Binuclear Copper(I) Borohydride Complex Containing Bridging Bis

Total Page:16

File Type:pdf, Size:1020Kb

Binuclear Copper(I) Borohydride Complex Containing Bridging Bis crystals Article Binuclear Copper(I) Borohydride Complex Containing Bridging Bis(diphenylphosphino) Methane Ligands: Polymorphic Structures of 2 [(µ2-dppm)2Cu2(η -BH4)2] Dichloromethane Solvate Natalia V. Belkova 1 ID , Igor E. Golub 1,2 ID , Evgenii I. Gutsul 1, Konstantin A. Lyssenko 1, Alexander S. Peregudov 1, Viktor D. Makhaev 3, Oleg A. Filippov 1 ID , Lina M. Epstein 1, Andrea Rossin 4 ID , Maurizio Peruzzini 4 and Elena S. Shubina 1,* ID 1 A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Russia; [email protected] (N.V.B.); [email protected] (I.E.G.); [email protected] (E.I.G.); [email protected] (K.A.L.); [email protected] (A.S.P.); [email protected] (O.A.F.); [email protected] (L.M.E.) 2 Inorganic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia 3 Institute of Problems of Chemical Physics, Russian Academy of Sciences (IPCP RAS), 142432 Moscow, Russia; [email protected] 4 Istituto di Chimica dei Composti Organometallici Consiglio Nazionale delle Ricerche (ICCOM CNR), 50019 Sesto Fiorentino, Italy; [email protected] (A.R.); [email protected] (M.P.) * Correspondence: [email protected]; Tel.: +7-495-135-5085 Academic Editor: Sławomir J. Grabowski Received: 18 September 2017; Accepted: 17 October 2017; Published: 20 October 2017 Abstract: Bis(diphenylphosphino)methane copper(I) tetrahydroborate was synthesized by ligands exchange in bis(triphenylphosphine) copper(I) tetrahydroborate, and characterized by XRD, FTIR, NMR spectroscopy. According to XRD the title compound has dimeric structure, [(µ2-dppm)2Cu2(η2-BH4)2], and crystallizes as CH2Cl2 solvate in two polymorphic forms (orthorhombic, 1, and monoclinic, 2) The details of molecular geometry and the crystal-packing pattern in polymorphs were studied. The rare Twisted Boat-Boat conformation of the core Cu2P4C2 cycle in 1 is found being more stable than Boat-Boat conformation in 2. Keywords: copper(I); diphosphine; dppm ligand; tetrahydroborate; binuclear complex; crystal structure; conformations; polymorph; hydride-halogen bonding 1. Introduction The concept of cooperative catalytic effects [1] in multinuclear transition metal systems led to the broad development and extensive investigation of the chemistry of transition metal complexes, bearing “short-bite” ligands that are able to lock two or more metallocenters in close proximity [2–7]. Such compounds are of great interest due to their catalytic activity including the transformation of small molecules on metal centres [8,9], they can also be used as synthetic models of enzyme action [10–12]. Phosphines are ubiquitous ligands in transition metal chemistry. Among various types of diphosphine ligands, bis-(diphenylphosphino)methane (dppm) is one of the very efficient bridging ligands [2]. As other diphosphine ligands it is able to chelate metals, but rarely acts as a bidentate ligand (η2-dppm), forming a strained four-membered cycle (Scheme1)[ 13–17]. Rather, it has a tendency to 1 act as either a monodentate (η -dppm) or bridging bidentate ligand (µ2-dppm) [18]. Many examples Crystals 2017, 7, 318; doi:10.3390/cryst7100318 www.mdpi.com/journal/crystals Crystals 2017, 7, 318 2 of 17 Crystals 2017, 7, 318 2 of 17 Crystals 2017, 7, 318 2 of 17 ofexamples binuclear of complexes binuclear containingcomplexes thecont eight-memberedaining the eight-membered ring M(µ2-dppm) ring2 MM(' μare2-dppm) known2M' with are a varietyknown examplesofwith metals a variety andof binuclear stereochemistriesof metals complexes and stereochemistries [18 cont]. aining the [18]. eight-membered ring M(μ2-dppm)2M' are known with a variety of metals and stereochemistries [18]. 2 1 M(η -dppm) M(η -dppm) M2(μ2-dppm) 2 1 M(η -dppm) M(η -dppm) M2(μ2-dppm) SchemeScheme 1.1. Possible coordination modesmodes ofof dppmdppm ligandligand inin transitiontransition metalmetal complexes.complexes. Scheme 1. Possible coordination modes of dppm ligand in transition metal complexes. TheThe Cu(I)-dppmCu(I)-dppm complexescomplexes areare emergingemerging classclass ofof polynuclearpolynuclear complexes,complexes, thatthat areare drawingdrawing considerableconsiderableThe Cu(I)-dppm attention complexes because of of are their their emerging photophysi photophysical classcal of properties propertiespolynuclear [19–22] [19 complexes,–22 ]and and prospective prospective that are drawinguse use as as a considerableacatalyst catalyst [23–25] [23 attention–25 and] and a sensorbecause a sensor for of forvarious their various photophysi organic organic basescal bases properties[26] and [26] anions and[19–22] anions [27]. and Binuclear [ 27prospective]. Binuclear Cu(I) use species Cu(I)as a catalystspeciespossess possess[23–25]an enhanced and an enhanceda reactivity sensor for reactivitytoward various organic organic toward azides bases organic in [26]copper-catalysed azides and anions in copper-catalysed [27]. azide-alkyne Binuclear cycloadditionCu(I) azide-alkyne species possesscycloadditioncompared an enhancedto monomeric compared reactivity tocopper monomeric toward complexes organic copper [28–35] azides complexes .in Copper(I) copper-catalysed [28– tetrahydrobo35]. Copper(I) azide-alkynerates tetrahydroborates with cycloaddition phosphine withcomparedligands phosphine featuring to monomeric ligands relative featuring copperstability complexes relativeto air oxygen stability [28–35] an tod. moisture airCopper(I) oxygen are tetrahydrobo and used moisture as selectiverates are used withreducing asphosphine selective agents ligandsreducing[36–40], featuring catalystsagents [ 36ofrelative– phot40],osensitized catalysts stability ofto isomerization photosensitizedair oxygen an ofd moisturedienes isomerization [41–43] are used ofand dienes ashydrolytic selective [41–43 dehydrogenation ]reducing and hydrolytic agents [36–40],dehydrogenationof ammonia catalysts borane of of phot ammonia[44].osensitized Since borane metal isomerization tetrahydroborates [44]. Since of metal dienes tetrahydroborateshave [41–43] great and potential hydrolytic have in greathydrogendehydrogenation potential storage in ofhydrogentechnology ammonia storage [45–50], borane technology as[44]. catalysts Since [45 metal –[51–55]50], astetrahydroborates catalystsand select [51ive–55 reducing] andhave selective gr agentseat potential reducing [56–61] in their agents hydrogen structural [56– 61storage] their and technologystructuraldynamic properties and [45–50], dynamic ashave catalysts properties been [51–55]actively have beenand investigat activelyselectiveed investigated reducing[52,62–64]. agents [These52,62 [56–61]– 64studies]. These their revealed studies structural revealeddifferent and dynamic properties− have− been actively investigated [52,62–64]. These studies revealed different differentmodes of modes BH4 coordination of BH4 coordination to the metal to the atom, metal which atom, can which behave can as behave mono-, as mono-,bi-, or tridentate bi-, or tridentate ligand − modesligand[64]. [of64 BH]. 4 coordination to the metal atom, which can behave as mono-, bi-, or tridentate ligand [64]. − − OurOur studies studies of intermolecular of intermolecular interactions interactions of BH4 [65,66] of BH and4 several[65,66] metal and tetrahydroborates several metal − tetrahydroborates[67–70]Our with studies proton of [67 intermolecular –donors70] with have proton showninteractions donors the vers haveof BHatility shown4 [65,66] of dihydrogen the and versatility several bonded metal of dihydrogen tetrahydroborates(DHB) complexes bonded (DHB)[67–70]formed complexes withand their proton crucial formed donors role and havein their the shown crucialreactivity rolethe of invers these theatility reactivity compounds. of dihydrogen of these In partic compounds. bondedular, we (DHB) have In particular, showncomplexes that we formedhavethe formation shown and their that of bifurcatecrucial the formation role DHB in thecomplexes of bifurcatereactivity involving DHBof these complexes bothcompounds. bridging involving In and partic bothterminalular, bridging we hydride have and shown hydrogens terminal that the formation of2 bifurcate DHB complexes2 involving both bridging and terminal hydride hydrogens hydrideof (Ph3P) hydrogens2Cu(η -BH4) of(Scheme (Ph3P) 22)Cu( is ηprerequisite-BH4) (Scheme for the2) subsequent is prerequisite proton for transfer the subsequent and dimerization proton 2 oftransferto (Phoccur3P) and2 Cu([67].η dimerization -BHContinuing4) (Scheme to these occur2) is prerequisitestudies, [67]. Continuing we forattempted the thesesubsequent studies,the synthesis proton we attempted transferof (η2-dppm)Cu( and the dimerization synthesisη2-BH of4) to 2 occur [67]. 2Continuing these studies, we attempted the synthesis of (η2-dppm)Cu(η2-BH4) (followingη -dppm)Cu( the ηpublished-BH4) following recipe [71]. the published However, recipe in our [71 hands,]. However, it gave, in ourinstead, hands, a binuclear it gave, instead, dimer following the published recipe [71]. However, in our hands, 2it gave, instead, a 2binuclear dimer abearing binuclear two dimer bridging bearing μ2-dppm two bridgingligands betweenµ2-dppm the ligands two {Cu( betweenη -BH4 the)} moieties. two {Cu( Hereinη -BH 4we)} moieties.describe 2 bearingHereinits spectroscopic wetwo describe bridging characterization its μ spectroscopic2-dppm ligands and characterization betweenanalysis theof polymorphic two and {Cu( analysisη -BH structures of4)} polymorphicmoieties. of itsHerein dichloromethane
Recommended publications
  • And [Z–Hali]- Halogen Bonds: Electron Density Properties And
    molecules Article Strength of the [Z–I···Hal]− and [Z–Hal···I]− Halogen Bonds: Electron Density Properties and Halogen Bond Length as Estimators of Interaction Energy Maxim L. Kuznetsov 1,2 1 Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal; [email protected]; Tel.: +351-218-419-236 2 Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russia Abstract: Bond energy is the main characteristic of chemical bonds in general and of non-covalent interactions in particular. Simple methods of express estimates of the interaction energy, Eint, us- ing relationships between Eint and a property which is easily accessible from experiment is of great importance for the characterization of non-covalent interactions. In this work, practically important relationships between Eint and electron density, its Laplacian, curvature, potential, kinetic, and total energy densities at the bond critical point as well as bond length were derived for the structures of the [Z–I···Hal]− and [Z–Hal···I]− types bearing halogen bonds and involving iodine as interact- ing atom(s) (totally 412 structures). The mean absolute deviations for the correlations found were 2.06–4.76 kcal/mol. Keywords: bond critical point properties; interaction energy; bond energy; bond strength; den- sity functional theory; electron density; energy density; halogen bond; QTAIM Citation: Kuznetsov, M.L. Strength of the [Z–I···Hal]− and [Z–Hal···I]− Halogen Bonds: Electron Density Properties and Halogen Bond Length as Estimators of Interaction Energy. 1. Introduction Molecules 2021, 26, 2083. https:// The halogen bond is one of the most important types of non-covalent interactions doi.org/10.3390/molecules26072083 being second only to hydrogen bonds in its significance.
    [Show full text]
  • Preparation and Characterization of Iridium Hydride and Dihydrogen Complexes Relevant to Biomass Deoxygenation
    Preparation and Characterization of Iridium Hydride and Dihydrogen Complexes Relevant to Biomass Deoxygenation Jonathan M. Goldberg A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2017 Reading Committee: D. Michael Heinekey, Chair Karen I. Goldberg, Chair Brandi M. Cossairt Program Authorized to Offer Degree: Department of Chemistry © Copyright 2017 Jonathan M. Goldberg University of Washington Abstract Preparation and Characterization of Iridium Hydride and Dihydrogen Complexes Relevant to Biomass Deoxygenation Jonathan M. Goldberg Chairs of the Supervisory Committee: Professor D. Michael Heinekey Professor Karen I. Goldberg Department of Chemistry This thesis describes the fundamental organometallic reactivity of iridium pincer complexes and their applications to glycerol deoxygenation catalysis. These investigations provide support for each step of a previously proposed glycerol deoxygenation mechanism. Chapter 1 outlines the motivations for this work, specifically the goal of using biomass as a chemical feedstock over more common petroleum-based sources. A discussion of the importance of transforming glycerol to higher value products, such as 1,3-propanediol, is discussed. Chapter 2 describes investigations into the importance of pincer ligand steric factors on the coordination chemistry of the iridium metal center. Full characterization of a five-coordinate iridium-hydride complex is presented; this species was previously proposed to be a catalyst resting state for glycerol deoxygenation. Chapter 3 investigates hydrogen addition to R4(POCOP)Ir(CO) R4 3 t i R4 R4 3 [ POCOP = κ -C6H3-2,6-(OPR2)2 for R = Bu, Pr] and (PCP)Ir(CO) [ (PCP) = κ -C6H3-2,6- t i (CH2PR2)2 for R = Bu, Pr] to give cis- and/or trans-dihydride complexes.
    [Show full text]
  • A New Way for Probing Bond Strength J
    A New Way for Probing Bond Strength J. Klein, H. Khartabil, J.C. Boisson, J. Contreras-Garcia, Jean-Philip Piquemal, E. Henon To cite this version: J. Klein, H. Khartabil, J.C. Boisson, J. Contreras-Garcia, Jean-Philip Piquemal, et al.. A New Way for Probing Bond Strength. Journal of Physical Chemistry A, American Chemical Society, 2020, 124 (9), pp.1850-1860. 10.1021/acs.jpca.9b09845. hal-02377737 HAL Id: hal-02377737 https://hal.archives-ouvertes.fr/hal-02377737 Submitted on 27 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A New Way for Probing Bond Strength Johanna Klein,y Hassan Khartabil,y Jean-Charles Boisson,z Julia Contreras-Garc´ıa,{ Jean-Philip Piquemal,{ and Eric H´enon∗,y yInstitut de Chimie Mol´eculaire de Reims UMR CNRS 7312, Universit´ede Reims Champagne-Ardenne, Moulin de la Housse 51687 Reims Cedex 02 BP39 (France) zCReSTIC EA 3804, Universit´ede Reims Champagne-Ardenne, Moulin de la Housse 51687 Reims Cedex 02 BP39 (France) {Sorbonne Universit´es,UPMC, Laboratoire de Chimie Th´eoriqueand UMR CNRS 7616, 4 Pl Jussieu, 75252 Paris Cedex 05(France) E-mail: [email protected] Phone: +33(3)26918497 1 Abstract The covalent chemical bond is intimately linked to electron sharing between atoms.
    [Show full text]
  • Halogen Bonds in Biological Molecules
    Halogen bonds in biological molecules Pascal Auffinger†‡, Franklin A. Hays§, Eric Westhof†, and P. Shing Ho‡§ †Institut de Biologie Mole´culaire et Cellulaire, Centre National de la Recherche Scientifique, Unite´Propre de Recherche 9002, Universite´Louis Pasteur, 15 Rue Rene´Descartes, F-67084 Strasbourg, France; and §Department of Biochemistry and Biophysics, Agriculture͞Life Sciences Building, Room 2011, Oregon State University, Corvallis, OR 97331-7305 Communicated by K. E. van Holde, Oregon State University, Corvallis, OR, October 13, 2004 (received for review August 17, 2004) Short oxygen–halogen interactions have been known in organic chemistry since the 1950s and recently have been exploited in the design of supramolecular assemblies. The present survey of protein and nucleic acid structures reveals similar halogen bonds as po- tentially stabilizing inter- and intramolecular interactions that can affect ligand binding and molecular folding. A halogen bond in biomolecules can be defined as a short COX⅐⅐⅐OOY interaction (COX is a carbon-bonded chlorine, bromine, or iodine, and OOY is a carbonyl, hydroxyl, charged carboxylate, or phosphate group), where the X⅐⅐⅐O distance is less than or equal to the sums of the respective van der Waals radii (3.27 Å for Cl⅐⅐⅐O, 3.37Å for Br⅐⅐⅐O, and 3.50 Å for I⅐⅐⅐O) and can conform to the geometry seen in small molecules, with the COX⅐⅐⅐O angle Ϸ165° (consistent with a strong Fig. 1. Schematic of short halogen (X) interactions to various oxygen- directional polarization of the halogen) and the X⅐⅐⅐OOY angle containing functional groups (where OOY can be a carbonyl, hydroxyl, or Ϸ120°.
    [Show full text]
  • Reactions of Aromatic Compounds Just Like an Alkene, Benzene Has Clouds of  Electrons Above and Below Its Sigma Bond Framework
    Reactions of Aromatic Compounds Just like an alkene, benzene has clouds of electrons above and below its sigma bond framework. Although the electrons are in a stable aromatic system, they are still available for reaction with strong electrophiles. This generates a carbocation which is resonance stabilized (but not aromatic). This cation is called a sigma complex because the electrophile is joined to the benzene ring through a new sigma bond. The sigma complex (also called an arenium ion) is not aromatic since it contains an sp3 carbon (which disrupts the required loop of p orbitals). Ch17 Reactions of Aromatic Compounds (landscape).docx Page1 The loss of aromaticity required to form the sigma complex explains the highly endothermic nature of the first step. (That is why we require strong electrophiles for reaction). The sigma complex wishes to regain its aromaticity, and it may do so by either a reversal of the first step (i.e. regenerate the starting material) or by loss of the proton on the sp3 carbon (leading to a substitution product). When a reaction proceeds this way, it is electrophilic aromatic substitution. There are a wide variety of electrophiles that can be introduced into a benzene ring in this way, and so electrophilic aromatic substitution is a very important method for the synthesis of substituted aromatic compounds. Ch17 Reactions of Aromatic Compounds (landscape).docx Page2 Bromination of Benzene Bromination follows the same general mechanism for the electrophilic aromatic substitution (EAS). Bromine itself is not electrophilic enough to react with benzene. But the addition of a strong Lewis acid (electron pair acceptor), such as FeBr3, catalyses the reaction, and leads to the substitution product.
    [Show full text]
  • Cuh-Catalyzed Enantioselective Alkylation of Indole Derivatives with Ligand-Controlled Regiodivergence
    CuH-Catalyzed Enantioselective Alkylation of Indole Derivatives with Ligand-Controlled Regiodivergence The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Ye, Yuxuan et al. "CuH-Catalyzed Enantioselective Alkylation of Indole Derivatives with Ligand-Controlled Regiodivergence." Journal of the American Chemical Society 141, 9 (January 2019): 3901–3909 © 2019 American Chemical Society As Published http://dx.doi.org/10.1021/jacs.8b11838 Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/126070 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author J Am Chem Manuscript Author Soc. Author Manuscript Author manuscript; available in PMC 2020 March 06. Published in final edited form as: J Am Chem Soc. 2019 March 06; 141(9): 3901–3909. doi:10.1021/jacs.8b11838. CuH-Catalyzed Enantioselective Alkylation of Indole Derivatives with Ligand-Controlled Regiodivergence Yuxuan Ye1, Seoung-Tae Kim2,3, Jinhoon Jeong2,3, Mu-Hyun Baik2,3,*, and Stephen L. Buchwald1,* 1Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States 2Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea 3Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea Abstract Enantioenriched molecules bearing indole-substituted stereocenters form a class of privileged compounds in biological, medicinal, and organic chemistry.
    [Show full text]
  • Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes
    Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Pirnot, Michael T., Yi-Ming Wang, and Stephen L. Buchwald. “Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes.” Angewandte Chemie International Edition 55.1 (2016): 48–57. As Published http://dx.doi.org/10.1002/anie.201507594 Publisher Wiley Blackwell Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/110464 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ HHS Public Access Author manuscript Author Manuscript Author ManuscriptAngew Chem Author Manuscript Int Ed Engl Author Manuscript . Author manuscript; available in PMC 2016 March 08. Published in final edited form as: Angew Chem Int Ed Engl. 2016 January 4; 55(1): 48–57. doi:10.1002/anie.201507594. Copper Hydride-Catalyzed Hydroamination of Alkenes and Alkynes Dr. Michael T. Pirnot†, Dr. Yi-Ming Wang†, and Prof. Dr. Stephen L. Buchwald Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (USA) Stephen L. Buchwald: [email protected] Abstract Over the past few years, CuH-catalyzed hydroamination has been discovered and developed as a robust and conceptually novel approach for the synthesis of enantioenriched secondary and tertiary amines. The success in this area of research was made possible through the large body of precedent in copper(I) hydride catalysis and the well-explored use of hydroxylamine esters as electrophilic amine sources in related copper-catalyzed processes.
    [Show full text]
  • Sop Pyrophoric 2 12/16/2019
    Owner DOC. NO. REV. DATE C.H.O SOP PYROPHORIC 2 12/16/2019 DOC. TITLE SOP FOR PYROPHORIC CHEMICALS Environmental Health & Safety STANDARD OPERATING PROCEDURES (SOP) FOR WORKING WITH PYROPHORIC CHEMICALS AT AMHERST COLLEGE ___________________________________________________________________ General Information Pyrophoric Chemicals are solid, liquid, or gas compounds that, when exposed to air or moisture at or below 54°C (130°F), can spontaneously ignite. Examples of Pyrophoric chemicals used at Amherst College Laboratories include: sodium hydride, zinc powder, and Grignard reagents. See the “Appendix” page below for a full list of Pyrophoric Chemicals. Pyrophoric chemicals are often used as catalysts in chemical reactions or as reducing and deprotonating agents in organic chemistry. Note that Pyrophoric chemicals may also be characterized by other hazards, hence, users of these chemicals may also need to refer to other SOPs that cover other hazards. In addition, each individual chemical’s Safety Data Sheet (SDS) should be consulted before they are used. _____________________________________________________________________________________ Personal Protective Equipment When working with Pyrophoric Chemicals, the following personal protective equipment (PPE) must be worn, at a minimum. Depending on the specific chemical, other forms of protection might be required. Consult the SDS for each chemical before use: Splash goggles Lab coat (Fire resistant lab coat highly recommended) Long pants Close toed shoes Gloves – Nitrile gloves adequate for accidental contact with small quantities. However, the use of fire resistant Nomex/ Leather Pilot’s gloves is highly recommended _____________________________________________________________________________________ Safety Devices All work with Pyrophoric chemicals must be done in a glove box, vacuum manifold, or any enclosed inert environment. If work must be done in a fume hood, ensure that the hood sash is in the lowest feasible position.
    [Show full text]
  • Download Download
    Journal of Chemistry, Vol. 47 (6), P. 779 - 785, 2009 The Interaction of BH2NH2 with HNZ (Z: O, S) in the Gas Phase: Theoretical Study of the Blue Shift of N-H...H-B Dihydrogen Bonds and the Red Shift of N-H...O and N-H...S Hydrogen Bonds Received 13 September 2007 Nguyen Tien Trung1, Tran Thanh Hue2 1Faculty of Chemistry, Quy Nhon University 2Faculty of Chemistry, Hanoi National University of Education Abstract Theoretical calculations at the MP2/6-311++G(2d,2p) level were performed to study the origin of the B-H...H-N blue-shifting dihydrogen bonds in the complexes of BH2NH2...HNZ (Z = O, S). The stably optimized cyclic structures of the complexes are displayed in figure 1, with interaction energies as table 1. The blue shift of the N5-H7 bond stretching frequencies is observed in the B9-H4...H7-N5 dihydrogen bonds for BH2NH2...HNO and BH2NH2...HNS, corresponding to contraction of the N5-H7 bonds (except for slight elongation of the N5-H7 bond found in the complex BH2NH2...HNS), increase of stretching frequencies and decrease of infrared intensities respectively. I - Introduction chemical processes was studied [4, 5]. The authors have pointed out that similar processes Very recently, the 1990s, a new type of were observed for biological systems such as interaction named dihydrogen bond was the enzyme hydrogenate in bacteria and algae. detected for metal organic crystal structure [1, To increase the understanding of dihydrogen 2] which was coined to describe an interaction bonds, Thomas et al. [6] carried out an ab-initio of the type X-H...H-E; where X is a typical theoretical study on the dimmer (BH3NH3)2.
    [Show full text]
  • Theoretical Study on the Noncovalent Interactions Involving Triplet Diphenylcarbene
    Theoretical Study on the Noncovalent Interactions Involving Triplet Diphenylcarbene Chunhong Zhao Hebei Normal University Huihua College Hui Lin Hebei Normal University Aiting Shan Hebei Normal University Shaofu Guo Hebei Normal University Huihua College Xiaoyan Li Hebei Normal University Xueying Zhang ( [email protected] ) Hebei Normal University https://orcid.org/0000-0003-1598-8501 Research Article Keywords: triplet diphenylcarbene, noncovalent interaction, electron density shift, electron spin density Posted Date: May 19th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-445417/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Journal of Molecular Modeling on July 9th, 2021. See the published version at https://doi.org/10.1007/s00894-021-04838-6. Page 1/21 Abstract The properties of some types of noncovalent interactions formed by triplet diphenylcarbene (DPC3) have been investigated by means of density functional theory (DFT) calculations and quantum theory of 3 atoms in molecules (QTAIM) studies. The DPC ···LA (LA = AlF3, SiF4, PF5, SF2, ClF) complexes have been analyzed from their equilibrium geometries, binding energies, charge transfer and properties of electron 3 density. The triel bond in the DPC ···AlF3 complex exhibits a partially covalent nature, with the binding energy − 65.7kJ/mol. The tetrel bond, pnicogen bond, chalcogen bond and halogen bond in the DPC3···LA (LA = SiF4, PF5, SF2, ClF) complexes show the character of a weak closed-shell noncovalent interaction. Polarization plays an important role in the formation of the studied complexes.
    [Show full text]
  • The Halogen Bond in the Design of Functional Supramolecular Materials
    The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances † ‡ ARRI PRIIMAGI,*, GABRIELLA CAVALLO, ‡ ‡ PIERANGELO METRANGOLO,*, ,§ AND GIUSEPPE RESNATI*, † Department of Applied Physics, Aalto University, P.O. Box 13500, FI-00076 ‡ Aalto, Finland, NFMLab-DCMIC “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, IT-20131 Milano, Italy, and §VTT-Technical Research Centre of Finland, Tietotie 2, Espoo, FI-02044 VTT, Finland RECEIVED ON APRIL 9, 2013 CONSPECTUS alogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the H more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield.
    [Show full text]
  • Divisão De Serviços Técnicos
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXATAS E DA TERRA INSTITUTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA Novos protocolos teóricos utilizados nos estudos das ligações hidrogênio-hidrogênio, na estabilidade do tetraedrano, seus derivados e das reações de diels-alder e na quantificação da afinidade de fármacos ____________________________________________Norberto de Kássio Vieira Monteiro Tese de Doutorado Natal/RN, outubro de 2015 Norberto de Kássio Vieira Monteiro NOVOS PROTOCOLOS TEÓRICOS UTILIZADOS NOS ESTUDOS DAS LIGAÇÕES HIDROGÊNIO-HIDROGÊNIO, NA ESTABILIDADE DO TETRAEDRANO, SEUS DERIVADOS E DAS REAÇÕES DE DIELS-ALDER E NA QUANTIFICAÇÃO DA AFINIDADE DE FÁRMACOS. Orientador: Caio Lima Firme NATAL/RN 2015 Divisão de Serviços Técnicos Catalogação da Publicação na Fonte. UFRN Biblioteca Setorial do Instituto de Química Monteiro, Norberto de Kássio Vieira. Novos protocolos teóricos utilizados nos estudos das ligações hidrogênio-hidrogênio, na estabilidade do tetraedrano, seus derivados e das reações de diels-alder e na quantificação da afinidade de fármacos / Norberto de Kássio Vieira Monteiro. – Natal, RN, 2015. 167 f. : il. Orientador: Caio Lima Firme. Tese (Doutorado em Química) - Universidade Federal do Rio Grande do Norte. Centro de Ciências Exatas e da Terra. Programa de Pós-Graduação em Química. 1. Diels-Alder – Tese. 2. Ligação H-H – Tese. 3. Tetraedrano – Tese. 4. CYP17 – Tese I. Firme, Caio Lima. II. Universidade Federal do Rio Grande do Norte. III. Título. RN/UFRN/BSE- Instituto de Química CDU 544.142.4:615 (043.3) AGRADECIMENTOS Às minhas três mães: Marilú, Vitória e Dona Francisca. Sem elas, nem sei o que seria de mim. Ao meu amor, Richele, a qual tenho o privilégio de chamar de esposa, pela ajuda e por me aguentar nos momentos de ansiedade e estresse nos anos que me dediquei ao doutorado.
    [Show full text]