Structure, Spectroscopy and Dynamics of Halogen Molecules Interacting with Water Margarita I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Alternate Graphical Representation of Periodic Table of Chemical Elements Mohd Abubakr1, Microsoft India (R&D) Pvt
An Alternate Graphical Representation of Periodic table of Chemical Elements Mohd Abubakr1, Microsoft India (R&D) Pvt. Ltd, Hyderabad, India. [email protected] Abstract Periodic table of chemical elements symbolizes an elegant graphical representation of symmetry at atomic level and provides an overview on arrangement of electrons. It started merely as tabular representation of chemical elements, later got strengthened with quantum mechanical description of atomic structure and recent studies have revealed that periodic table can be formulated using SO(4,2) SU(2) group. IUPAC, the governing body in Chemistry, doesn‟t approve any periodic table as a standard periodic table. The only specific recommendation provided by IUPAC is that the periodic table should follow the 1 to 18 group numbering. In this technical paper, we describe a new graphical representation of periodic table, referred as „Circular form of Periodic table‟. The advantages of circular form of periodic table over other representations are discussed along with a brief discussion on history of periodic tables. 1. Introduction The profoundness of inherent symmetry in nature can be seen at different depths of atomic scales. Periodic table symbolizes one such elegant symmetry existing within the atomic structure of chemical elements. This so called „symmetry‟ within the atomic structures has been widely studied from different prospects and over the last hundreds years more than 700 different graphical representations of Periodic tables have emerged [1]. Each graphical representation of chemical elements attempted to portray certain symmetries in form of columns, rows, spirals, dimensions etc. Out of all the graphical representations, the rectangular form of periodic table (also referred as Long form of periodic table or Modern periodic table) has gained wide acceptance. -
And [Z–Hali]- Halogen Bonds: Electron Density Properties And
molecules Article Strength of the [Z–I···Hal]− and [Z–Hal···I]− Halogen Bonds: Electron Density Properties and Halogen Bond Length as Estimators of Interaction Energy Maxim L. Kuznetsov 1,2 1 Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal; [email protected]; Tel.: +351-218-419-236 2 Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russia Abstract: Bond energy is the main characteristic of chemical bonds in general and of non-covalent interactions in particular. Simple methods of express estimates of the interaction energy, Eint, us- ing relationships between Eint and a property which is easily accessible from experiment is of great importance for the characterization of non-covalent interactions. In this work, practically important relationships between Eint and electron density, its Laplacian, curvature, potential, kinetic, and total energy densities at the bond critical point as well as bond length were derived for the structures of the [Z–I···Hal]− and [Z–Hal···I]− types bearing halogen bonds and involving iodine as interact- ing atom(s) (totally 412 structures). The mean absolute deviations for the correlations found were 2.06–4.76 kcal/mol. Keywords: bond critical point properties; interaction energy; bond energy; bond strength; den- sity functional theory; electron density; energy density; halogen bond; QTAIM Citation: Kuznetsov, M.L. Strength of the [Z–I···Hal]− and [Z–Hal···I]− Halogen Bonds: Electron Density Properties and Halogen Bond Length as Estimators of Interaction Energy. 1. Introduction Molecules 2021, 26, 2083. https:// The halogen bond is one of the most important types of non-covalent interactions doi.org/10.3390/molecules26072083 being second only to hydrogen bonds in its significance. -
25 WORDS CHLORINE Chlorine, Cl, Is a Very Poisonous Green Gas That's
25 WORDS CHLORINE Chlorine, Cl, is a very poisonous green gas that's extremely reactive. It's used for sanitizing, purifying, and was used as a weapon during World War I by the Germans. But in chemistry, it is an oxidizer. Chlorine, Cl, is a green gaseous element with an atomic number of 17. This halogen is a powerful oxidant and used to produce many things, such as cleaning products. Chlorine; it's chemical symbol is Cl. Chloride is abundant in nature and necessary for life but a large amount can cause choking and and poisoning. It's mainly used for water purification but has other uses. Chlorine is a halogen and to test if it has a halogen, we use the Beilstein Copper Wire Test. It is also used to produce safe drinking water. Chlorine, atomic number seventeen, is a halogen that is found in table salt, NaCl, making it essential to life. However, pure chlorine, Cl2, is a poisonous gas, detectable at even 1 ppm. Chlorine, (Symbol Cl), belongs to the halogen family of elements, found in group 17 on the periodic table. Chlorine has an atomic number of 17 and atomic weight of 35.453. Chlorine is the 17th element on the periodic table, and is in the "Halogens" group, which has a tendency to gain one electron to form anions. Its anion can be found commonly in table salt Chlorine (symbolized Cl) is the chemical element with atomic number 17. Clorine is a powerful oxidant and is used in bleaching and disinfectants. It is a pale yellow-green gas that has a specific strong smell. -
Driving Halogen Lamps Application Note
Application Note 1604 Driving Halogen Lamps Abstract: This application note looks at the suitability of the Ultimod wide trim powerMods for applications driving Halogen lamps. An incandescent lamp generates light by heating is that the powerMod will go into a protective a tungsten wire or filament until it glows (at current limit. The characteristics of this current around 2,500 ºC) by passing an electric current limit are shown in Figure 1 below. through it. A halogen lamp is basically a modified version of an incandescent lamp. The difference is that the bulb of a halogen lamp has a small amount of a halogen gas added. The presence of this halogen in the bulb produces a chemical reaction (known as the halogen cycle) that redeposists tungsten evaporated by heating back onto the filament. In a standard incandescent the constant evaporation leads to the eventual failure of the lamp as the filament progressively thins and breaks or “burns out”. Since in a halogen lamp the tungsten is redeposited back on the filament Figure 1 Current Limit Characteristics its lifetime is extended, and it also be heated to a higher temperature (in the region of 3,000 ºC), which increases its efficiency. You can see from Figure 1 that when we increase the load (by reducing the loads The high operational temperature of the filament resistance) and the current increases above the results in a challenge for a constant voltage set current limit of the modules we enter a mode power supplies like the Ultimod due to the of operation known as straight line current different resistance of the tungsten filament limiting where the current is held constant and at room temperature and its resistance at 3,000 the voltage is reduced. -
Polymorphism, Halogen Bonding, and Chalcogen Bonding in the Diiodine Adducts of 1,3- and 1,4-Dithiane
molecules Article Polymorphism, Halogen Bonding, and Chalcogen Bonding in the Diiodine Adducts of 1,3- and 1,4-Dithiane Andrew J. Peloquin 1, Srikar Alapati 2, Colin D. McMillen 1, Timothy W. Hanks 2 and William T. Pennington 1,* 1 Department of Chemistry, Clemson University, Clemson, SC 29634, USA; [email protected] (A.J.P.); [email protected] (C.D.M.) 2 Department of Chemistry, Furman University, Greenville, SC 29613, USA; [email protected] (S.A.); [email protected] (T.W.H.) * Correspondence: [email protected] Abstract: Through variations in reaction solvent and stoichiometry, a series of S-diiodine adducts of 1,3- and 1,4-dithiane were isolated by direct reaction of the dithianes with molecular diiodine in solution. In the case of 1,3-dithiane, variations in reaction solvent yielded both the equatorial and the axial isomers of S-diiodo-1,3-dithiane, and their solution thermodynamics were further studied via DFT. Additionally, S,S’-bis(diiodo)-1,3-dithiane was also isolated. The 1:1 cocrystal, (1,4-dithiane)·(I2) was further isolated, as well as a new polymorph of S,S’-bis(diiodo)-1,4-dithiane. Each structure showed significant S···I halogen and chalcogen bonding interactions. Further, the product of the diiodine-promoted oxidative addition of acetone to 1,4-dithiane, as well as two new cocrystals of 1,4-dithiane-1,4-dioxide involving hydronium, bromide, and tribromide ions, was isolated. Keywords: crystal engineering; chalcogen bonding; halogen bonding; polymorphism; X-ray diffraction Citation: Peloquin, A.J.; Alapati, S.; McMillen, C.D.; Hanks, T.W.; Pennington, W.T. -
Periodic Trends in the Main Group Elements
Chemistry of The Main Group Elements 1. Hydrogen Hydrogen is the most abundant element in the universe, but it accounts for less than 1% (by mass) in the Earth’s crust. It is the third most abundant element in the living system. There are three naturally occurring isotopes of hydrogen: hydrogen (1H) - the most abundant isotope, deuterium (2H), and tritium 3 ( H) which is radioactive. Most of hydrogen occurs as H2O, hydrocarbon, and biological compounds. Hydrogen is a colorless gas with m.p. = -259oC (14 K) and b.p. = -253oC (20 K). Hydrogen is placed in Group 1A (1), together with alkali metals, because of its single electron in the valence shell and its common oxidation state of +1. However, it is physically and chemically different from any of the alkali metals. Hydrogen reacts with reactive metals (such as those of Group 1A and 2A) to for metal hydrides, where hydrogen is the anion with a “-1” charge. Because of this hydrogen may also be placed in Group 7A (17) together with the halogens. Like other nonmetals, hydrogen has a relatively high ionization energy (I.E. = 1311 kJ/mol), and its electronegativity is 2.1 (twice as high as those of alkali metals). Reactions of Hydrogen with Reactive Metals to form Salt like Hydrides Hydrogen reacts with reactive metals to form ionic (salt like) hydrides: 2Li(s) + H2(g) 2LiH(s); Ca(s) + H2(g) CaH2(s); The hydrides are very reactive and act as a strong base. It reacts violently with water to produce hydrogen gas: NaH(s) + H2O(l) NaOH(aq) + H2(g); It is also a strong reducing agent and is used to reduce TiCl4 to titanium metal: TiCl4(l) + 4LiH(s) Ti(s) + 4LiCl(s) + 2H2(g) Reactions of Hydrogen with Nonmetals Hydrogen reacts with nonmetals to form covalent compounds such as HF, HCl, HBr, HI, H2O, H2S, NH3, CH4, and other organic and biological compounds. -
A New Way for Probing Bond Strength J
A New Way for Probing Bond Strength J. Klein, H. Khartabil, J.C. Boisson, J. Contreras-Garcia, Jean-Philip Piquemal, E. Henon To cite this version: J. Klein, H. Khartabil, J.C. Boisson, J. Contreras-Garcia, Jean-Philip Piquemal, et al.. A New Way for Probing Bond Strength. Journal of Physical Chemistry A, American Chemical Society, 2020, 124 (9), pp.1850-1860. 10.1021/acs.jpca.9b09845. hal-02377737 HAL Id: hal-02377737 https://hal.archives-ouvertes.fr/hal-02377737 Submitted on 27 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A New Way for Probing Bond Strength Johanna Klein,y Hassan Khartabil,y Jean-Charles Boisson,z Julia Contreras-Garc´ıa,{ Jean-Philip Piquemal,{ and Eric H´enon∗,y yInstitut de Chimie Mol´eculaire de Reims UMR CNRS 7312, Universit´ede Reims Champagne-Ardenne, Moulin de la Housse 51687 Reims Cedex 02 BP39 (France) zCReSTIC EA 3804, Universit´ede Reims Champagne-Ardenne, Moulin de la Housse 51687 Reims Cedex 02 BP39 (France) {Sorbonne Universit´es,UPMC, Laboratoire de Chimie Th´eoriqueand UMR CNRS 7616, 4 Pl Jussieu, 75252 Paris Cedex 05(France) E-mail: [email protected] Phone: +33(3)26918497 1 Abstract The covalent chemical bond is intimately linked to electron sharing between atoms. -
Quantum-Chemical Descriptors in QSAR/QSPR Studies
1027 Quantum-Chemical Descriptors in QSAR/QSPR Studies Mati Karelson* and Victor S. Lobanov Department of Chemistry, University of Tartu, 2 Jakobi Str., Tartu, EE 2400, Estonia Alan R. Katritzky Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200 Received August 21, 1995 (Revised Manuscript Received February 26, 1996) Contents Recent progress in computational hardware and the development of efficient algorithms has assisted I. Introduction 1027 the routine development of molecular quantum- II. Quantum Chemical Methods 1027 mechanical calculations. New semiempirical meth- III. Quantum Chemical Descriptors 1029 ods supply realistic quantum-chemical molecular IV. QSAR/QSPR Results 1033 quantities in a relatively short computational time A. Biological Activities 1033 frame. Quantum chemical calculations are thus an B. Chemical Reactivities 1035 attractive source of new molecular descriptors, which C. Partition Coefficients 1036 can, in principle, express all of the electronic and D. Chromatographic Retention Indexes and 1036 geometric properties of molecules and their interac- Response Factors tions. Indeed, many recent QSAR/QSPR studies E. Other Physicochemical Properties 1037 have employed quantum chemical descriptors alone F. Substituent Constants 1038 or in combination with conventional descriptors. Quantum chemistry provides a more accurate and G. Solvational Characteristics 1038 detailed description of electronic effects than empiri- H. CoMFA 1040 cal methods.1 -
Electron Paramagnetic Resonance of Radicals and Metal Complexes. 2. International Conference of the Polish EPR Association. Wars
! U t S - PL — voZ, PL9700944 Warsaw, 9-13 September 1996 ELECTRON PARAMAGNETIC RESONANCE OF RADICALS AND METAL COMPLEXES 2nd International Conference of the Polish EPR Association INSTITUTE OF NUCLEAR CHEMISTRY AND TECHNOLOGY UNIVERSITY OF WARSAW VGL 2 8 Hi 1 2 ORGANIZING COMMITTEE Institute of Nuclear Chemistry and Technology Prof. Andrzej G. Chmielewski, Ph.D., D.Sc. Assoc. Prof. Hanna B. Ambroz, Ph.D., D.Sc. Assoc. Prof. Jacek Michalik, Ph.D., D.Sc. Dr Zbigniew Zimek University of Warsaw Prof. Zbigniew Kqcki, Ph.D., D.Sc. ADDRESS OF ORGANIZING COMMITTEE Institute of Nuclear Chemistry and Technology, Dorodna 16,03-195 Warsaw, Poland phone: (0-4822) 11 23 47; telex: 813027 ichtj pi; fax: (0-4822) 11 15 32; e-mail: [email protected] .waw.pl Abstracts are published in the form as received from the Authors SPONSORS The organizers would like to thank the following sponsors for their financial support: » State Committee of Scientific Research » Stiftung fur Deutsch-Polnische Zusammenarbeit » National Atomic Energy Agency, Warsaw, Poland » Committee of Chemistry, Polish Academy of Sciences, Warsaw, Poland » Committee of Physics, Polish Academy of Sciences, Poznan, Poland » The British Council, Warsaw, Poland » CIECH S.A. » ELEKTRIM S.A. » Broker Analytische Messtechnik, Div. ESR/MINISPEC, Germany 3 CONTENTS CONFERENCE PROGRAM 9 LECTURES 15 RADICALS IN DNA AS SEEN BY ESR SPECTROSCOPY M.C.R. Symons 17 ELECTRON AND HOLE TRANSFER WITHIN DNA AND ITS HYDRATION LAYER M.D. Sevilla, D. Becker, Y. Razskazovskii 18 MODELS FOR PHOTOSYNTHETIC REACTION CENTER: STEADY STATE AND TIME RESOLVED EPR SPECTROSCOPY H. Kurreck, G. Eiger, M. Fuhs, A Wiehe, J. -
Arxiv:1711.08955V1 [Cond-Mat.Mes-Hall] 24 Nov 2017
Theory of excitation transfer between two-dimensional semiconductor and molecular layers Judith Specht,1, ∗ Eike Verdenhalven,1 Bj¨ornBieniek,2 Patrick Rinke,2, 3 Andreas Knorr,1 and Marten Richter1, y 1Institut f¨urTheoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universit¨atBerlin, Hardenbergstr. 36, 10623 Berlin, Germany 2Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 3COMP Department of Applied Physics, Aalto University, P.O. Box 11100, Aalto FI-00076, Finland (Dated: July 13, 2018) Abstract The geometry-dependent energy transfer rate from an electrically pumped inorganic semicon- ductor quantum well into an organic molecular layer is studied theoretically. We focus on F¨orster- type nonradiative excitation transfer between the organic and inorganic layer and include quasi- momentum conservation and intermolecular coupling between the molecules in the organic film. (Transition) partial charges calculated from density-functional theory are used to calculate the coupling elements. The partial charges describe the spatial charge distribution and go beyond the common dipole-dipole interaction. We find that the transfer rates are highly sensitive to variations in the geometry of the hybrid inorganic/organic system. For instance, the transfer effi- ciency is improved by orders of magnitude by tuning the relative orientation and positioning of the molecules. Also, the operating regime is identified where in-scattering dominates over unwanted back-scattering from the molecular layer into the substrate. arXiv:1711.08955v1 [cond-mat.mes-hall] 24 Nov 2017 ∗ [email protected] y [email protected] 1 I. INTRODUCTION A potential advantage of hybrid inorganic/organic systems over their individual con- stituents is that a synergistic combination can lead to novel optoelectronic properties and tunable functionality [1{9]. -
Interhalogen Compounds
INTERHALOGEN COMPOUNDS Smt. EDNA RICHARD Asst. Professor Department of Chemistry INTERHALOGEN COMPOUND An interhalogen compound is a molecule which contains two or more different halogen atoms (fluorine, chlorine, bromine, iodine, or astatine) and no atoms of elements from any other group. Most interhalogen compounds known are binary (composed of only two distinct elements) The common interhalogen compounds include Chlorine monofluoride, bromine trifluoride, iodine pentafluoride, iodine heptafluoride, etc Interhalogen compounds into four types, depending on the number of atoms in the particle. They are as follows: XY XY3 XY5 XY7 X is the bigger (or) less electronegative halogen. Y represents the smaller (or) more electronegative halogen. Properties of Interhalogen Compounds •We can find Interhalogen compounds in vapour, solid or fluid state. • A lot of these compounds are unstable solids or fluids at 298K. A few other compounds are gases as well. As an example, chlorine monofluoride is a gas. On the other hand, bromine trifluoride and iodine trifluoride are solid and liquid respectively. •These compounds are covalent in nature. •These interhalogen compounds are diamagnetic in nature. This is because they have bond pairs and lone pairs. •Interhalogen compounds are very reactive. One exception to this is fluorine. This is because the A-X bond in interhalogens is much weaker than the X-X bond in halogens, except for the F-F bond. •We can use the VSEPR theory to explain the unique structure of these interhalogens. In chlorine trifluoride, the central atom is that of chlorine. It has seven electrons in its outermost valence shell. Three of these electrons form three bond pairs with three fluorine molecules leaving four electrons. -
Halogen Bonds in Biological Molecules
Halogen bonds in biological molecules Pascal Auffinger†‡, Franklin A. Hays§, Eric Westhof†, and P. Shing Ho‡§ †Institut de Biologie Mole´culaire et Cellulaire, Centre National de la Recherche Scientifique, Unite´Propre de Recherche 9002, Universite´Louis Pasteur, 15 Rue Rene´Descartes, F-67084 Strasbourg, France; and §Department of Biochemistry and Biophysics, Agriculture͞Life Sciences Building, Room 2011, Oregon State University, Corvallis, OR 97331-7305 Communicated by K. E. van Holde, Oregon State University, Corvallis, OR, October 13, 2004 (received for review August 17, 2004) Short oxygen–halogen interactions have been known in organic chemistry since the 1950s and recently have been exploited in the design of supramolecular assemblies. The present survey of protein and nucleic acid structures reveals similar halogen bonds as po- tentially stabilizing inter- and intramolecular interactions that can affect ligand binding and molecular folding. A halogen bond in biomolecules can be defined as a short COX⅐⅐⅐OOY interaction (COX is a carbon-bonded chlorine, bromine, or iodine, and OOY is a carbonyl, hydroxyl, charged carboxylate, or phosphate group), where the X⅐⅐⅐O distance is less than or equal to the sums of the respective van der Waals radii (3.27 Å for Cl⅐⅐⅐O, 3.37Å for Br⅐⅐⅐O, and 3.50 Å for I⅐⅐⅐O) and can conform to the geometry seen in small molecules, with the COX⅐⅐⅐O angle Ϸ165° (consistent with a strong Fig. 1. Schematic of short halogen (X) interactions to various oxygen- directional polarization of the halogen) and the X⅐⅐⅐OOY angle containing functional groups (where OOY can be a carbonyl, hydroxyl, or Ϸ120°.