MUTATION and GENETIC VARIATION Observation

Total Page:16

File Type:pdf, Size:1020Kb

MUTATION and GENETIC VARIATION Observation MUTATION AND GENETIC VARIATION Observation: we continue to observe large amounts of genetic variation in natural populations Problem: How does this variation arise and how is it maintained. Here, we look at whether mutation alone can explain this variation. RECURRENT MUTATION MODEL A simple model to look at the effect of mutation on gene frequencies - examine an ideal population in which all the HWE assumptions hold except that mutations occur µ A1 ↔ A2 ν µ = forward mutation rate/generation ν = reverse mutation rate/generation µ ~ 10-5 to 10-8 ν ~ 10-6 to 10-9 mutations/ gene. p0 and q0 - initial gene frequencies of the A1 and A2 alleles. under recurrent mutation model, each generation the frequency of A2 increases by p0µ and decreases by q0ν. After one generation q1 = q0 + p0µ - q0ν The change in gene frequency Δq = p0µ - q0ν Each generation, the change in allele frequency is negligible over the long term, an equilibrium is achieved - loss of A2 alleles is balanced by the gain. At equilbrium, Δq = <p>µ - <q>ν = 0 where <p> and <q> are equilibrium allele frequencies. Substituting <p> = 1 - <q> <q> = µ/(µ + ν) <p> = ν/(µ + ν) - equilibrium allele frequencies are independent of original gene frequencies - dependent only on mutation rates. -time to equilibrium, however, is dependent on initial allele frequencies INFINTE ALLELES MODEL This mutation model is particularly useful in considering DNA sequences. Consider a gene 900 bps in length. -each nucleotide site can have one of four states - total number of possible alleles for this gene is 4900 or 10542. This is the basis of the IAM - each mutation occurs independent of site, and so an infinite number of alleles are possible. In the IAM -two alleles that are identical by state must also be identical by descent -thus, homozygous genotypes must be autozygous -to measure homozygosity, we need to measure autozygosity. Consider the genotype AiAi. -two alleles are IBD if neither allele has mutated in the course of one generation. - mutation rate is µ, then Pr(IBD) = (1−µ)(1−µ) = (1−µ)2 - remember that the inbreeding coefficient is the probability that a genotype is autozygous (and hence homozygous) -in an ideal population. Ft = 1/2N + (1 - 1/2N)Ft-1 -in a population under mutation pressure, probability that two alleles are IBD is dependent on mutation rate µ. Thus 2 2 Ft = (1/2N) (1−µ) + (1 - 1/2N)(1−µ) Ft-1 Thus, every generation random genetic drift (and inbreeding) increases autozygosity but mutations decrease autozygosity. - equilibrium is reached such that <F> = 1/(1 + 4Nµ) and the equilbrium heterozygosity <H> <H> = 1 - <F> = 4Nµ /(1 + 4Nµ) The parameter 4Nµ (or more commonly 4Neµ) occurs often in population genetics and is referred to as Θ. maintenace of genetic variation: mutation-drift balance and neutral theory of evolution - proposed in the 1960s to explain large amount of genetic variation observed in natural populations. -neutral theory has the following assumptions: (1) primary selective force is purifying selection (2) most alleles observed are selectively neutral - one allele is not favored over another (3) variation we observe in populations arises from balance between mutation and random genetic drift The neutral theory (or mutation-drift balance) provides a powerful null hypothesis in evolutionary genetics. FIXATION PROBABILITY - the probability for fixation of a neutral allele. - consider two alleles A1 and A2 -probability that allele A2 will be fixed is dependent on •its initial frequency •its selective advantage or disadvantage (s) •the effective population size (Ne) Genotypes A1A1 A1A2 A2A2 relative fitness 1 1 + s 1 + 2s Under additive selection model, Kimura(1962) showed that probability of fixation of allele A2 over time is P = (1 - e-4Nsq)/(1 - e-4Ns) where q is the initial frequency of A2. Fixation Probability under Neutrality Note: since e-x ~ 1 -x when x → 0 When |Ns| → 0, then P = 4Nsq/4Ns P = q The condition |Ns| → 0 is called neutral limit (when selection is weak), or |s| << 1/N. -probability of fixation is dependent only on initial frequency of the allele. - population of size N composed solely of A1 alleles. - A2 allele arises through a mutational event. - population of size N (with 2N alleles) there is now 1 A2 allele. q = 1/2N P = (1 - e-4Ns/2N)(1 - e-4Ns) Under neutrality, |Ns| → 0 P = (4Ns/2N)/4Ns P = 1/2N Fixation Probability under Selection - under selection. P = (1 - e-4Nsq)/(1 - e-4Ns) if q = 1/2N P = (1 - e-2s)/(1 - e-4Ns) If absolute value of s → 0 and N is very large P = 2s Under selection, the fixation probability is dependent on magnitude of selection. RATES OF FIXATION rate at which a new neutral mutation is fixed in population is equal to neutral mutation rate. K = rate of fixation of alleles = (rate of allele formation)(fixation probability) = (2N gametes)(µ mutation rate/gamete)(1/2N) K = µ Under selection, K = (2N)(µ)(2s) = 4Nµs Thus, under selection (|Ns| > 1) the rate of gene substitution is greater than under neutrality. - under neutrality, since rate of gene substitution is equal to µ, the average time between consecutive fixations is 1/µ. -higher the mutation rate, the smaller time between fixations TIME TO FIXATION How long does it take for a neutral mutation to be fixed? Kimura showed that the mean time to fixation under neutrality is <t> = 4Ne generations Under selection <t> = (2/s)ln(2Ne) Thus, if N = 106 and generation time is 2 years -under neutrality <t> = 8 million years -with selected mutations, if s = 0.01 <t> = 5800 years HETEROZYGOSITY UNDER NEUTRALITY The heterozygosity H of neutral mutations is given under the infinite alleles model <H> = 4Ne/(1 + 4Neµ) = Θ/(1 + Θ).
Recommended publications
  • Random Mutation and Natural Selection in Competitive and Non-Competitive Environments
    ISSN: 2574-1241 Volume 5- Issue 4: 2018 DOI: 10.26717/BJSTR.2018.09.001751 Alan Kleinman. Biomed J Sci & Tech Res Mini Review Open Access Random Mutation and Natural Selection In Competitive and Non-Competitive Environments Alan Kleinman* Department of Medicine, USA Received: : September 10, 2018; Published: September 18, 2018 *Corresponding author: Alan Kleinman, PO BOX 1240, Coarsegold, CA 93614, USA Abstract Random mutation and natural selection occur in a variety of different environments. Three of the most important factors which govern the rate at which this phenomenon occurs is whether there is competition between the different variants for the resources of the environment or not whether the replicator can do recombination and whether the intensity of selection has an impact on the evolutionary trajectory. Two different experimental models of random mutation and natural selection are analyzed to determine the impact of competition on random mutation and natural selection. One experiment places the different variants in competition for the resources of the environment while the lineages are attempting to evolve to the selection pressure while the other experiment allows the lineages to grow without intense competition for the resources of the environment while the different lineages are attempting to evolve to the selection pressure. The mathematics which governs either experiment is discussed, and the results correlated to the medical problem of the evolution of drug resistance. Introduction important experiments testing the RMNS phenomenon. And how Random mutation and natural selection (RMNS) are a does recombination alter the evolutionary trajectory to a given phenomenon which works to defeat the treatments physicians use selection pressure? for infectious diseases and cancers.
    [Show full text]
  • Plant Evolution an Introduction to the History of Life
    Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular.
    [Show full text]
  • Local Drift Load and the Heterosis of Interconnected Populations
    Heredity 84 (2000) 452±457 Received 5 November 1999, accepted 9 December 1999 Local drift load and the heterosis of interconnected populations MICHAEL C. WHITLOCK*, PAÈ R K. INGVARSSON & TODD HATFIELD Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 We use Wright's distribution of equilibrium allele frequency to demonstrate that hybrids between populations interconnected by low to moderate levels of migration can have large positive heterosis, especially if the populations are small in size. Bene®cial alleles neither ®x in all populations nor equilibrate at the same frequency. Instead, populations reach a mutation±selection±drift±migration balance with sucient among-population variance that some partially recessive, deleterious mutations can be masked upon crossbreeding. This heterosis is greatest with intermediate mutation rates, intermediate selection coecients, low migration rates and recessive alleles. Hybrid vigour should not be taken as evidence for the complete isolation of populations. Moreover, we show that heterosis in crosses between populations has a dierent genetic basis than inbreeding depression within populations and is much more likely to result from alleles of intermediate eect. Keywords: deleterious mutations, heterosis, hybrid ®tness, inbreeding depression, migration, population structure. Introduction genetic drift, producing ospring with higher ®tness than the parents (see recent reviews on inbreeding in Crow (1948) listed several reasons why crosses between Thornhill, 1993). Decades of work in agricultural individuals from dierent lines or populations might genetics con®rms this pattern: when divergent lines are have increased ®tness relative to more `pure-bred' crossed their F1 ospring often perform substantially 1individuals, so-called `hybrid vigour'. Crow commented better than the average of the parents (Falconer, 1981; on many possible mechanisms behind hybrid vigour, Mather & Jinks, 1982).
    [Show full text]
  • Allele Frequency–Based and Polymorphism-Versus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Allele Frequency–Based and Polymorphism-Versus- provided by PubMed Central Divergence Indices of Balancing Selection in a New Filtered Set of Polymorphic Genes in Plasmodium falciparum Lynette Isabella Ochola,1 Kevin K. A. Tetteh,2 Lindsay B. Stewart,2 Victor Riitho,1 Kevin Marsh,1 and David J. Conway*,2 1Kenya Medical Research Institute, Centre for Geographic Medicine Research Coast, Kilifi, Kenya 2Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom *Corresponding author: E-mail: [email protected], [email protected]. Associate editor: John H. McDonald Research article Abstract Signatures of balancing selection operating on specific gene loci in endemic pathogens can identify candidate targets of naturally acquired immunity. In malaria parasites, several leading vaccine candidates convincingly show such signatures when subjected to several tests of neutrality, but the discovery of new targets affected by selection to a similar extent has been slow. A small minority of all genes are under such selection, as indicated by a recent study of 26 Plasmodium falciparum merozoite- stage genes that were not previously prioritized as vaccine candidates, of which only one (locus PF10_0348) showed a strong signature. Therefore, to focus discovery efforts on genes that are polymorphic, we scanned all available shotgun genome sequence data from laboratory lines of P. falciparum and chose six loci with more than five single nucleotide polymorphisms per kilobase (including PF10_0348) for in-depth frequency–based analyses in a Kenyan population (allele sample sizes .50 for each locus) and comparison of Hudson–Kreitman–Aguade (HKA) ratios of population diversity (p) to interspecific divergence (K) from the chimpanzee parasite Plasmodium reichenowi.
    [Show full text]
  • Adaptive Tuning of Mutation Rates Allows Fast Response to Lethal Stress In
    Manuscript 1 Adaptive tuning of mutation rates allows fast response to lethal stress in 2 Escherichia coli 3 4 a a a a a,b 5 Toon Swings , Bram Van den Bergh , Sander Wuyts , Eline Oeyen , Karin Voordeckers , Kevin J. a,b a,c a a,* 6 Verstrepen , Maarten Fauvart , Natalie Verstraeten , Jan Michiels 7 8 a 9 Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Kasteelpark Arenberg 20, 10 3001 Leuven, Belgium b 11 VIB Laboratory for Genetics and Genomics, Vlaams Instituut voor Biotechnologie (VIB) Bioincubator 12 Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium c 13 Smart Systems and Emerging Technologies Unit, imec, Kapeldreef 75, 3001 Leuven, Belgium * 14 To whom correspondence should be addressed: Jan Michiels, Department of Microbial and 2 15 Molecular Systems (M S), Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, box 16 2460, 3001 Leuven, Belgium, [email protected], Tel: +32 16 32 96 84 1 Manuscript 17 Abstract 18 19 While specific mutations allow organisms to adapt to stressful environments, most changes in an 20 organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often 21 considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in 22 cellular mutation rates as a response to changes in selective pressure. We show that hypermutation 23 independently evolves when different Escherichia coli cultures adapt to high ethanol stress. 24 Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation 25 rate. Specifically, population mutation rates rise when cells experience higher stress and decline again 26 once cells are adapted.
    [Show full text]
  • Microevolution and the Genetics of Populations ​ ​ Microevolution Refers to Varieties Within a Given Type
    Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations ​ ​ Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait ​ ​ ​ ​ within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift.
    [Show full text]
  • Intro Forensic Stats
    Popstats Unplugged 14th International Symposium on Human Identification John V. Planz, Ph.D. UNT Health Science Center at Fort Worth Forensic Statistics From the ground up… Why so much attention to statistics? Exclusions don’t require numbers Matches do require statistics Problem of verbal expression of numbers Transfer evidence Laboratory result 1. Non-match - exclusion 2. Inconclusive- no decision 3. Match - estimate frequency Statistical Analysis Focus on the question being asked… About “Q” sample “K” matches “Q” Who else could match “Q" partial profile, mixtures Match – estimate frequency of: Match to forensic evidence NOT suspect DNA profile Who is in suspect population? So, what are we really after? Quantitative statement that expresses the rarity of the DNA profile Estimate genotype frequency 1. Frequency at each locus Hardy-Weinberg Equilibrium 2. Frequency across all loci Linkage Equilibrium Terminology Genetic marker variant = allele DNA profile = genotype Database = table that provides frequency of alleles in a population Population = some assemblage of individuals based on some criteria for inclusion Where Do We Get These Numbers? 1 in 1,000,000 1 in 110,000,000 POPULATION DATA and Statistics DNA databases are needed for placing statistical weight on DNA profiles vWA data (N=129) 14 15 16 17 18 19 20 freq 14 9 75 15 3 0 6 16 19 1 1 46 17 23 1 14 9 72 18 6 0 3 10 4 31 19 6 1 7 3 2 2 23 20 0 0 0 3 2 0 0 5 258 Because data are not available for every genotype possible, We use allele frequencies instead of genotype frequencies to estimate rarity.
    [Show full text]
  • •How Does Microevolution Add up to Macroevolution? •What Are Species
    Microevolution and Macroevolution • How does Microevolution add up to macroevolution? • What are species? • How are species created? • What are anagenesis and cladogenesis? 1 Sunday, March 6, 2011 Species Concepts • Biological species concept: Defines species as interbreeding populations reproductively isolated from other such populations. • Evolutionary species concept: Defines species as evolutionary lineages with their own unique identity. • Ecological species concept: Defines species based on the uniqueness of their ecological niche. • Recognition species concept: Defines species based on unique traits or behaviors that allow members of one species to identify each other for mating. 2 Sunday, March 6, 2011 Reproductive Isolating Mechanisms • Premating RIMs Habitat isolation Temporal isolation Behavioral isolation Mechanical incompatibility • Postmating RIMs Sperm-egg incompatibility Zygote inviability Embryonic or fetal inviability 3 Sunday, March 6, 2011 Modes of Evolutionary Change 4 Sunday, March 6, 2011 Cladogenesis 5 Sunday, March 6, 2011 6 Sunday, March 6, 2011 7 Sunday, March 6, 2011 Evolution is “the simple way by which species (populations) become exquisitely adapted to various ends” 8 Sunday, March 6, 2011 All characteristics are due to the four forces • Mutation creates new alleles - new variation • Genetic drift moves these around by chance • Gene flow moves these from one population to the next creating clines • Natural selection increases and decreases them in frequency through adaptation 9 Sunday, March 6, 2011 Clines
    [Show full text]
  • Mutation Versus Variant?
    GUEST EDITORIAL Garry Cutting What’s in a Name: Mutation versus Variant? Effective communication between scientists and the public requires word (Condit et al., 2002). The problem of inferring delete- the use of words that have well-understood meanings. Similarly, rious consequences when using the term “mutation” is that some use of a word that means one thing to scientists but something changes in DNA are advantageous from an evolutionary point Downloaded from http://online.ucpress.edu/abt/article-pdf/77/3/160/58360/abt_2015_77_3_1.pdf by guest on 02 October 2021 else to the lay public can lead to confusion. This situation can arise of view. On the other hand, “variant” is usually defined in terms when words change in their meaning over time in scientific cir- of an organism that differs in some way from an accepted stan- cles but not among the public, and vice versa. On occasion, disso- dard. “Variant” can also be used for phenotypic differences that nance between scientific and societal definitions can cause terms to are not genetic (King & Stansfield, 2002). The application of the acquire a stigma. This issue is particularly important when scientific term “variant” to changes in DNA structure was popularized by terms are used in medical situations. Certain words may invoke genome-wide association studies of common disorders. “Variant” a very different impression for a patient than was intended by a as opposed to “mutation” is preferred because most of the DNA medical professional. For example, the term “mental retardation” alterations that contribute risk to complex genetic conditions are is defined scientifically on the basis of the population distribution of unknown effect and are frequent in the population.
    [Show full text]
  • Allele Frequency Difference AFD–An Intuitive Alternative to FST for Quantifying Genetic Population Differentiation
    G C A T T A C G G C A T genes Opinion Allele Frequency Difference AFD–An Intuitive Alternative to FST for Quantifying Genetic Population Differentiation Daniel Berner Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland; [email protected]; Tel.: +41-(0)-61-207-03-28 Received: 21 February 2019; Accepted: 12 April 2019; Published: 18 April 2019 Abstract: Measuring the magnitude of differentiation between populations based on genetic markers is commonplace in ecology, evolution, and conservation biology. The predominant differentiation metric used for this purpose is FST. Based on a qualitative survey, numerical analyses, simulations, and empirical data, I here argue that FST does not express the relationship to allele frequency differentiation between populations generally considered interpretable and desirable by researchers. In particular, FST (1) has low sensitivity when population differentiation is weak, (2) is contingent on the minor allele frequency across the populations, (3) can be strongly affected by asymmetry in sample sizes, and (4) can differ greatly among the available estimators. Together, these features can complicate pattern recognition and interpretation in population genetic and genomic analysis, as illustrated by empirical examples, and overall compromise the comparability of population differentiation among markers and study systems. I argue that a simple differentiation metric displaying intuitive properties, the absolute allele frequency difference AFD, provides a valuable alternative to FST. I provide a general definition of AFD applicable to both bi- and multi-allelic markers and conclude by making recommendations on the sample sizes needed to achieve robust differentiation estimates using AFD.
    [Show full text]
  • The Allele Frequency Spectrum in Genome-Wide Human Variation Data Reveals Signals of Differential Demographic History in Three Large World Populations
    Copyright 2004 by the Genetics Society of America The Allele Frequency Spectrum in Genome-Wide Human Variation Data Reveals Signals of Differential Demographic History in Three Large World Populations Gabor T. Marth,1 Eva Czabarka, Janos Murvai and Stephen T. Sherry National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894 Manuscript received April 15, 2003 Accepted for publication September 4, 2003 ABSTRACT We have studied a genome-wide set of single-nucleotide polymorphism (SNP) allele frequency measures for African-American, East Asian, and European-American samples. For this analysis we derived a simple, closed mathematical formulation for the spectrum of expected allele frequencies when the sampled populations have experienced nonstationary demographic histories. The direct calculation generates the spectrum orders of magnitude faster than coalescent simulations do and allows us to generate spectra for a large number of alternative histories on a multidimensional parameter grid. Model-fitting experiments using this grid reveal significant population-specific differences among the demographic histories that best describe the observed allele frequency spectra. European and Asian spectra show a bottleneck-shaped history: a reduction of effective population size in the past followed by a recent phase of size recovery. In contrast, the African-American spectrum shows a history of moderate but uninterrupted population expansion. These differences are expected to have profound consequences for the design of medical association studies. The analytical methods developed for this study, i.e., a closed mathematical formulation for the allele frequency spectrum, correcting the ascertainment bias introduced by shallow SNP sampling, and dealing with variable sample sizes provide a general framework for the analysis of public variation data.
    [Show full text]
  • Guide to Interpreting Genomic Reports: a Genomics Toolkit
    Guide to Interpreting Genomic Reports: A Genomics Toolkit A guide to genomic test results for non-genetics providers Created by the Practitioner Education Working Group of the Clinical Sequencing Exploratory Research (CSER) Consortium Genomic Report Toolkit Authors Kelly East, MS, CGC, Wendy Chung MD, PhD, Kate Foreman, MS, CGC, Mari Gilmore, MS, CGC, Michele Gornick, PhD, Lucia Hindorff, PhD, Tia Kauffman, MPH, Donna Messersmith , PhD, Cindy Prows, MSN, APRN, CNS, Elena Stoffel, MD, Joon-Ho Yu, MPh, PhD and Sharon Plon, MD, PhD About this resource This resource was created by a team of genomic testing experts. It is designed to help non-geneticist healthcare providers to understand genomic medicine and genome sequencing. The CSER Consortium1 is an NIH-funded group exploring genomic testing in clinical settings. Acknowledgements This work was conducted as part of the Clinical Sequencing Exploratory Research (CSER) Consortium, grants U01 HG006485, U01 HG006485, U01 HG006546, U01 HG006492, UM1 HG007301, UM1 HG007292, UM1 HG006508, U01 HG006487, U01 HG006507, R01 HG006618, and U01 HG007307. Special thanks to Alexandria Wyatt and Hugo O’Campo for graphic design and layout, Jill Pope for technical editing, and the entire CSER Practitioner Education Working Group for their time, energy, and support in developing this resource. Contents 1 Introduction and Overview ................................................................ 3 2 Diagnostic Results Related to Patient Symptoms: Pathogenic and Likely Pathogenic Variants . 8 3 Uncertain Results
    [Show full text]