Introduction to Forensic Anthropology 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Race and Membership in American History: the Eugenics Movement
Race and Membership in American History: The Eugenics Movement Facing History and Ourselves National Foundation, Inc. Brookline, Massachusetts Eugenicstextfinal.qxp 11/6/2006 10:05 AM Page 2 For permission to reproduce the following photographs, posters, and charts in this book, grateful acknowledgement is made to the following: Cover: “Mixed Types of Uncivilized Peoples” from Truman State University. (Image #1028 from Cold Spring Harbor Eugenics Archive, http://www.eugenics archive.org/eugenics/). Fitter Family Contest winners, Kansas State Fair, from American Philosophical Society (image #94 at http://www.amphilsoc.org/ library/guides/eugenics.htm). Ellis Island image from the Library of Congress. Petrus Camper’s illustration of “facial angles” from The Works of the Late Professor Camper by Thomas Cogan, M.D., London: Dilly, 1794. Inside: p. 45: The Works of the Late Professor Camper by Thomas Cogan, M.D., London: Dilly, 1794. 51: “Observations on the Size of the Brain in Various Races and Families of Man” by Samuel Morton. Proceedings of the Academy of Natural Sciences, vol. 4, 1849. 74: The American Philosophical Society. 77: Heredity in Relation to Eugenics, Charles Davenport. New York: Henry Holt &Co., 1911. 99: Special Collections and Preservation Division, Chicago Public Library. 116: The Missouri Historical Society. 119: The Daughters of Edward Darley Boit, 1882; John Singer Sargent, American (1856-1925). Oil on canvas; 87 3/8 x 87 5/8 in. (221.9 x 222.6 cm.). Gift of Mary Louisa Boit, Julia Overing Boit, Jane Hubbard Boit, and Florence D. Boit in memory of their father, Edward Darley Boit, 19.124. -
Early Craniometric Tools As a Predecessor to Neurosurgical Stereotaxis
HISTORICAL VIGNETTE J Neurosurg 124:1867–1874, 2016 Early craniometric tools as a predecessor to neurosurgical stereotaxis Demitre Serletis, MD, PhD, FRCSC, and T. Glenn Pait, MD Department of Neurosurgery, Jackson T. Stephens Spine and Neurosciences Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas In this paper the authors trace the history of early craniometry, referring to the technique of obtaining cranial measure- ments for the accurate correlation of external skull landmarks to specific brain regions. Largely drawing on methods from the newly emerging fields of physical anthropology and phrenology in the late 19th and early 20th centuries, basic mathematical concepts were combined with simplistic (yet at the time, innovative) mechanical tools, leading to the first known attempts at craniocerebral topography. It is important to acknowledge the pioneers of this pre-imaging epoch, who applied creativity and ingenuity to tackle the challenge of reproducibly and reliably accessing a specific target in the brain. In particular, with the emergence of Broca’s theory of cortical localization, in vivo craniometric tools, and the introduction of 3D coordinate systems, several innovative devices were conceived that subsequently paved the way for modern-day stereotactic techniques. In this context, the authors present a comprehensive and systematic review of the most popular craniometric tools developed during this time period (prior to the stereotactic era) for the purposes of craniocerebral measurement and target -
Forensic Facial Reconstruction SUBJECT FORENSIC SCIENCE
SUBJECT FORENSIC SCIENCE Paper No. and Title PAPER No. 11: Forensic Anthropology Module No. and Title MODULE No. 21: Forensic Facial Reconstruction Module Tag FSC_P11_M21 FORENSIC SCIENCE PAPER No. 11: Forensic Anthropology MODULE No. 21: Forensic Facial Reconstruction TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 2.1. History 3. Types of Identification 3.1. Circumstantial Identification 3.2. Positive Identification 4. Types of Reconstruction 4.1. Two-Dimensional Reconstruction 4.2. Three- Dimensional Reconstruction 4.3. Superimposition 5. Techniques for creating facial reconstruction 6. Steps of facial reconstruction 7. Limitations of Facial Reconstruction 8. Summary FORENSIC SCIENCE PAPER No. 11: Forensic Anthropology MODULE No. 21: Forensic Facial Reconstruction 1. Learning Outcomes After studying this module, you will be able to know- About facial reconstruction About types of identification and reconstruction About various techniques of facial reconstruction and steps of facial reconstruction. About limitations of facial reconstruction 2. Introduction Amalgamation of artistry with forensic science, osteology, anatomy and anthropology to recreate the face of an individual from its skeletal remains is known as Forensic Facial reconstruction. It is also known as forensic facial approximation. It recreates the individual’s face from features of skull. It is used by anthropologists, forensic investigators and archaeologists to help in portraying historical faces, identification of victims of crime or illustrate the features if fossil human ancestors. Two and three dimensional approaches are available for facial reconstruction. In forensic science, it is one of the most controversial and subjective technique. This method is successfully used inspite of this controversy. There are two types of methods of reconstruction which are used i.e. -
A Multidisciplinary Validation Study of Nonhuman Animal Models For
The author(s) shown below used Federal funding provided by the U.S. Department of Justice to prepare the following resource: Document Title: A Multidisciplinary Validation Study of Nonhuman Animal Models for Forensic Decomposition Research Author(s): Dawnie Wolfe Steadman, Ph.D., D-ABFA Document Number: 251553 Date Received: March 2018 Award Number: 2013-DN-BX-K037 This resource has not been published by the U.S. Department of Justice. This resource is being made publically available through the Office of Justice Programs’ National Criminal Justice Reference Service. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Department of Justice, Office of Justice Programs National Institute of Justice Grant # 2013-DN-BX-K037 A Multidisciplinary Validation Study of Nonhuman Animal Models for Forensic Decomposition Research Submitted by: Dawnie Wolfe Steadman, Ph.D., D-ABFA Director of the Forensic Anthropology Center Professor of Anthropology 865-974-0909; [email protected] DUNS: 00-388-7891 EIN: 62-6--1636 The University of Tennessee 1 Circle Park Drive Knoxville, TN 37996-0003 Recipient Account: #R011005404 Final Report This resource was prepared by the author(s) using Federal funds provided by the U.S. Department of Justice. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Purpose and Objectives of the Project Over the past century of scientific inquiry into the process of decomposition, nearly every mammal (and other taxa) has been studied. -
Forensic Anthropology
ADJ14 Advanced Criminal Investigations Forensic Anthropology Forensic Anthropology In any field operation involving human remains, four main tasks may need to be performed: 1. Location a. Finding remains (individual, multiple, visible or buried, informant or search) 2. Mapping a. Placement of remains and associated materials must be mapped in relation to a permanent structure, set as a datum point, and location on a larger map must be pinpointed 3. Excavation a. If remains are interred, must use principles of archaeology to remove. 4. Collection a. Remains must be collected using accepted procedures and must be properly packaged for analysis. Chain of custody is vital. PRELIMINARY ISSUES “A major problem surrounding the recovery of remains is the noninvolvement of forensic anthropologists” (Byers, 2011, p. 75). Investigators often forget to collect/search for all bones – including hand or foot bones. Komar & Potter (2007) demonstrate that the rate of victim identification and determination of cause and manner of death are directly related to the proportion of the body collected on scene. Ensure a proper perimeter is set up as soon as possible. Secure the scene. Watch where you step – bones can be brittle if left in the elements. Watch time – if you are doing an excavation, you are dealing with a death. You can take your time on scene, and these scenes tend to be lengthy – there is no need to rush medical attention. LOCATING REMAINS 1. Determine the location 2. Develop a search plan that is tailored to the unique circumstances of the search area; be aware of what resources you have and what you will need. -
List of Entries
Volume 1.qxd 9/13/2005 3:29 PM Page ix GGGGG LIST OF ENTRIES Aborigines Anthropic principle Apes, greater Aborigines Anthropocentrism Apes, lesser Acheulean culture Anthropology and business Apollonian Acropolis Anthropology and Aquatic ape hypothesis Action anthropology epistemology Aquinas, Thomas Adaptation, biological Anthropology and the Third Arboreal hypothesis Adaptation, cultural World Archaeology Aesthetic appreciation Anthropology of men Archaeology and gender Affirmative action Anthropology of religion studies Africa, socialist schools in Anthropology of women Archaeology, biblical African American thought Anthropology, careers in Archaeology, environmental African Americans Anthropology, characteristics of Archaeology, maritime African thinkers Anthropology, clinical Archaeology, medieval Aggression Anthropology, cultural Archaeology, salvage Ape aggression Anthropology, economic Architectural anthropology Agricultural revolution Anthropology, history of Arctic Agriculture, intensive Future of anthropology Ardrey, Robert Agriculture, origins of Anthropology, humanistic Argentina Agriculture, slash-and-burn Anthropology, philosophical Aristotle Alchemy Anthropology, practicing Arsuaga, J. L. Aleuts Anthropology, social Art, universals in ALFRED: The ALlele FREquency Anthropology and sociology Artificial intelligence Database Social anthropology Artificial intelligence Algonquians Anthropology, subdivisions of Asante Alienation Anthropology, theory in Assimilation Alienation Anthropology, Visual Atapuerca Altamira cave -
Imaging Race
Imaging Race Jennifer L. Eberhardt Stanford University Researchers have recently begun to use the tools of neu- across racial groups in order to explain Black inferiority roscience to examine the social psychological responses and justify massive racial inequities, so too may current associated with race. This article serves as a review of the neuroscience studies shape societal understandings of race. developing literature in this area. It advances the argument The differences between neuroscientists then and now, that neuroscience studies of race have the potential to however, are stark. Whereas 19th-century neuroscientists shape fundamental assumptions about race, and the inter- sought and saw permanent racial group differences rooted play between social and biological processes more in biology, contemporary neuroscientists seek to uncover generally. social influences of neural responses understood to be transient and malleable. Contemporary research efforts thus rest on and promote an alternative understanding of the interplay of race and neurobiology. dvances in the neurosciences have produced new This article unfolds in three steps. First, I review a and powerful tools for examining neural activity. limited number of social neuroscience studies of race, AFunctional magnetic resonance imaging (fMRI) highlighting neuroimaging studies in particular. Second, I techniques in particular offer a noninvasive means of ex- contrast current research to the efforts of 19th-century amining the functioning of healthy brains. These tech- neuroscientists to identify differences in skull size among niques provide unique opportunities for researchers from a racial groups. Finally, I discuss how current neurobiologi- wide variety of disciplines to explore the neural correlates cal approaches to race may refashion societal notions of of social psychological phenomena. -
A Look at the History of Forensic Anthropology: Tracing My Academic Genealogy
ISSN 2150-3311 JOURNAL OF CONTEMPORARY ANTHROPOLOGY RESEARCH ARTICLE VOLUME I 2010 ISSUE 1 A Look at the History of Forensic Anthropology: Tracing My Academic Genealogy Stephanie DuPont Golda Ph.D. Candidate Department of Anthropology University of Missouri Columbia, Missouri Copyright © Stephanie DuPont Golda A Look at the History of Forensic Anthropology: Tracing My Academic Genealogy Stephanie DuPont Golda Ph.D. Candidate Department of Anthropology University of Missouri Columbia, Missouri ABSTRACT Construction of an academic genealogy is an important component of professional socialization as well as an opportunity to review the history of subdisciplines within larger disciplines to discover transitions in the pedagogical focus of broad fields in academia. This academic genealogy surveys the development of forensic anthropology rooted in physical anthropology, as early as 1918, until the present, when forensic anthropology was recognized as a legitimate subfield in anthropology. A historical review of contributions made by members of this genealogy demonstrates how forensic anthropology progressed from a period of classification and description to complete professionalization as a highly specialized and applied area of anthropology. Additionally, the tracing of two academic genealogies, the first as a result of a master’s degree and the second as a result of a doctoral degree, allows for representation of the two possible intellectual lineages in forensic anthropology. Golda: A Look at the History of Forensic Anthropology 35 INTRODUCTION What better way to learn the history of anthropology as a graduate student than to trace your own academic genealogy? Besides, without explicit construction of my own unique, individual, ego-centered genealogy, according to Darnell (2001), it would be impossible for me to read the history of anthropology as part of my professional socialization. -
Identifying Individuals Through Proteomic Analysis: a New
The author(s) shown below used Federal funding provided by the U.S. Department of Justice to prepare the following resource: Document Title: Identifying Individuals through Proteomic Analysis: A New Forensic Tool to Rapidly and Efficiently Identify Large Numbers of Fragmentary Human Remains Author(s): City of New York, Office of Chief Medical Examiner Document Number: 254583 Date Received: March 2020 Award Number: 2014-DN-BX-K014 This resource has not been published by the U.S. Department of Justice. This resource is being made publically available through the Office of Justice Programs’ National Criminal Justice Reference Service. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Final Summary NIJ Grant 2014-DN-BX-K014 Identifying Individuals through Proteomic Analysis: A New Forensic Tool to Rapidly and Efficiently Identify Large Numbers of Fragmentary Human Remains Final Summary: NIJ Grant 2014-DN-BX-K014, Identifying Individuals through Proteomic Analysis: A New Forensic Tool to Rapidly and Efficiently Identify Large Numbers of Fragmentary Human Remains. This summary follows the NIJ Post Award Reporting Requirements issued March 28, 2019 and is divided into the four prescribed sections: 1) Purpose, 2) Research Design & Methods, 3) Data Analysis & Findings, and 4) Implications for Criminal Justice Policy and Practice. ABBREVIATIONS ACN = Acetonitrile mse = mean square error ADD = accumulated degree days MS/MS = tandem mass -
Experimental Investigations of Blunt Force Trauma in the Human Skeleton
EXPERIMENTAL INVESTIGATIONS OF BLUNT FORCE TRAUMA IN THE HUMAN SKELETON By Mariyam I. Isa A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Anthropology—Doctor of Philosophy 2020 ABSTRACT EXPERIMENTAL INVESTIGATIONS OF BLUNT FORCE TRAUMA IN THE HUMAN SKELETON By Mariyam I. Isa In forensic anthropology, skeletal trauma is a growing area of analysis that can contribute important evidence about the circumstances of an individual’s death. In bioarchaeology, patterns of skeletal trauma are situated within a cultural context to explore human behaviors across time and space. Trauma analysis involves transforming observations of fracture patterns in the human skeleton into inferences about the circumstances involved in their production. This analysis is based on the foundational assumption that fracture behavior is the nonrandom result of interactions between extrinsic factors influencing the stresses placed on bone and intrinsic factors affecting bone’s ability to withstand these stresses. Biomechanical principles provide the theoretical foundation for generating hypotheses about how various extrinsic and intrinsic factors affect the formation of fracture patterns, and about how these factors can be read from fracture patterns. However, research is necessary to test and refine these hypotheses and, on a more basic level, to document the relationships between “input” variables of interest and fracture “outputs.” One research approach involves the use of forensic and/or clinical case samples. Case- based approaches are important because they provide data from real scenarios and contexts that may be similar to those encountered in unknown cases. However, a limitation is that input variables are not directly measured or controlled and therefore cannot be precisely known. -
History of Facial Reconstruction Laura Verzé Department of Anatomy, Pharmacology and Legal Medicine, University of Turin, Turin, Italy
ACTA BIOMED 2009; 80: 5-12 © Mattioli 1885 R EVIEW History of facial reconstruction Laura Verzé Department of Anatomy, Pharmacology and Legal Medicine, University of Turin, Turin, Italy Abstract. We briefly describe the history of facial reconstruction in the deceased, starting from the skull. Fa- cial reconstruction has passed through many phases and has been variously motivated, from religion and an- cestor worship, through anthropology, to the identification of lost persons for forensic purposes. Renaissance artists used this technique for modelling and teaching. Techniques changed over the centuries but the ulti- mate goal was to create a convincing likeness of the dead. The two current activities are forensic facial re- construction and reconstructing the personal appearance of ancient people. (www.actabiomedica.it) Key words: Reconstructing facial appearance, craniofacial reconstruction, history Introduction Farkas et al (1994) (1) describe how the variabil- ity of facial proportions ensures the individuality of Faces are fascinating and faces from the past are the human face. particularly intriguing. Reconstructions help to solve problems but they also generate interest and answer First appearance in History: the Neolithic Age questions in a much wider context. Skulls can survive for centuries, even millions of years, and can provide In the past, bones or mummies of the dead were an unrivalled means of identification. In the past, fa- regarded by some cultures as objects of reverence to be cial reconstruction from skull was used for recognition preserved, whereas people of other cultures felt revul- of the deceased and more recently, for teaching anato- sion or phobia. Thus people have developed different my. -
Foreign Bodies
Chapter One Climate to Crania: science and the racialization of human difference Bronwen Douglas In letters written to a friend in 1790 and 1791, the young, German-trained French comparative anatomist Georges Cuvier (1769-1832) took vigorous humanist exception to recent ©stupid© German claims about the supposedly innate deficiencies of ©the negro©.1 It was ©ridiculous©, he expostulated, to explain the ©intellectual faculties© in terms of differences in the anatomy of the brain and the nerves; and it was immoral to justify slavery on the grounds that Negroes were ©less intelligent© when their ©imbecility© was likely to be due to ©lack of civilization and we have given them our vices©. Cuvier©s judgment drew heavily on personal experience: his own African servant was ©intelligent©, freedom-loving, disciplined, literate, ©never drunk©, and always good-humoured. Skin colour, he argued, was a product of relative exposure to sunlight.2 A decade later, however, Cuvier (1978:173-4) was ©no longer in doubt© that the ©races of the human species© were characterized by systematic anatomical differences which probably determined their ©moral and intellectual faculties©; moreover, ©experience© seemed to confirm the racial nexus between mental ©perfection© and physical ©beauty©. The intellectual somersault of this renowned savant epitomizes the theme of this chapter which sets a broad scene for the volume as a whole. From a brief semantic history of ©race© in several western European languages, I trace the genesis of the modernist biological conception of the term and its normalization by comparative anatomists, geographers, naturalists, and anthropologists between 1750 and 1880. The chapter title Ð ©climate to crania© Ð and the introductory anecdote condense a major discursive shift associated with the altered meaning of race: the metamorphosis of prevailing Enlightenment ideas about externally induced variation within an essentially similar humanity into a science of race that reified human difference as permanent, hereditary, and innately somatic.