The Role of Developmental Temperature on Phenotypic Development and Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FAMILY Poeciliidae Bonaparte 1831
FAMILY Poeciliidae Bonaparte 1831 - viviparous toothcarps, livebearers SUBFAMILY Poeciliinae Bonaparte 1831 - viviparous toothcarps [=Unipupillati, Paecilini, Belonesocini, Cyprinodontidae limnophagae, Gambusiinae, Tomeurinae, Poeciliopsinae, Heterandriini, Guirardinini, Cnesterodontini, Pamphoriini, Xiphophorini, Alfarini, Quintanini, Xenodexiinae, Dicerophallini, Scolichthyinae, Priapellini, Brachyrhaphini, Priapichthyini] GENUS Alfaro Meek, 1912 - livebearers [=Furcipenis, Petalosoma, Petalurichthys] Species Alfaro cultratus (Regan, 1908) - Regan's alfaro [=acutiventralis, amazonum] Species Alfaro huberi (Fowler, 1923) - Fowler's alfaro GENUS Belonesox Kner, 1860 - pike topminnows Species Belonesox belizanus Kner, 1860 - pike topminnow [=maxillosus] GENUS Brachyrhaphis Regan, 1913 - viviparous toothcarps [=Plectrophallus, Trigonophallus] Species Brachyrhaphis cascajalensis (Meek & Hildebrand, 1913) - Río Cascajal toothcarp Species Brachyrhaphis episcopi (Steindachner, 1878) - Obispo toothcarp [=latipunctata] Species Brachyrhaphis hartwegi Rosen & Bailey, 1963 - Soconusco gambusia Species Brachyrhaphis hessfeldi Meyer & Etzel, 2001 - Palenque toothcarp Species Brachyrhaphis holdridgei Bussing, 1967 - Tronadora toothcarp Species Brachyrhaphis olomina (Meek, 1914) - Orotina toothcarp Species Brachyrhaphis parismina (Meek, 1912) - Parismina toothcarp Species Brachyrhaphis punctifer (Hubbs, 1926) - Quibari Creek toothcarp Species Brachyrhaphis rhabdophora (Regan, 1908) - Río Grande de Terraba toothcarp [=tristani] Species Brachyrhaphis roseni -
The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11. -
Poecilia Wingei
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BOTANIKY A ZOOLOGIE AKADEMIE VĚD ČR ÚSTAV BIOLOGIE OBRATLOVCŮ, V.V.I. Personality, reprodukční strategie a pohlavní výběr u vybraných taxonů ryb Disertační práce Radomil Řežucha ŠKOLITEL: doc. RNDr. MARTIN REICHARD, Ph.D. BRNO 2014 Bibliografický záznam Autor: Mgr. Radomil Řežucha Přírodovědecká fakulta, Masarykova univerzita Ústav botaniky a zoologie Název práce: Personality, reprodukční strategie a pohlavní výběr u vybraných taxonů ryb Studijní program: Biologie Studijní obor: Zoologie Školitel: doc. RNDr. Martin Reichard, Ph.D. Akademie věd ČR Ústav biologie obratlovců, v.v.i. Akademický rok: 2013/2014 Počet stran: 139 Klíčová slova: Pohlavní výběr, alternativní rozmnožovací takti- ky, osobnostní znaky, sociální prostředí, zkuše- nost, Rhodeus amarus, Poecilia wingei Bibliographic Entry Author: Mgr. Radomil Řežucha Faculty of Science, Masaryk University Department of Botany and Zoology Title of Dissertation: Personalities, reproductive tactics and sexual selection in fishes Degree Programme: Biology Field of Study: Zoology Supervisor doc. RNDr. Martin Reichard, Ph.D. Academy of Sciences of the Czech Republic Institute of Vertebrate Biology, v.v.i. Academic Year: 2013/2014 Number of pages: 139 Keywords: Sexual selection, alternative mating tactics, per- sonality traits, social environment, experience, Rhodeus amarus, Poecilia wingei Abstrakt Vliv osobnostních znaků na alternativní reprodukční taktiky (charakteris- tické typy reprodukčního chování) patří mezi zanedbávané oblasti studia po- hlavního výběru. Současně bývá opomíjen i vliv sociálního prostředí a zkuše- nosti na tyto taktiky, a studium schopnosti jedinců v průběhu námluv mas- kovat své morfologické nedostatky. Jako studovaný systém alternativních rozmnožovacích taktik byl zvolen v přírodě nejběžnější komplex – sneaker × guarder (courter) komplex, popisující teritoriální a neteritoriální role samců. -
Cryptic Extinction of a Common Pacific Lizard Emoia Impar (Squamata, Scincidae) from the Hawaiian Islands
Cryptic extinction of a common Pacific lizard Emoia impar (Squamata, Scincidae) from the Hawaiian Islands R OBERT F ISHER and I VAN I NEICH Abstract Most documented declines of tropical reptiles are Introduction of dramatic or enigmatic species. Declines of widespread species tend to be cryptic. The early (1900s) decline and xtinctions on islands are rampant and have many extinction of the common Pacific skink Emoia impar from Ecauses. For reptiles, particularly lizards, insular extinc- the Hawaiian Islands is documented here through an tions greatly exceed those of mainland species and the assessment of literature, museum vouchers and recent extinction of smaller lizard species is rarely documented 1991 fieldwork. This decline appears contemporaneous with the (Case et al., ). Incomplete knowledge of island fauna documented declines of invertebrates and birds across the hinders an understanding of the true loss of diversity from Hawaiian Islands. A review of the plausible causal factors these ecosystems, and the issue of morphologically cryptic fi indicates that the spread of the introduced big-headed ant species also masks quanti cation of these extirpations or 2007 fi Pheidole megacephala is the most likely factor in this lizard extinctions (Bickford et al., ). The Paci c Basin ’ decline. The introduction and spread of a similar skink contains the majority of the world s tropical islands. These Lampropholis delicata across the islands appears to are most often inhabited by lizards of the families Scincidae 1995 1996 temporally follow the decline of E. impar, although there and Gekkonidae (Adler et al., ; Allison, ; Fisher, 1997 is no evidence of competition between these species. -
Poecilia Picta, a Close Relative to the Guppy, Exhibits Red Male Coloration Polymorphism: a System for Phylogenetic Comparisons
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Poecilia picta, a close relative to the guppy, exhibits red male coloration polymorphism: a system for phylogenetic comparisons Lindholm, Anna K ; Sandkam, Ben ; Pohl, Kristina ; Breden, Felix Abstract: Studies on the evolution of female preference and male color polymorphism frequently focus on single species since traits and preferences are thought to co-evolve. The guppy, Poecilia reticulata, has long been a premier model for such studies because female preferences and orange coloration are well known to covary, especially in upstream/downstream pairs of populations. However, focused single species studies lack the explanatory power of the comparative method, which requires detailed knowledge of multiple species with known evolutionary relationships. Here we describe a red color polymorphism in Poecilia picta, a close relative to guppies. We show that this polymorphism is restricted to males and is maintained in natural populations of mainland South America. Using tests of female preference we show female P. picta are not more attracted to red males, despite preferences for red/orange in closely related species, such as P. reticulata and P. parae. Male color patterns in these closely related species are different from P. picta in that they occur in discrete patches and are frequently Y chromosome-linked. P. reticulata have an almost infinite number of male patterns, while P. parae males occur in discrete morphs. We show the red male polymorphism in P. picta extends continuously throughout the body and is not a Y-linked trait despite the theoretical prediction that sexually-selected characters should often be linked to the heterogametic sex chromosome. -
Designation of the Lectotype of Poecilia Amazonica Garman, 1895 (Cyprinodontiformes, Poeciliidae) and Discussion of Its Nomenclatural Status
Zootaxa 2751: 63–64 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Designation of the lectotype of Poecilia amazonica Garman, 1895 (Cyprinodontiformes, Poeciliidae) and discussion of its nomenclatural status PAULO H.F. LUCINDA1, CARLOS A. FIGUEIREDO2 & KARSTEN E. HARTEL3 1Laboratório de Ictiologia Sistemática (UNT), Universidade Federal do Tocantins, Campus de Porto Nacional, P.O. Box 136, 77500- 000 Porto Nacional, TO, Brazil (corresponding author). E-mail: [email protected]. Bolsista de Produtividade em Pesquisa (CNPq) 2Núcleo de Gestão Ambiental, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro. Av. Pasteur, 458, sala 512- F, 22290-240 Rio de Janeiro, RJ, Brazil. E-mail: [email protected] 3Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA. E-mail: [email protected] Poecilia amazonica Garman, 1895 was described based on syntypes collected at Santa Cruz, Pará, Brazil by Mr. Caleb Cooke in October 1859. The type-series was originally deposited at the Museum of Comparative Zoology at Harvard University, under the catalog numbers MCZ 27573 (128 ex.), and MCZ 69635 (97 ex.). Five specimens were subsequently transferred to University of Michigan Museum of Zoology (UMMZ 146750), and six specimens were sent to the National Museum of Natural History (USNM 120286). Carl Hubbs examined parts of the type-series and considered the syntypes to be Micropoecilia parae (Eigenmann, 1894), as inferred from label information handwritten by Hubbs in 1944 and placed inside the jars of lots MCZ 27573 and UMMZ 146750 (ex MCZ 27573). -
Australasian Journal of Herpetology ISSN 1836-5698 (Print)1 Issue 12, 30 April 2012 ISSN 1836-5779 (Online) Australasian Journal of Herpetology
Australasian Journal of Herpetology ISSN 1836-5698 (Print)1 Issue 12, 30 April 2012 ISSN 1836-5779 (Online) Australasian Journal of Herpetology Hoser 2012 - Australasian Journal of Herpetology 9:1-64. Available online at www.herp.net Contents on pageCopyright- 2. Kotabi Publishing - All rights reserved 2 Australasian Journal of Herpetology Issue 12, 30 April 2012 Australasian Journal of Herpetology CONTENTS ISSN 1836-5698 (Print) ISSN 1836-5779 (Online) A New Genus of Coral Snake from Japan (Serpentes:Elapidae). Raymond T. Hoser, 3-5. A revision of the Asian Pitvipers, referred to the genus Cryptelytrops Cope, 1860, with the creation of a new genus Adelynhoserea to accommodate six divergent species (Serpentes:Viperidae:Crotalinae). Raymond T. Hoser, 6-8. A division of the South-east Asian Ratsnake genus Coelognathus (Serpentes: Colubridae). Raymond T. Hoser, 9-11. A new genus of Asian Snail-eating Snake (Serpentes:Pareatidae). Raymond T. Hoser, 10-12-15. The dissolution of the genus Rhadinophis Vogt, 1922 (Sepentes:Colubrinae). Raymond T. Hoser, 16-17. Three new species of Stegonotus from New Guinea (Serpentes: Colubridae). Raymond T. Hoser, 18-22. A new genus and new subgenus of snakes from the South African region (Serpentes: Colubridae). Raymond T. Hoser, 23-25. A division of the African Genus Psammophis Boie, 1825 into 4 genera and four further subgenera (Serpentes: Psammophiinae). Raymond T. Hoser, 26-31. A division of the African Tree Viper genus Atheris Cope, 1860 into four subgenera (Serpentes:Viperidae). Raymond T. Hoser, 32-35. A new Subgenus of Giant Snakes (Anaconda) from South America (Serpentes: Boidae). Raymond T. Hoser, 36-39. -
Impact of Tail Loss on the Behaviour and Locomotor Performance of Two Sympatric Lampropholis Skink Species
Impact of Tail Loss on the Behaviour and Locomotor Performance of Two Sympatric Lampropholis Skink Species Gillian L. Cromie, David G. Chapple* School of Biological Sciences, Monash University, Clayton, Victoria, Australia Abstract Caudal autotomy is an anti-predator behaviour that is used by many lizard species. Although there is an immediate survival benefit, the subsequent absence of the tail may inhibit locomotor performance, alter activity and habitat use, and increase the individuals’ susceptibility to future predation attempts. We used laboratory experiments to examine the impact of tail autotomy on locomotor performance, activity and basking site selection in two lizard species, the delicate skink (Lampropholis delicata) and garden skink (L. guichenoti), that occur sympatrically throughout southeastern Australia and are exposed to an identical suite of potential predators. Post-autotomy tail movement did not differ between the two Lampropholis species, although a positive relationship between the shed tail length and distance moved, but not the duration of movement, was observed. Tail autotomy resulted in a substantial decrease in sprint speed in both species (28– 39%), although this impact was limited to the optimal performance temperature (30uC). Although L. delicata was more active than L. guichenoti, tail autotomy resulted in decreased activity in both species. Sheltered basking sites were preferred over open sites by both Lampropholis species, although this preference was stronger in L. delicata. Caudal autotomy did not alter the basking site preferences of either species. Thus, both Lampropholis species had similar behavioural responses to autotomy. Our study also indicates that the impact of tail loss on locomotor performance may be temperature-dependent and highlights that future studies should be conducted over a broad thermal range. -
NSW REPTILE KEEPERS' LICENCE Species Lists 1006
NSW REPTILE KEEPERS’ LICENCE SPECIES LISTS (2006) The taxonomy in this list follows that used in Wilson, S. and Swan, G. A Complete Guide to Reptiles of Australia, Reed 2003. Common names generally follow the same text, when common names were used, or have otherwise been lifted from other publications. As well as reading this species list, you will also need to read the “NSW Reptile Keepers’ Licence Information Sheet 2006.” That document has important information about the different types of reptile keeper licenses. It also lists the criteria you need to demonstrate before applying to upgrade to a higher class of licence. THESE REPTILES CAN ONLY BE HELD UNDER A REPTILE KEEPERS’ LICENCE OF CLASS 1 OR HIGHER Code Scientific Name Common Name Code Scientific Name Common Name Turtles Monitors E2018 Chelodina canni Cann’s Snake-necked Turtle G2263 Varanus acanthurus Spiney-tailed Monitor C2017 Chelodina longicollis Snake-necked Turtle Q2268 Varanus gilleni Pygmy Mulga Monitor G2019 Chelodina oblonga Oblong Turtle G2271 Varanus gouldii Sand Monitor Y2028 Elseya dentata Northern Snapping Turtle M2282 Varanus tristis Black-Headed Monitor K2029 Elseya latisternum Saw-shelled Turtle Y2776 Elusor macrurus Mary River Turtle E2034 Emydura macquarii Murray Short-necked Turtle Skinks T2031 Emydura macquarii dharra Macleay River Turtle A2464 Acritoscincus platynotum Red-throated Skink T2039 Emydura macquarii dharuk Sydney Basin Turtle W2331 Cryptoblepharus virgatus Cream-striped Wall Skink T2002 Emydura macquarii emmotti Emmott’s Short-necked Turtle W2375 -
Color-Mediated Foraging by Pollinators: a Comparative Study of Two Passionflower Butterflies at Lantana Camara Gyanpriya Maharaj University of Missouri-St
University of Missouri, St. Louis IRL @ UMSL Dissertations UMSL Graduate Works 12-12-2016 Color-mediated foraging by pollinators: A comparative study of two passionflower butterflies at Lantana camara Gyanpriya Maharaj University of Missouri-St. Louis, [email protected] Follow this and additional works at: https://irl.umsl.edu/dissertation Part of the Biology Commons Recommended Citation Maharaj, Gyanpriya, "Color-mediated foraging by pollinators: A comparative study of two passionflower butterflies at Lantana camara" (2016). Dissertations. 42. https://irl.umsl.edu/dissertation/42 This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. Color-mediated foraging by pollinators: A comparative study of two passionflower butterflies at Lantana camara Gyanpriya Maharaj M.Sc. Plant and Environmental Sciences, University of Warwick, 2011 B.Sc. Biology, University of Guyana, 2005 A dissertation submitted to the Graduate School at the University of Missouri-St. Louis in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology with an emphasis in Ecology, Evolution and Systematics December 2016 Advisory Committee Aimee Dunlap, Ph.D (Chairperson) Godfrey Bourne, Ph.D (Co-Chair) Nathan Muchhala, Ph.D Jessica Ware, Ph.D Yuefeng Wu, Ph.D Acknowledgments A Ph.D. does not begin in graduate school, it starts with the encouragement and training you receive before even setting foot into a University. I have always been fortunate to have kind, helpful and brilliant mentors throughout my entire life who have taken the time to support me. -
Description of Poecilia (Acanthophacelus) Wingei N
Contributions to Zoology, 74 (1/2) 97-115 (2005) Description of Poecilia (Acanthophacelus) wingei n. sp. from the Paría Peninsula, Venezuela, including notes on Acanthophacelus Eigenmann, 1907 and other subgenera of Poecilia Bloch and Schneider, 1801 (Teleostei, Cyprinodontiformes, Poeciliidae) Fred. N. Poeser1, Michael Kempkes2, Isaäc J. H. Isbrücker1 1 Zoological Museum Amsterdam, University of Amsterdam, P.O. Box 94766, 1090 GT, Amsterdam, The Nether- lands, e-mail: [email protected]; 2 Am Mühlenberg 25, D-46419 Isselburg – Anholt, Germany Keywords: Guppies, Poecilia reticulata, P. wingei, melanophore patterns, character displacement, Paría Peninsula, despeciation Abstract Remarks on the 'Endler’s live-bearer' ...................................... 113 Acknowledgements ..................................................................... 114 The taxonomy of the common guppy, Poecilia reticulata Peters, References ..................................................................................... 114 1859, is reviewed and the closely related Campoma guppy, P. wingei n. sp., is described. Formerly, the common guppy was not judged to be closely related to any other species of Poecilia, but Introduction the new species is the second species to be allocated in the sub- genus Acanthophacelus Eigenmann, 1907. The recognition of P. wingei results from observed character displacement, i.e., on the The common guppy, Poecilia reticulata Peters, 1859, interaction between two closely related species in a shared envi- has a long history as -
New Zealand Threat Classification System (NZTCS)
NEW ZEALAND THREAT CLASSIFICATION SERIES 17 Conservation status of New Zealand reptiles, 2015 Rod Hitchmough, Ben Barr, Marieke Lettink, Jo Monks, James Reardon, Mandy Tocher, Dylan van Winkel and Jeremy Rolfe Each NZTCS report forms part of a 5-yearly cycle of assessments, with most groups assessed once per cycle. This report is the first of the 2015–2020 cycle. Cover: Cobble skink, Oligosoma aff.infrapunctatum “cobble”. Photo: Tony Jewell. New Zealand Threat Classification Series is a scientific monograph series presenting publications related to the New Zealand Threat Classification System (NZTCS). Most will be lists providing NZTCS status of members of a plant or animal group (e.g. algae, birds, spiders). There are currently 23 groups, each assessed once every 3 years. After each three-year cycle there will be a report analysing and summarising trends across all groups for that listing cycle. From time to time the manual that defines the categories, criteria and process for the NZTCS will be reviewed. Publications in this series are considered part of the formal international scientific literature. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Series. © Copyright December 2016, New Zealand Department of Conservation ISSN 2324–1713 (web PDF) ISBN 978–1–98–851400–0 (web PDF) This report was prepared for publication by the Publishing Team; editing and layout by Lynette Clelland. Publication was approved by the Director, Terrestrial Ecosystems Unit, Department of Conservation, Wellington, New Zealand. Published by Publishing Team, Department of Conservation, PO Box 10420, The Terrace, Wellington 6143, New Zealand.