elko, NV 89801 PEREGRINE WOLFF, Nevada Department of Wildlife, 405 South 21st Street, Sparks, NV 89431 MIKE COX, Nevada Department of Wildlife, 1100 Valley Road, Reno, NV 89512 Abstract: Coughing Rocky Mountain bighorn sheep were first reported by sportsmen the second week in December 2009 in the Ruby Mountains. In late December sportsmen again reported coughing and ill bighorn sheep but this time in the adjacent East Humboldt Range approximately 30 miles from the Ruby Mountains core bighorn area. Rut-related ram movement between these 2 ranges mostly likely occurs. Nevada Department of Wildlife (NDOW) quickly confirmed that bacterial pneumonia was present in the bighorn herds in both mountain ranges. The NDOW veterinarian and biologists developed an investigative and surveillance plan to learn the extent of the disease event, and administer an antibiotic treatment to a subgroup of animals. Objectives of the plan were to 1) compare and contrast bighorn sub-herds at different sites within the 2 mountain ranges with animals evaluated for respiratory pathogens and nutritional status (forage quality and trace mineral levels); 2) measure the benefit and effectiveness of the antibiotic Draxxin administered to bighorn sheep as measured by survival, lamb recruitment, body condition, residual lung pathology, and detected pathogens in collared and treated animals vs collared and untreated animals.; and 3) compare and contrast forage, soil, and blood and/or liver selenium levels; pathogen profiles; spring/early summer 2009 precipitation amounts; and forage quality measures among the East Humboldt Range and Ruby Mountain bighorn herds and other bighorn herds in Nevada that were captured in January 2010. -
High-Mtn-Lakes.Pdf
NEVADA DEPARTMENT OF WILDLIFE STATEWIDE SPORT FISHERIES MANAGEMENT FEDERAL AID JOB PROGRESS REPORT F-20-50 2014 RUBY MOUNTAIN & EAST HUMBOLDT HIGH MOUNTAIN LAKES NEVADA DEPARTMENT OF WILDLIFE, FISHERIES DIVISION ANNUAL JOB PROGRESS REPORT Table of Contents Contents Page SUMMARY ...................................................................................................................... 1 BACKGROUND .............................................................................................................. 1 OBJECTIVES and APPROACHES ................................................................................. 2 PROCEDURES ............................................................................................................... 3 FINDINGS ....................................................................................................................... 3 MANAGEMENT REVIEW ............................................................................................... 6 RECOMMENDATIONS ................................................................................................... 7 NEVADA DEPARTMENT OF WILDLIFE, FISHERIES DIVISION ANNUAL JOB PROGRESS REPORT State: Nevada Project Title: Statewide Fisheries Program Job Title: Ruby Mountain and East Humboldt High Mountain Lakes Period Covered: January 1, 2014 through December 31, 2014 SUMMARY During 2014, none of the high mountain lakes in the Ruby Mountains and East Humboldt Range was aerially stocked with Lahontan cutthroat trout fry due to the unavailability of -
Lahontan Cutthroat Trout Species Management Plan for the Upper Humboldt River Drainage Basin
STATE OF NEVADA DEPARTMENT OF WILDLIFE LAHONTAN CUTTHROAT TROUT SPECIES MANAGEMENT PLAN FOR THE UPPER HUMBOLDT RIVER DRAINAGE BASIN Prepared by John Elliott SPECIES MANAGEMENT PLAN December 2004 LAHONTAN CUTTHROAT TROUT SPECIES MANAGEMENT PLAN FOR THE UPPER HUMBOLDT RIVER DRAINAGE BASIN SUBMITTED BY: _______________________________________ __________ John Elliott, Supervising Fisheries Biologist Date Nevada Department of Wildlife, Eastern Region APPROVED BY: _______________________________________ __________ Richard L. Haskins II, Fisheries Bureau Chief Date Nevada Department of Wildlife _______________________________________ __________ Kenneth E. Mayer, Director Date Nevada Department of Wildlife REVIEWED BY: _______________________________________ __________ Robert Williams, Field Supervisor Date Nevada Fish and Wildlife Office U.S.D.I. Fish and Wildlife Service _______________________________________ __________ Ron Wenker, State Director Date U.S.D.I. Bureau of Land Management _______________________________________ __________ Edward C. Monnig, Forest Supervisor Date Humboldt-Toiyabe National Forest U.S.D.A. Forest Service TABLE OF CONTENTS Contents EXECUTIVE SUMMARY ……………………………………………………………………..1 INTRODUCTION……………………………………………………………………………….…2 AGENCY RESPONSIBILITIES……………………………………………………………….…4 CURRENT STATUS……………………………………………………………………………..6 RECOVERY OBJECTIVES……………………………………………………………………19 RECOVERY ACTIONS…………………………………………………………………………21 RECOVERY ACTION PRIORITIES BY SUBBASIN………………………………………….33 IMPLEMENTATION SCHEDULE……………………………………………………………..47 -
Timing and Tempo of the Great Oxidation Event
Timing and tempo of the Great Oxidation Event Ashley P. Gumsleya,1, Kevin R. Chamberlainb,c, Wouter Bleekerd, Ulf Söderlunda,e, Michiel O. de Kockf, Emilie R. Larssona, and Andrey Bekkerg,f aDepartment of Geology, Lund University, Lund 223 62, Sweden; bDepartment of Geology and Geophysics, University of Wyoming, Laramie, WY 82071; cFaculty of Geology and Geography, Tomsk State University, Tomsk 634050, Russia; dGeological Survey of Canada, Ottawa, ON K1A 0E8, Canada; eDepartment of Geosciences, Swedish Museum of Natural History, Stockholm 104 05, Sweden; fDepartment of Geology, University of Johannesburg, Auckland Park 2006, South Africa; and gDepartment of Earth Sciences, University of California, Riverside, CA 92521 Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved December 27, 2016 (received for review June 11, 2016) The first significant buildup in atmospheric oxygen, the Great situ secondary ion mass spectrometry (SIMS) on microbaddeleyite Oxidation Event (GOE), began in the early Paleoproterozoic in grains coupled with precise isotope dilution thermal ionization association with global glaciations and continued until the end of mass spectrometry (ID-TIMS) and paleomagnetic studies, we re- the Lomagundi carbon isotope excursion ca. 2,060 Ma. The exact solve these uncertainties by obtaining accurate and precise ages timing of and relationships among these events are debated for the volcanic Ongeluk Formation and related intrusions in because of poor age constraints and contradictory stratigraphic South Africa. These ages lead to a more coherent global per- correlations. Here, we show that the first Paleoproterozoic global spective on the timing and tempo of the GOE and associated glaciation and the onset of the GOE occurred between ca. -
A Mesoproterozoic Iron Formation PNAS PLUS
A Mesoproterozoic iron formation PNAS PLUS Donald E. Canfielda,b,1, Shuichang Zhanga, Huajian Wanga, Xiaomei Wanga, Wenzhi Zhaoa, Jin Sua, Christian J. Bjerrumc, Emma R. Haxenc, and Emma U. Hammarlundb,d aResearch Institute of Petroleum Exploration and Development, China National Petroleum Corporation, 100083 Beijing, China; bInstitute of Biology and Nordcee, University of Southern Denmark, 5230 Odense M, Denmark; cDepartment of Geosciences and Natural Resource Management, Section of Geology, University of Copenhagen, 1350 Copenhagen, Denmark; and dTranslational Cancer Research, Lund University, 223 63 Lund, Sweden Contributed by Donald E. Canfield, February 21, 2018 (sent for review November 27, 2017; reviewed by Andreas Kappler and Kurt O. Konhauser) We describe a 1,400 million-year old (Ma) iron formation (IF) from Understanding the genesis of the Fe minerals in IFs is one step the Xiamaling Formation of the North China Craton. We estimate toward understanding the relationship between IFs and the this IF to have contained at least 520 gigatons of authigenic Fe, chemical and biological environment in which they formed. For comparable in size to many IFs of the Paleoproterozoic Era (2,500– example, the high Fe oxide content of many IFs (e.g., refs. 32, 34, 1,600 Ma). Therefore, substantial IFs formed in the time window and 35) is commonly explained by a reaction between oxygen and between 1,800 and 800 Ma, where they are generally believed to Fe(II) in the upper marine water column, with Fe(II) sourced have been absent. The Xiamaling IF is of exceptionally low thermal from the ocean depths. The oxygen could have come from ex- maturity, allowing the preservation of organic biomarkers and an change equilibrium with oxygen in the atmosphere or from ele- unprecedented view of iron-cycle dynamics during IF emplace- vated oxygen concentrations from cyanobacteria at the water- ment. -
A Fundamental Precambrian–Phanerozoic Shift in Earth's Glacial
Tectonophysics 375 (2003) 353–385 www.elsevier.com/locate/tecto A fundamental Precambrian–Phanerozoic shift in earth’s glacial style? D.A.D. Evans* Department of Geology and Geophysics, Yale University, P.O. Box 208109, 210 Whitney Avenue, New Haven, CT 06520-8109, USA Received 24 May 2002; received in revised form 25 March 2003; accepted 5 June 2003 Abstract It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene–Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian–Permian, Ordovician–Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic–Cambrian ‘‘explosion’’ of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth’s longterm climate, superimposed by developing regulatory feedbacks -
Precambrian Basement and Late Paleoproterozoic to Mesoproterozoic Tectonic Evolution of the SW Yangtze Block, South China
minerals Article Precambrian Basement and Late Paleoproterozoic to Mesoproterozoic Tectonic Evolution of the SW Yangtze Block, South China: Constraints from Zircon U–Pb Dating and Hf Isotopes Wei Liu 1,2,*, Xiaoyong Yang 1,*, Shengyuan Shu 1, Lei Liu 1 and Sihua Yuan 3 1 CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China; [email protected] (S.S.); [email protected] (L.L.) 2 Chengdu Center, China Geological Survey, Chengdu 610081, China 3 Department of Earthquake Science, Institute of Disaster Prevention, Langfang 065201, China; [email protected] * Correspondence: [email protected] (W.L.); [email protected] (X.Y.) Received: 27 May 2018; Accepted: 30 July 2018; Published: 3 August 2018 Abstract: Zircon U–Pb dating and Hf isotopic analyses are performed on clastic rocks, sedimentary tuff of the Dongchuan Group (DCG), and a diabase, which is an intrusive body from the base of DCG in the SW Yangtze Block. The results provide new constraints on the Precambrian basement and the Late Paleoproterozoic to Mesoproterozoic tectonic evolution of the SW Yangtze Block, South China. DCG has been divided into four formations from the bottom to the top: Yinmin, Luoxue, Heishan, and Qinglongshan. The Yinmin Formation, which represents the oldest rock unit of DCG, was intruded by a diabase dyke. The oldest zircon age of the clastic rocks from the Yinmin Formation is 3654 Ma, with "Hf(t) of −3.1 and a two-stage modeled age of 4081 Ma. Another zircon exhibits an age of 2406 Ma, with "Hf(t) of −20.1 and a two-stage modeled age of 4152 Ma. -
Guyana: the Lost Hadean Crust of South America? Guiana: a Crosta Hadeana Perdida Da América Do Sul?
DOI: 10.5327/Z2317-48892013000400002 FAST TRACK COMMUNICATIONS Guyana: the Lost Hadean crust of South America? Guiana: a crosta Hadeana perdida da América do Sul? Serge Nadeau1*, Wei Chen2, Jimmy Reece1, Deokumar Lachhman1, Randy Ault1, Maria Telma Lins Faraco3, Lêda Maria Fraga4, Nelson Joaquim Reis5, Léandro Menezes Betiollo6 ABSTRACT: A Hadean zircon xenocryst with a U-Pb zircon age RESUMO: Um xenocristal de zircão Hadeano com idade U-Pb de of 4,219 ± 19 Ma, along with several zircon xenocrysts of Archean 4,219 ± 19 Ma, ao lado de muitos outros xenocristais de idade Arqueana age (ca. 2,510 to 3,811 Ma) were found in a rock of the Paleopro- (ca. 2,510 a 3,811 Ma) foi encontrado em rocha da Formação Iwokra- terozoic Iwokrama Formation, which includes felsic volcanics and ma, de idade Paleoproterozóica, que inclui vulcânicas félsicas e intrusões co-magmatic granitic intrusions. It demonstrates the existence of graníticas co-magmáticas. Ele demonstra a existência de uma subjacen- an underlying “Lost Hadean Crust”, representing the oldest crustal te “Crosta Hadeana Perdida” como componente crustal mais antiga do component of the Guiana Shield. Detrital zircons of late Archean Escudo da Guianas. Zircões detríticos de idade Arqueana tardia, até age, up to 2,700 Ma, are also present in the high-grade rocks of the 2700 Ma, também estão presentes nas rochas de alto-grau do Complexo Kanuku Complex, located to the south, and may be derived from Kanuku, que ocorre mais a sul, e podem ser derivadas do mesmo bloco the same Hadean-Archean crustal block. crustal Hadeano-Arqueano. -
Proterozoic Ocean Chemistry and Evolution: a Bioinorganic Bridge? A
S CIENCE’ S C OMPASS ● REVIEW REVIEW: GEOCHEMISTRY Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? A. D. Anbar1* and A. H. Knoll2 contrast, weathering under a moderately oxidiz- Recent data imply that for much of the Proterozoic Eon (2500 to 543 million years ing mid-Proterozoic atmosphere would have 2– ago), Earth’s oceans were moderately oxic at the surface and sulfidic at depth. Under enhanced the delivery of SO4 to the anoxic these conditions, biologically important trace metals would have been scarce in most depths. Assuming biologically productive marine environments, potentially restricting the nitrogen cycle, affecting primary oceans, the result would have been higher H2S productivity, and limiting the ecological distribution of eukaryotic algae. Oceanic concentrations during this period than either redox conditions and their bioinorganic consequences may thus help to explain before or since (8). observed patterns of Proterozoic evolution. Is there any evidence for such a world? Canfield and his colleagues have developed an argument based on the S isotopic compo- n the present-day Earth, O2 is abun- es and forms insoluble Fe-oxyhydroxides, sition of biogenic sedimentary sulfides, 2– dant from the upper atmosphere to thus removing Fe and precluding BIF forma- which reflect SO4 availability and redox the bottoms of ocean basins. When tion. This reading of the stratigraphic record conditions at their time of formation (16–18). O 2– life began, however, O2 was at best a trace made sense because independent geochemi- When the availability of SO4 is strongly 2– Ͻϳ constituent of the surface environment. The cal evidence indicates that the partial pressure limited (SO4 concentration 1 mM, ϳ intervening history of ocean redox has been of atmospheric oxygen (PO2) rose substan- 4% of that in present-day seawater), H2S interpreted in terms of two long-lasting tially about 2400 to 2000 Ma (4–7). -
Magmatic Records of the Late Paleoproterozoic to Neoproterozoic 14 Extensional and Rifting Events in the North China Craton: a Preliminary Review
Magmatic Records of the Late Paleoproterozoic to Neoproterozoic 14 Extensional and Rifting Events in the North China Craton: A Preliminary Review Shuan-Hong Zhang and Yue Zhao Abstract The North China Craton (NCC) is characterized by multistages of extensional and continental rifting and deposition of thick marine or interactive marine and terrestrial clastic and carbonate platform sediments without angular unconformity during Earth’s middle age of 1.70–0.75 Ga. Factors controlling these multistages of extensional and continental rifting events in the NCC can be either from the craton itself or from the neighboring continents being connected during these periods. Two large igneous provinces including the ca. 1.32 Ga mafic sill swarms in Yanliao rift (aulacogen) in the northern NCC and the ca. 0.92–0.89 Ga Xu-Huai–Dalian–Sariwon mafic sill swarms in southeastern and eastern NCC, have recently been identified from the NCC. Rocks from these two large igneous provinces exhibit similar geochemical features of tholeiitic compositions and intraplate characteristics. Formation of these two large igneous provinces was accompanied by pre-magmatic uplift as indicated by the field relations between the sills and their hosted sedimentary rocks. The Yanliao and Xu-Huai–Dalian–Sariwon large igneous provinces represent two continental rifting events that have led to rifting to drifting transition and breakup of the northern margin of the NCC from the Columbia (Nuna) supercontinent and the southeastern margin of the NCC from the Rodinia supercontinent, respectively. As shown by the ca. 200 Ma Central Atlantic Magmatic Province related to breakup of the Pangea supercontinent and initial opening of the Central Atlantic Ocean and the ca. -
Cretaceous and Eocene U-Pb Zircon Migmatite Ages from the East Humboldt Range Metamorphic Core Complex, Nevada
UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2013 Cretaceous and Eocene U-Pb Zircon Migmatite Ages from the East Humboldt Range Metamorphic Core Complex, Nevada Jordan Drew University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Geology Commons, and the Volcanology Commons Repository Citation Drew, Jordan, "Cretaceous and Eocene U-Pb Zircon Migmatite Ages from the East Humboldt Range Metamorphic Core Complex, Nevada" (2013). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1820. http://dx.doi.org/10.34917/4478229 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. CRETACEOUS AND EOCENE U-PB ZIRCON MIGMATITE AGES FROM THE EAST HUMBOLDT RANGE METAMORPHIC CORE COMPLEX, NEVADA By Jordan Drew Bachelor of Arts University of Kentucky 2009 A thesis submitted in partial fulfillment -
The Archean Geology of Montana
THE ARCHEAN GEOLOGY OF MONTANA David W. Mogk,1 Paul A. Mueller,2 and Darrell J. Henry3 1Department of Earth Sciences, Montana State University, Bozeman, Montana 2Department of Geological Sciences, University of Florida, Gainesville, Florida 3Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana ABSTRACT in a subduction tectonic setting. Jackson (2005) char- acterized cratons as areas of thick, stable continental The Archean rocks in the northern Wyoming crust that have experienced little deformation over Province of Montana provide fundamental evidence long (Ga) periods of time. In the Wyoming Province, related to the evolution of the early Earth. This exten- the process of cratonization included the establishment sive record provides insight into some of the major, of a thick tectosphere (subcontinental mantle litho- unanswered questions of Earth history and Earth-sys- sphere). The thick, stable crust–lithosphere system tem processes: Crustal genesis—when and how did permitted deposition of mature, passive-margin-type the continental crust separate from the mantle? Crustal sediments immediately prior to and during a period of evolution—to what extent are Earth materials cycled tectonic quiescence from 3.1 to 2.9 Ga. These compo- from mantle to crust and back again? Continental sitionally mature sediments, together with subordinate growth—how do continents grow, vertically through mafi c rocks that could have been basaltic fl ows, char- magmatic accretion of plutons and volcanic rocks, acterize this period. A second major magmatic event laterally through tectonic accretion of crustal blocks generated the Beartooth–Bighorn magmatic zone assembled at continental margins, or both? Structural at ~2.9–2.8 Ga.