Quantum Calculations of VX Ammonolysis and Hydrolysis Pathways Via Hydrated Lithium Nitride
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3 + 3HC1 Effect of Water and Ammonia, Respectively, Upon
VOL. 23, 1937 CHEMISTRY: SLOB UTSKY, A UDRIETHAND CAMPBELL 611 ACID CATALYSIS IN LIQUID AMMONIA. I. AMMONOL YSIS OF DIETHYLMALONA TE BY CHARLES SLOBUTSEY, L. F. AUDRIETH AND R. W. CAMPBELL DEPARTMENT OF CHEMISTRY, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS Communicated November 3, 1937 Numerous investigations have shown that liquid ammonia possesses unusual properties as a solvent' for many inorganic and organic compounds. Like water it is the parent substance of a system of acids, bases and salts.2 Liquid ammonia also reacts directly with many substances. Solvolysis takes place and in the case of ammonia such reactions are termed ammono- lytic reactions. Just as phosphorus trichloride is hydrolyzed by water (1), so it may be ammonolyzed3 by ammonia to give the nitrogen analogs of phosphorous and hydrochloric acids (2). PCI + 3HOH -- P(OH)3 + 3HC1 (1) PCI3 + 5HNH2 -+ P(NH)(NH2) + 3NH4C1 (2) Many hydrolytic reactions are catalyzed in aqueous solutions by acids or bases. Thus, the inversion of cane sugar is catalyzed by acids and the velocity of the reaction is a function of the concentration of the hydrogen ion. Esters also undergo hydrolysis and such reactions are markedly catalyzed by the hydrogen ion, or in terms of the modern Bronsted concept of acidity, by the onium4 ion, or solvated proton. It was, therefore, to have been expected that the rate of ammonolysis of esters in liquid ammonia would be accelerated by the presence of ammonium salts, which have been shown to possess acid character in liquid ammonia. It has already been demonstrated qualitatively that ammonium salts do exert a catalytic effect in other ammonolytic reactions. -
AASLD PRACTICE GUIDELINES Diagnosis and Management of Autoimmune Hepatitis
AASLD PRACTICE GUIDELINES Diagnosis and Management of Autoimmune Hepatitis Michael P. Manns,1 Albert J. Czaja,2 James D. Gorham,3 Edward L. Krawitt,4 Giorgina Mieli-Vergani,5 Diego Vergani,6 and John M. Vierling7 This guideline has been approved by the American ment on Guidelines;3 and (4) the experience of the Association for the Study of Liver Diseases (AASLD) authors in the specified topic. and represents the position of the Association. These recommendations, intended for use by physi- cians, suggest preferred approaches to the diagnostic, 1. Preamble therapeutic and preventive aspects of care. They are intended to be flexible, in contrast to standards of Clinical practice guidelines are defined as ‘‘systemati- care, which are inflexible policies to be followed in ev- cally developed statements to assist practitioner and ery case. Specific recommendations are based on rele- patient decisions about appropriate heath care for spe- vant published information. To more fully characterize 1 cific clinical circumstances.’’ These guidelines on the quality of evidence supporting the recommenda- autoimmune hepatitis provide a data-supported tions, the Practice Guidelines Committee of the approach to the diagnosis and management of this dis- AASLD requires a class (reflecting benefit versus risk) ease. They are based on the following: (1) formal and level (assessing strength or certainty) of evidence review and analysis of the recently-published world lit- to be assigned and reported with each recommenda- erature on the topic [Medline search]; (2) American tion.4 The grading system applied to the recommenda- College of Physicians Manual for Assessing Health tions has been adapted from the American College of 2 Practices and Designing Practice Guidelines; (3) Cardiology and the American Heart Association Prac- guideline policies, including the AASLD Policy on the tice Guidelines, and it is given below (Table 1). -
Nerve Agent - Lntellipedia Page 1 Of9 Doc ID : 6637155 (U) Nerve Agent
This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com Nerve Agent - lntellipedia Page 1 of9 Doc ID : 6637155 (U) Nerve Agent UNCLASSIFIED From lntellipedia Nerve Agents (also known as nerve gases, though these chemicals are liquid at room temperature) are a class of phosphorus-containing organic chemicals (organophosphates) that disrupt the mechanism by which nerves transfer messages to organs. The disruption is caused by blocking acetylcholinesterase, an enzyme that normally relaxes the activity of acetylcholine, a neurotransmitter. ...--------- --- -·---- - --- -·-- --- --- Contents • 1 Overview • 2 Biological Effects • 2.1 Mechanism of Action • 2.2 Antidotes • 3 Classes • 3.1 G-Series • 3.2 V-Series • 3.3 Novichok Agents • 3.4 Insecticides • 4 History • 4.1 The Discovery ofNerve Agents • 4.2 The Nazi Mass Production ofTabun • 4.3 Nerve Agents in Nazi Germany • 4.4 The Secret Gets Out • 4.5 Since World War II • 4.6 Ocean Disposal of Chemical Weapons • 5 Popular Culture • 6 References and External Links --------------- ----·-- - Overview As chemical weapons, they are classified as weapons of mass destruction by the United Nations according to UN Resolution 687, and their production and stockpiling was outlawed by the Chemical Weapons Convention of 1993; the Chemical Weapons Convention officially took effect on April 291997. Poisoning by a nerve agent leads to contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation, and eventual death by asphyxiation as control is lost over respiratory muscles. -
Warning: the Following Lecture Contains Graphic Images
What the новичок (Novichok)? Why Chemical Warfare Agents Are More Relevant Than Ever Matt Sztajnkrycer, MD PHD Professor of Emergency Medicine, Mayo Clinic Medical Toxicologist, Minnesota Poison Control System Medical Director, RFD Chemical Assessment Team @NoobieMatt #ITLS2018 Disclosures In accordance with the Accreditation Council for Continuing Medical Education (ACCME) Standards, the American Nurses Credentialing Center’s Commission (ANCC) and the Commission on Accreditation for Pre-Hospital Continuing Education (CAPCE), states presenters must disclose the existence of significant financial interests in or relationships with manufacturers or commercial products that may have a direct interest in the subject matter of the presentation, and relationships with the commercial supporter of this CME activity. The presenter does not consider that it will influence their presentation. Dr. Sztajnkrycer does not have a significant financial relationship to report. Dr. Sztajnkrycer is on the Editorial Board of International Trauma Life Support. Specific CW Agents Classes of Chemical Agents: The Big 5 The “A” List Pulmonary Agents Phosgene Oxime, Chlorine Vesicants Mustard, Phosgene Blood Agents CN Nerve Agents G, V, Novel, T Incapacitating Agents Thinking Outside the Box - An Abbreviated List Ammonia Fluorine Chlorine Acrylonitrile Hydrogen Sulfide Phosphine Methyl Isocyanate Dibotane Hydrogen Selenide Allyl Alcohol Sulfur Dioxide TDI Acrolein Nitric Acid Arsine Hydrazine Compound 1080/1081 Nitrogen Dioxide Tetramine (TETS) Ethylene Oxide Chlorine Leaks Phosphine Chlorine Common Toxic Industrial Chemical (“TIC”). Why use it in war/terror? Chlorine Density of 3.21 g/L. Heavier than air (1.28 g/L) sinks. Concentrates in low-lying areas. Like basements and underground bunkers. Reacts with water: Hypochlorous acid (HClO) Hydrochloric acid (HCl). -
Pesticides and Toxic Substances
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON D.C., 20460 OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES MEMORANDUM DATE: July 31, 2006 SUBJECT: Finalization of Interim Reregistration Eligibility Decisions (IREDs) and Interim Tolerance Reassessment and Risk Management Decisions (TREDs) for the Organophosphate Pesticides, and Completion of the Tolerance Reassessment and Reregistration Eligibility Process for the Organophosphate Pesticides FROM: Debra Edwards, Director Special Review and Reregistration Division Office of Pesticide Programs TO: Jim Jones, Director Office of Pesticide Programs As you know, EPA has completed its assessment of the cumulative risks from the organophosphate (OP) class of pesticides as required by the Food Quality Protection Act of 1996. In addition, the individual OPs have also been subject to review through the individual- chemical review process. The Agency’s review of individual OPs has resulted in the issuance of Interim Reregistration Eligibility Decisions (IREDs) for 22 OPs, interim Tolerance Reassessment and Risk Management Decisions (TREDs) for 8 OPs, and a Reregistration Eligibility Decision (RED) for one OP, malathion.1 These 31 OPs are listed in Appendix A. EPA has concluded, after completing its assessment of the cumulative risks associated with exposures to all of the OPs, that: (1) the pesticides covered by the IREDs that were pending the results of the OP cumulative assessment (listed in Attachment A) are indeed eligible for reregistration; and 1 Malathion is included in the OP cumulative assessment. However, the Agency has issued a RED for malathion, rather than an IRED, because the decision was signed on the same day as the completion of the OP cumulative assessment. -
Efficacy of the Repon1 Mutant IIG1 to Prevent Cyclosarin Toxicity in Vivo and to Detoxify Structurally Different Nerve Agents in Vitro
Arch Toxicol (2014) 88:1257–1266 DOI 10.1007/s00204-014-1204-z MOLECULAR TOXICOLOGY Efficacy of the rePON1 mutant IIG1 to prevent cyclosarin toxicity in vivo and to detoxify structurally different nerve agents in vitro Franz Worek · Thomas Seeger · Moshe Goldsmith · Yacov Ashani · Haim Leader · Joel S. Sussman · Dan Tawfik · Horst Thiermann · Timo Wille Received: 30 September 2013 / Accepted: 16 January 2014 / Published online: 30 January 2014 © Springer-Verlag Berlin Heidelberg 2014 Abstract The potent human toxicity of organophos- alkylmethylfluorophosphonates but had low efficiency with phorus (OP) nerve agents calls for the development of the phosphoramidate tabun and was virtually ineffective effective antidotes. Standard treatment for nerve agent with the nerve agent VX. This quantitative analysis vali- poisoning with atropine and an oxime has a limited effi- dated the model for predicting in vivo protection by cata- cacy. An alternative approach is the development of cata- lytic bioscavengers based on their catalytic efficiency, the lytic bioscavengers using OP-hydrolyzing enzymes such level of circulating enzyme, and the dose of the intoxicat- as paraoxonases (PON1). Recently, a chimeric PON1 ing nerve agent. The in vitro and in vivo results indicate mutant, IIG1, was engineered toward the hydrolysis of the that IIG1 may be considered as a promising candidate toxic isomers of soman and cyclosarin with high in vitro bioscavenger to protect against the toxic effects of a range catalytic efficiency. In order to investigate the suitabil- of highly toxic nerve agents. ity of IIG1 as a catalytic bioscavenger, an in vivo guinea pig model was established to determine the protective Keywords Nerve agents · Paraoxonase · Mutant · effect of IIG1 against the highly toxic nerve agent cyclo- Detoxification · Protection · Bioscavenger sarin. -
S 1 Reaction Remember That a 3˚ Alkyl Halide Will Not Undergo a S 2 Reaction the Steric Hindrance in the Transition State
SN1 Reaction Remember that a 3˚ alkyl halide will not undergo a SN2 reaction The steric hindrance in the transition state is too high If t-Butyl iodide is reacted with methanol, however, a substitution product is obtained This product does NOT proceed through a SN2 reaction First proof is that the rate for the reaction does not depend on methanol concentration Occurs through a SN1 reaction Substitution – Nucleophilic – Unimolecular (1) SN1 - In a SN1 reaction the leaving group departs BEFORE a nucleophile attacks For t-butyl iodide this generates a planar 3˚ carbocation The carbocation can then react with solvent (or nucleophile) to generate the product If solvent reacts (like the methanol as shown) the reaction is called a “solvolysis” The Energy Diagram for a SN1 Reaction therefore has an Intermediate - And is a two step reaction CH3 Potential H3C energy CH3 I OCH CH3 3 H3C CH3 CH3 H3C CH3 Reaction Coordinate Why does a SN1 Mechanism Occur? - Whenever the potential energy of a reaction is disfavored for a SN2 reaction the SN1 mechanism becomes a possibility SN2 SN1 Potential energy I OCH3 CH3 H3C CH3 CH3 H3C CH3 Reaction Coordinate Rate Characteristics The rate for a SN1 reaction is a first order reaction Rate = k [substrate] The first step is the rate determining step The nucleophile is NOT involved in the rate determining step Therefore the rate of a SN1 reaction is independent of nucleophile concentration (or nucleophile characteristics, e.g. strength) What is Important for a SN1 Reaction? The primary factor concerning the rate of -
Solvolysis Reaction Kinetics, Rates and Mechanism for Phenyl N-Phenyl Phosphoramidochloridate
Studies of Phenyl N-Phenyl Phosphoramidochloridate Bull. Korean Chem. Soc. 2014, Vol. 35, No. 8 2465 http://dx.doi.org/10.5012/bkcs.2014.35.8.2465 Solvolysis Reaction Kinetics, Rates and Mechanism for Phenyl N-Phenyl Phosphoramidochloridate Hojune Choi, Kiyull Yang, Han Joong Koh,†,* and In Sun Koo* Department of Chemistry Education and Research Instituted of Natural Science, Gyeongsang National University, Jinju 660-701, Korea. *E-mail: [email protected] †Department of Science Education, Chonju National University of Education, Chonju, Korea. *E-mail: [email protected] Received March 29, 2014, Accepted April 29, 2014 The rate constants of solvolysis of phenyl N-phenyl phosphoramidochloridate (PhNHPO(Cl)OPh, Target Compound-TC1) have been determined by a conductivity method. The solvolysis rate constants of TC1 are well correlated with the extended Grunwald-Winstein equation, using the NT solvent nucleophilicity scale and YCl solvent ionizing scale, and sensitivity values of 0.85 ± 0.14 and 0.53 ± 0.04 for l and m, respectively. These l and m values were similar to those obtained previously for the complex chemical substances dimethyl thiophosphorochloridate; N,N,N',N'-tetramethyldiamidophosphorochloridate; 2-phenyl-2-ketoethyl tosylate; diphenyl thiophosphinyl chloride; and 9-fluorenyl chloroformate. As with the five previously studied solvolyses, an SN2 pathway is proposed for the solvolyses of TC1. For four representative solvents, the rate constants were measured at several temperatures, and activation parameters (∆H≠ and ∆S≠) were estimated. These activation parameters are also in line with the values expected for an SN2 reaction. Key Words : Phenyl N-phenyl phosphoramidochloridate, Extended Grunwald-Winstein equation, SN2 mech- anism, Activation parameters Introduction mediate or is the result of a single transition state (TS).2 The reaction mechanism of phosphoryl compounds, such Phosphoryl transfer is an important aspect of biological as that of ‘phenyl N-phenyl phosphoramidochloridate’ chemistry and organic synthesis. -
Initial State and Transition State Solvation for the Solvolysis of ^Razis
宙시 State and Transition State Solvation for the Solvolysis of trans-[Co(N-ete^2ClJ^ Bull. Korean Chem. Soc.f Vol. 11, No. 4, 1990 309 aqueous HC1 solution. The reaction product was extracted 2, (a) H. Kotsuki, Y. Ushio, I. Kadota, and M. O산 ii,/ ()rg. three times with ether (20 ml x 3) and the organic옹 were Chem., 54, 5153 (1989); (b) H. Kots니 d, Y. Ushio, I. separated and dried over anhydrous magnesium sulfate. The Kadota, and M. Ochi, Chem. Lett., 927 (1988); (c) B. P. ether was removed by rotatory evaporator. The GLC ana M니 ndy and M. Bjorklund. Tetrahedron Lett., 26, 3899 lysis indicated an exo/endo ratio of 83:17 (quantitative yield). (1985); (d) H. A. Bates and P.-N. Deng, / ()rg. Chem., General procedure for endo-5,7-dimethyl-6,8-dioxabicy- 48, 4479 (1983). clo[3.2.1]octane (5). To a dried ZnCl2(2 eq.) was added drop 3, (a) B. P. Mundy and W. G. Bommann,/ ()rg. Chem., 49, wise 0.2 g (1.4 mmol) of methyl vinyl keton dimer (1) in 2 ml 5264 (1984); (b) T. Cohen and M. Bhupathy, Tetrahed- ) of CH2C12 and 3 eq. of Zn(BH4 2 (0.8M solution in THF) res ron Lett., 24, 4163 (1983); (c) P. Chaquin, J-P. Morizur, pectively at 0°C. After 2 hrs stirring at 0°C, 10 mZ of 15% and J. KossanyiJ. Am. Chem. Sog, 99,903(1977); (d) K. aqueous HC1 solution was added to this reaction mixture and Mori, Tetrahedron, 30, 4223 (1974). -
View Is Primarily on Addressing the Issues of Non-Permanently Charged Reactivators and the Development of Treatments for Aged Ache
Design, Synthesis, and Evaluation of Therapeutics for the Treatment of Organophosphorus Poisoning by Nerve Agents and Pesticides Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Andrew Joseph Franjesevic Graduate Program in Chemistry The Ohio State University 2019 Dissertation Committee Professor Christopher M. Hadad, Advisor Professor Thomas J. Magliery Professor David Nagib Professor Jonathan R. Parquette Copyrighted by Andrew Joseph Franjesevic 2019 2 Abstract Organophosphorus (OP) compounds, both pesticides and nerve agents, are some of the most lethal compounds known to man. Although highly regulated for both military and agricultural use in Western societies, these compounds have been implicated in hundreds of thousands of deaths annually, whether by accidental or intentional exposure through agricultural or terrorist uses. OP compounds inhibit the function of the enzyme acetylcholinesterase (AChE), and AChE is responsible for the hydrolysis of the neurotransmitter acetylcholine (ACh), and it is extremely well evolved for the task. Inhibition of AChE rapidly leads to accumulation of ACh in the synaptic junctions, resulting in a cholinergic crisis which, without intervention, leads to death. Approximately 70-80 years of research in the development, treatment, and understanding of OP compounds has resulted in only a handful of effective (and approved) therapeutics for the treatment of OP exposure. The search for more effective therapeutics is limited by at least three major problems: (1) there are no broad scope reactivators of OP-inhibited AChE; (2) current therapeutics are permanently positively charged and cannot cross the blood-brain barrier efficiently; and (3) current therapeutics are ineffective at treating the aged, or dealkylated, form of AChE that forms following inhibition of of AChE by various OPs. -
VX Binary (VX2) – Developed by the US • Novichok Agent
THE FOUR LIKELY BINARY AGENTS Working paper Charles P. Blair Last Updated, January 2013 Binary sarin (GB2) – developed by the U.S. Binary soman (GD2) VX binary (VX2) – developed by the U.S Novichok agent (“New Comer) –developed by the Soviets Additionally, Eric Croddy has written that VNSAs may use “binarytype designs” in an attack…with simple designs most likely using common chemical ingredients (e . g. , c ya n id e . ) ” 1 Aum is an example o f t h is . 1. Binary sarin . With binary sarin (also referred to as “GB binary” and “GB2”) a forward container has methylphosphonic difluoride (DF), while a second, rear container has an isopropyl alcohol and isopropylamine solution (OPA). The DF resides in the munition prior to use. The OPA is added just prior to launch. After deployment of the weapon, the two canisters rupture, “the isopropyl amine binds to the hydrogen fluoride generated during the chemical reaction, and the chemical mixture produces GB.”2 Experts note that, “The final product of the weapon is of the same chemical structure as the original nerve agent. The term binary refers only to the storage and deployment method used, not to the chemical structure of the substance.”3 With regard to how long it takes the DF and OPA to mix before binary sarin is extant, Eric Croddy notes that, “as in any chemical reaction, a certain amount of time is required for the [binary] reaction to run its course. In the case of GB binary, this required about seven seconds.”4 2. Binary soman (also referred to as “GD binary” and “GD2”). -
Nerve Agents (Ga, Gb, Gd, Vx) Tabun (Ga) Cas # 77-81-6 Sarin (Gb) Cas # 107-44-8 Soman (Gd) Cas # 96-64-0 Vx Cas # 50782-69-9
NERVE AGENTS (GA, GB, GD, VX) TABUN (GA) CAS # 77-81-6 SARIN (GB) CAS # 107-44-8 SOMAN (GD) CAS # 96-64-0 VX CAS # 50782-69-9 Division of Toxicology ToxFAQsTM April 2002 This fact sheet answers the most frequently asked health questions (FAQs) about nerve agents. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Exposure to nerve agents can occur due to accidental release from a military storage facility. Nerve agents are highly toxic regardless of the route of exposure. Exposure to nerve agents can cause tightness of the chest, excessive salivation, abdominal cramps, diarrhea, blurred vision, tremors, and death. Nerve agents (GA, GB, GD, VX) have been identified at 5 of the 1,585 National Priorities List sites identified by the Environmental Protection Agency (EPA). What are nerve agents GA, GB, GD, and VX? ‘ GA, GB, GD, and VX will be broken down in water quickly, but small amounts may evaporate. Nerve agents GA(tabun), GB (sarin), GD(soman), and VX are ‘ GA, GB, GD, and VX will be broken down in moist soil manufactured compounds. The G-type agents are clear, quickly. Small amounts may evaporate into air or travel colorless, tasteless liquids miscible in water and most below the soil surface and contaminate groundwater.