Constant Time Encryption As a Countermeasure Against Remote Cache Timing Attacks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Argon and Argon2
Argon and Argon2 Designers: Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich University of Luxembourg, Luxembourg [email protected], [email protected], [email protected] https://www.cryptolux.org/index.php/Password https://github.com/khovratovich/Argon https://github.com/khovratovich/Argon2 Version 1.1 of Argon Version 1.0 of Argon2 31th January, 2015 Contents 1 Introduction 3 2 Argon 5 2.1 Specification . 5 2.1.1 Input . 5 2.1.2 SubGroups . 6 2.1.3 ShuffleSlices . 7 2.2 Recommended parameters . 8 2.3 Security claims . 8 2.4 Features . 9 2.4.1 Main features . 9 2.4.2 Server relief . 10 2.4.3 Client-independent update . 10 2.4.4 Possible future extensions . 10 2.5 Security analysis . 10 2.5.1 Avalanche properties . 10 2.5.2 Invariants . 11 2.5.3 Collision and preimage attacks . 11 2.5.4 Tradeoff attacks . 11 2.6 Design rationale . 14 2.6.1 SubGroups . 14 2.6.2 ShuffleSlices . 16 2.6.3 Permutation ...................................... 16 2.6.4 No weakness,F no patents . 16 2.7 Tweaks . 17 2.8 Efficiency analysis . 17 2.8.1 Modern x86/x64 architecture . 17 2.8.2 Older CPU . 17 2.8.3 Other architectures . 17 3 Argon2 19 3.1 Specification . 19 3.1.1 Inputs . 19 3.1.2 Operation . 20 3.1.3 Indexing . 20 3.1.4 Compression function G ................................. 21 3.2 Features . 22 3.2.1 Available features . 22 3.2.2 Server relief . 23 3.2.3 Client-independent update . -
Cache-Timing Attack Against Aes Crypto System - Countermeasures Review
Edith Cowan University Research Online Australian Information Security Management Conference Conferences, Symposia and Campus Events 2014 Cache-timing attack against aes crypto system - countermeasures review Yaseen H. Taha University of Khartoum Settana M. Abdulh University of Khartoum Naila A. Sadalla University of Khartoum Huwaida Elshoush University of Khartoum Follow this and additional works at: https://ro.ecu.edu.au/ism Part of the Information Security Commons DOI: 10.4225/75/57b65fd1343d3 12th Australian Information Security Management Conference. Held on the 1-3 December, 2014 at Edith Cowan University, Joondalup Campus, Perth, Western Australia. This Conference Proceeding is posted at Research Online. https://ro.ecu.edu.au/ism/166 CACHE-TIMING ATTACK AGAINST AES CRYPTO SYSTEM - COUNTERMEASURES REVIEW Yaseen.H.Taha, Settana.M.Abdulh, Naila.A.Sadalla, Huwaida Elshoush University of Khartoum, Sudan [email protected], [email protected], [email protected], [email protected] Abstract Side channel attacks are based on side channel information, which is information that is leaked from encryption systems. Implementing side channel attacks is possible if and only if an attacker has access to a cryptosystem (victim) or can interact with cryptosystem remotely to compute time statistics of information that collected from targeted system. Cache timing attack is a special type of side channel attack. Here, timing information caused by cache effect is collected and analyzed by an attacker to guess sensitive information such as encryption key or plaintext. Cache timing attack against AES was known theoretically until Bernstein carry out a real implementation of the attack. Fortunately, this attack can be a success only by exploiting bad implementation in software or hardware, not for algorithm structure weaknesses, and that means attack could be prevented if proper implementation has been used. -
Deanonymisation of Clients in Bitcoin P2P Network
Deanonymisation of clients in Bitcoin P2P network Alex Biryukov Dmitry Khovratovich Ivan Pustogarov University of Luxembourg University of Luxembourg University of Luxembourg [email protected] [email protected] [email protected] Abstract about 100,000 nowadays. The vast majority of these peers Bitcoin is a digital currency which relies on a distributed (we call them clients), about 90%, are located behind NAT set of miners to mint coins and on a peer-to-peer network and do not allow any incoming connections, whereas they to broadcast transactions. The identities of Bitcoin users choose 8 outgoing connections to servers (Bitcoin peers with are hidden behind pseudonyms (public keys) which are rec- public IP). ommended to be changed frequently in order to increase In a Bitcoin transaction, the address of money sender(s) transaction unlinkability. or receiver(s) is a hash of his public key. We call such We present an efficient method to deanonymize Bitcoin address a pseudonym to avoid confusion with the IP ad- users, which allows to link user pseudonyms to the IP ad- dress of the host where transactions are generated, and the dresses where the transactions are generated. Our tech- latter will be called just address throughout the text. In niques work for the most common and the most challenging the current Bitcoin protocol the entire transaction history scenario when users are behind NATs or firewalls of their is publicly available so anyone can see how Bitcoins travel ISPs. They allow to link transactions of a user behind a from one pseudonym to another and potentially link differ- NAT and to distinguish connections and transactions of dif- ent pseudonyms of the same user together. -
Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family
Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 family Dmitry Khovratovich1 and Christian Rechberger2 and Alexandra Savelieva3 1Microsoft Research Redmond, USA 2DTU MAT, Denmark 3National Research University Higher School of Economics, Russia Abstract. We present the new concept of biclique as a tool for preimage attacks, which employs many powerful techniques from differential cryptanalysis of block ciphers and hash functions. The new tool has proved to be widely applicable by inspiring many authors to publish new re- sults of the full versions of AES, KASUMI, IDEA, and Square. In this paper, we demonstrate how our concept results in the first cryptanalysis of the Skein hash function, and describe an attack on the SHA-2 hash function with more rounds than before. Keywords: SHA-2, SHA-256, SHA-512, Skein, SHA-3, hash function, meet-in-the-middle attack, splice-and-cut, preimage attack, initial structure, biclique. 1 Introduction The last years saw an exciting progress in preimage attacks on hash functions. In contrast to collision search [29, 26], where differential cryptanalysis has been in use since 90s, there had been no similarly powerful tool for preimages. The situation changed dramatically in 2008, when the so-called splice-and-cut framework has been applied to MD4 and MD5 [2, 24], and later to SHA-0/1/2 [1, 3], Tiger [10], and other primitives. Despite amazing results on MD5, the applications to SHA-x primitives seemed to be limited by the internal properties of the message schedule procedures. The only promising element, the so-called initial structure tool, remained very informal and complicated. -
Some Comments on the First Round AES Evaluation Of
Some Comments on the First Round AES Evaluation of RC6 1 2 1 Scott Contini , Ronald L. Rivest , M.J.B. Robshaw , 1 and Yiqun Lisa Yin 1 RSA Lab oratories, 2955 Campus Drive, San Mateo, CA 94403, USA fscontini,matt,yiqung@rsa. com 2 M.I.T. Lab oratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA [email protected] 1 Intro duction The rst round of the AES pro cess is coming to an end. Since August of 1998, the cryptographic community has had the opp ortunity to consider each of the fteen prop osed AES candidates. In this note, we take the opp ortunity to answer some of the questions and to resp ond to some of the issues that have b een raised ab out the suitabilityofRC6 as an AES candidate. 2 Encryption/Decryption Performance of RC6 Since the publication of RC6 a variety of researchers and implementors have examined RC6 and considered its p erformance in a wide range of environments. 2.1 32-bit architectures RC6 is one of the fastest AES prop osals on 32-bit architectures, particularly so on the NIST reference platform of a 200 MHz Pentium Pro. It is argued by many that the most reasonable way to assess the p erformance of an algorithm is to consider its sp eed in an assembly language implementation. We agree that this is the case. However it is also interesting to consider how the p erformance of RC6 compares when using di erent compilers. It is imp ortant to note that to take advantage of compiler-sp eci c optimizations the source co de provided to the compiler might need to b e changed. -
An Adaptive-Ciphertext Attack Against I XOR C Block Cipher Modes With
A A-C A “I ⊕ C” B C M W O Jon Passki Tom Ritter [email protected] [email protected] May 24, 2012 Abstract Certain block cipher confidentiality modes are susceptible to an adaptive chosen-ciphertext attack against the underlying format of the plaintext. When the application decrypts altered ciphertext and attempts to process the manipulated plaintext, it may disclose information about intermediate values resulting in an oracle. In this paper we describe how to recognize and exploit such an oracle to decrypt ciphertext and control the decryption to result in arbitrary plaintext. We also discuss ways to mitigate and remedy the issue. 1 I Quoting from [1]: Adaptive chosen-ciphertext attacks on cryptographic protocols allow an attacker to decrypt a cipher- text C, getting the plaintext M, by submitting a series of chosen-ciphertexts C0= 6 C to an oracle which returns information on the decryption. The ciphertexts can be adaptively chosen so that information on previous decryptions is available before the next chosen ciphertext is submitted. Adaptive chosen-ciphertext attacks against different confidentiality modes are not novel. The CBC confidentiality mode can suffer from a side channel attack against padding verification [2], popularized by [3]. A variant of the Cipher Feedback (CFB) confidentiality mode has been attacked in different encryption mail protocols by [4, 5, 1], and the padding schemes of asymmetric ciphers are another source of such attacks [6, 7]. In some form, they rely on the use of an oracle that leaks or communicates information back to attackers. We examine four different confidentiality modes encrypting plaintext that is separated by a delimiter, and the absence or inclusion of that delimiter generates an oracle by the application. -
Cs 255 (Introduction to Cryptography)
CS 255 (INTRODUCTION TO CRYPTOGRAPHY) DAVID WU Abstract. Notes taken in Professor Boneh’s Introduction to Cryptography course (CS 255) in Winter, 2012. There may be errors! Be warned! Contents 1. 1/11: Introduction and Stream Ciphers 2 1.1. Introduction 2 1.2. History of Cryptography 3 1.3. Stream Ciphers 4 1.4. Pseudorandom Generators (PRGs) 5 1.5. Attacks on Stream Ciphers and OTP 6 1.6. Stream Ciphers in Practice 6 2. 1/18: PRGs and Semantic Security 7 2.1. Secure PRGs 7 2.2. Semantic Security 8 2.3. Generating Random Bits in Practice 9 2.4. Block Ciphers 9 3. 1/23: Block Ciphers 9 3.1. Pseudorandom Functions (PRF) 9 3.2. Data Encryption Standard (DES) 10 3.3. Advanced Encryption Standard (AES) 12 3.4. Exhaustive Search Attacks 12 3.5. More Attacks on Block Ciphers 13 3.6. Block Cipher Modes of Operation 13 4. 1/25: Message Integrity 15 4.1. Message Integrity 15 5. 1/27: Proofs in Cryptography 17 5.1. Time/Space Tradeoff 17 5.2. Proofs in Cryptography 17 6. 1/30: MAC Functions 18 6.1. Message Integrity 18 6.2. MAC Padding 18 6.3. Parallel MAC (PMAC) 19 6.4. One-time MAC 20 6.5. Collision Resistance 21 7. 2/1: Collision Resistance 21 7.1. Collision Resistant Hash Functions 21 7.2. Construction of Collision Resistant Hash Functions 22 7.3. Provably Secure Compression Functions 23 8. 2/6: HMAC And Timing Attacks 23 8.1. HMAC 23 8.2. -
Harden Zero Knowledge Password Proofs Against Offline Dictionary
Harden Zero Knowledge Password Proofs Against Offline Dictionary Attacks Gijs Van Laer Rono Dasgupta Aditya Patil [email protected] [email protected] [email protected] Matthew Green [email protected] December 12, 2016 Abstract Traditional authentication systems offer ease of use but the security they provide often proves to be inadequate. Hackers use means to gain access to company servers and steal entire databases of password hashes. These hashes are then subject to offline dictionary attacks resulting in the disclosure of millions of passwords. Such password breaches have become commonplace and have caused several major companies to face major losses. Password reuse is a common practice among users and a password breach disclosing a single password on a particular service could result in a user also losing access to their other accounts. Solutions such as multi-factor authentication add some level of security but do not completely solve the problem. There is a need to move towards stronger authentication schemes that do not compromise on ease of use, both for the user and the service provider. In this paper, we propose a novel authentication protocol that is proven hard against offline dictionary attacks. Our protocol implements a combination of a Zero Knowledge Password Proof and a sequentially memory hard hash function. In a concrete instan- tiation of the protocol, we use Schnorr's Zero Knowledge Password Proof combined with the Fiat-Shamir Heuristic for the Zero Knowledge Password Proof and scrypt for the sequentially memory hard hash function. We also describe a library implementing our protocol that we have developed along with an example web application that uses the library. -
Side-Channel Attacks
Side-Channel Attacks Aleksei Ivanov 26th November 2005 1 Introduction and patches the result with all 0's.This results in small, constant time when compared to complete Side-channel attacks are described in [5] as follows. multiplication. Timing side channel information Side-channel attacks are attacks that are based on can be obtained either by precisely measuring the side channel information. Side channel Information time taken by one encryption or by averaging the that can be retrieved from the encryption device time taken over several encryptions [4]. that is neither plain text to be encrypted nor the cipher text resulting from the encryption process. There are several kind of side-channel attacks, in 2.2 Power Consumption Attacks the [2] timing attack is referred to as the most Devices consume power and the power dissipated common one. Then There is one kind of informa- by a device is an other side channel. Dierential tion leakage referred to in [1] as power consumption power analysis (DPA) is a power consumption side leakage, that is a big help to the timing attacks. It channel attack that divides the encryption into a is even harder to protect a system against the power number of time slots and measures power in each consumption attacks when attacker has direct ac- slot for dierent plain text input. A small number cess to the encryption device. of the power measurements correlate with each bit The purpose of this paper is to get an overview of the interval stage during encryption [4]. of attacks on encryption systems where an attacker This attack requires little knowledge of the device is using other ways to obtain the encryption key and is dicult to hide the channel information if than breaking the mathematical algorithm. -
Research on Microarchitectural Cache Attacks
Advances in Computer Science Research (ACSR), volume 90 3rd International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 2019) Research on Microarchitectural Cache Attacks Yao Lu a, Kaiyan Chen b, Yinlong Wang c Simulation Center of Ordnance Engineering College Army Engineering University Shijiazhuang, Hebei Province, China [email protected], [email protected], [email protected] Abstract. This paper summarizes the basic concepts and development process of cache side- channel attack, analyses three basic methods (Evict and Time, Prime and Probe, Flush and Reload) from four aspects: Attack conditions, realization process, applicability, and characteristics, then I expound how to apply side-channel attack methods on CPU vulnerability. Keywords: Side-channel attacks; Cache; CPU vulnerability; Microarchitecture. 1. Background Cryptography is a technique used to confuse plaintext [1], It transforms normally identifiable information (plaintext) into unrecognizable information (ciphertext). At the same time, the encrypted ciphertext can be transferred back to the normal information through the key, the privacy information of users at this stage is mostly realized by encryption technology [28], so the security of personal information depends on the security of the encryption algorithm. 1.1 Cryptographic Algorithms Cryptographic algorithms have always been an important research object in cryptography, in recent years has also been rapid development, these algorithms are: RIJINDAEL, MARS, RC6, Twofish, Serpent, IDEA, CS-Cipher, MMB, CA-1.1, SKIPJACK Symmetric cryptographic algorithms such as Karn and backpack public key cryptography, RSA, ElGamal [29], ECC [19], NTRU and other asymmetric cryptographic algorithms [27]. in the opinion of the development trend of international mainstream cryptographic algorithms at present [25]: The symmetric cryptographic algorithm transitions from DES-3 to AES, and the password length is gradually increased: 128, 192, 256. -
Biclique Cryptanalysis of Full Round AES with Reduced Data Complexity
Biclique Cryptanalysis of Full Round AES with Reduced Data Complexity Donghoon Chang, Mohona Ghosh, Somitra Sanadhya Indraprastha Institute of Information Technology donghoon, mohonag,[email protected] Abstract. Biclique cryptanalysis was proposed by Bogdanov et al. in Asiacrypt 2011 as a new tool for cryptanalysis of block ciphers. A major hurdle in carrying out biclique cryptanalysis is that it has a very high query complexity (of the order of 288 for AES-128, 280 for AES-192 and 240 for AES-256). This naturally puts a big question mark over the practical feasibility of implementing biclique attack in real world. In this work, we re-evaluate the security of full round AES against biclique cryptanalysis. We describe an alternate biclique construction with signicantly reduced query complexity (of the order of 224 for AES-128, 232 for AES-192 and 28 for AES-256) at the expense of a slightly increased computational cost. In our approach, we use independent biclique technique to launch a chosen ciphertext attack against AES. Keywords: AES, block ciphers, cryptanalysis, biclique, meet-in-the middle, key recovery. 1 Introduction AES (Advanced Encryption Standard), standardized by the US NIST in October 2000, has been accepted and adopted worldwide thereafter. It remains the most favored cryptographic scheme in both software and hardware applications. Despite the design having been subjected to tremendous scrutiny in the past 12 years, it has remained remarkably immune to all cryptanalytic attacks of practical signicance. Single key recovery attacks such as multiset attack [1], square attack [1], boomerang attack [2, 3], impossible dierentials [4, 5], algebraic attack [6, 7] etc. -
Public Evaluation Report UEA2/UIA2
ETSI/SAGE Version: 2.0 Technical report Date: 9th September, 2011 Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 4: Design and Evaluation Report LTE Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. page 1 of 43 Document 4: Design and Evaluation report. Version 2.0 Document History 0.1 20th June 2010 First draft of main technical text 1.0 11th August 2010 First public release 1.1 11th August 2010 A few typos corrected and text improved 1.2 4th January 2011 A modification of ZUC and 128-EIA3 and text improved 1.3 18th January 2011 Further text improvements including better reference to different historic versions of the algorithms 1.4 1st July 2011 Add a new section on timing attacks 2.0 9th September 2011 Final deliverable LTE Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. page 2 of 43 Document 4: Design and Evaluation report. Version 2.0 Reference Keywords 3GPP, security, SAGE, algorithm ETSI Secretariat Postal address F-06921 Sophia Antipolis Cedex - FRANCE Office address 650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 X.400 c= fr; a=atlas; p=etsi; s=secretariat Internet [email protected] http://www.etsi.fr Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.