The Laws of Boole's Thought
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
George Boole?
iCompute For more fun computing lessons and resources visit: Who was George Boole? 8 He was an English mathematician 8 He believed that human thought could be George Boole written down as ‘rules’ 8 His ideas led to boolean logic which is Biography for children used by computers today The story of important figures in the history of computing George Boole (1815 – 1864) © iCompute 2015 www.icompute -uk.com iCompute Why is George Boole important? 8 He invented a set of rules for thinking that are used by computers today 8 The rules were that some statements can only ever be ‘true’ or ‘false’ 8 His idea was first used in computers as switches either being ‘on’ or ‘off’ 8 Today this logic is used in almost every device and almost every line of computer code His early years nd 8 Born 2 November 1815 8 His father was a struggling shoemaker 8 George had had very little education and taught himself maths, French, German and Latin © iCompute 2015 www.icompute -uk.com iCompute 8 He also taught himself Greek and published a translation of a Greek poem in 1828 at the age of 14! 8 Aged 16, the family business collapsed and George began working as a teacher to support the family 8 At 19 he started his own school 8 In 1840 he began having his books about mathematics published 8 In 1844, he was given the first gold medal for Mathematics by the Royal Society 8 Despite never having been to University himself, in 1849 he became professor of Mathematics at Queens College Cork in Ireland 8 He married Mary Everett in 1855 8 They had four daughters between 1956-1864 -
Laws of Thought and Laws of Logic After Kant”1
“Laws of Thought and Laws of Logic after Kant”1 Published in Logic from Kant to Russell, ed. S. Lapointe (Routledge) This is the author’s version. Published version: https://www.routledge.com/Logic-from-Kant-to- Russell-Laying-the-Foundations-for-Analytic-Philosophy/Lapointe/p/book/9781351182249 Lydia Patton Virginia Tech [email protected] Abstract George Boole emerged from the British tradition of the “New Analytic”, known for the view that the laws of logic are laws of thought. Logicians in the New Analytic tradition were influenced by the work of Immanuel Kant, and by the German logicians Wilhelm Traugott Krug and Wilhelm Esser, among others. In his 1854 work An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, Boole argues that the laws of thought acquire normative force when constrained to mathematical reasoning. Boole’s motivation is, first, to address issues in the foundations of mathematics, including the relationship between arithmetic and algebra, and the study and application of differential equations (Durand-Richard, van Evra, Panteki). Second, Boole intended to derive the laws of logic from the laws of the operation of the human mind, and to show that these laws were valid of algebra and of logic both, when applied to a restricted domain. Boole’s thorough and flexible work in these areas influenced the development of model theory (see Hodges, forthcoming), and has much in common with contemporary inferentialist approaches to logic (found in, e.g., Peregrin and Resnik). 1 I would like to thank Sandra Lapointe for providing the intellectual framework and leadership for this project, for organizing excellent workshops that were the site for substantive collaboration with others working on this project, and for comments on a draft. -
AUGUSTUS DE MORGAN and the LOGIC of RELATIONS the New Synthese Historical Library Texts and Studies in the History of Philosophy
AUGUSTUS DE MORGAN AND THE LOGIC OF RELATIONS The New Synthese Historical Library Texts and Studies in the History of Philosophy VOLUME 38 Series Editor: NORMAN KRETZMANN, Cornell University Associate Editors: DANIEL ELLIOT GARBER, University of Chicago SIMO KNUUTTILA, University of Helsinki RICHARD SORABJI, University of London Editorial Consultants: JAN A. AERTSEN, Free University, Amsterdam ROGER ARIEW, Virginia Polytechnic Institute E. JENNIFER ASHWORTH, University of Waterloo MICHAEL AYERS, Wadham College, Oxford GAIL FINE, Cornell University R. J. HANKINSON, University of Texas JAAKKO HINTIKKA, Boston University, Finnish Academy PAUL HOFFMAN, Massachusetts Institute of Technology DAVID KONSTAN, Brown University RICHARD H. KRAUT, University of Illinois, Chicago ALAIN DE LIBERA, Ecole Pratique des Hautes Etudes, Sorbonne DAVID FATE NORTON, McGill University LUCA OBERTELLO, Universita degli Studi di Genova ELEONORE STUMP, Virginia Polytechnic Institute ALLEN WOOD, Cornell University The titles published in this series are listed at the end of this volume. DANIEL D. MERRILL Department of Philosophy, Oberlin College, USA AUGUSTUS DE MORGAN AND THE LOGIC OF RELATIONS KLUWER ACADEMIC PUBLISHERS DORDRECHT I BOSTON I LONDON Library of Congress Cataloging. in·Publication Data Merrill, Daniel D. (Daniel Davy) Augustus De Morgan and the lOglC of relations / Daniel D. Merril. p. cm. -- <The New synthese historical library; 38) 1. De Morgan, Augustus, 1806-1871--Contributions in logic of relations. 2. Inference. 3. Syllogism. 4. Logic, Symbolic and mathematical--History--19th cenTury. I. Title. II. Series. BC185.M47 1990 160' .92--dc20 90-34935 ISBN·13: 978·94·010·7418·6 e-ISBN -13: 978-94-009-2047-7 DOl: 10.1007/978-94-009-2047-7 Published by Kluwer Academic Publishers, P.O. -
Boolean Algebra.Pdf
Section 3 Boolean Algebra The Building Blocks of Digital Logic Design Section Overview Binary Operations (AND, OR, NOT), Basic laws, Proof by Perfect Induction, De Morgan’s Theorem, Canonical and Standard Forms (SOP, POS), Gates as SSI Building Blocks (Buffer, NAND, NOR, XOR) Source: UCI Lecture Series on Computer Design — Gates as Building Blocks, Digital Design Sections 1-9 and 2-1 to 2-7, Digital Logic Design CECS 201 Lecture Notes by Professor Allison Section II — Boolean Algebra and Logic Gates, Digital Computer Fundamentals Chapter 4 — Boolean Algebra and Gate Networks, Principles of Digital Computer Design Chapter 5 — Switching Algebra and Logic Gates, Computer Hardware Theory Section 6.3 — Remarks about Boolean Algebra, An Introduction To Microcomputers pp. 2-7 to 2-10 — Boolean Algebra and Computer Logic. Sessions: Four(4) Topics: 1) Binary Operations and Their Representation 2) Basic Laws and Theorems of Boolean Algebra 3) Derivation of Boolean Expressions (Sum-of-products and Product-of-sums) 4) Reducing Algebraic Expressions 5) Converting an Algebraic Expression into Logic Gates 6) From Logic Gates to SSI Circuits Binary Operations and Their Representation The Problem Modern digital computers are designed using techniques and symbology from a field of mathematics called modern algebra. Algebraists have studied for a period of over a hundred years mathematical systems called Boolean algebras. Nothing could be more simple and normal to human reasoning than the rules of a Boolean algebra, for these originated in studies of how we reason, what lines of reasoning are valid, what constitutes proof, and other allied subjects. The name Boolean algebra honors a fascinating English mathematician, George Boole, who in 1854 published a classic book, "An Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and Probabilities." Boole's stated intention was to perform a mathematical analysis of logic. -
George Boole. Selected Manuscripts on Logic and Its Philosophy (Science Networks
George Boole. Selected Manuscripts on Logic and its Philosophy (Science Networks. Historical Studies, vol. 20). Ivor Grattan-Guinness/G´erard Bor- net, eds. Birkh¨auser Verlag: Basel/Boston/Berlin, 1997, e 37.30, ISBN 0- 8176-5456-9, lxiv + 236 pp. Reviewed by Volker Peckhaus Universit¨at Paderborn Kulturwissenschaftliche Fakult¨at Warburger Str. 100, D – 33098 Paderborn E-mail: [email protected] George Boole, the founder of the algebra of logic, did not stop working on logic after having published his seminal An Investigation of the Laws of Thought (1854 ). Among his aims was to write a philosophical comple- ment to his writings in the algebra of logic, but he died before he was able to finish it. All this was known already to his contemporaries and although leading authorities like Augustus De Morgan, Bertrand Russell, Philip E. B. Jourdain and Louis Couturat were involved in attempts to publish Boole’s posthumous logical papers, only bits and pieces from his logical manuscripts have been published up to now. This insufficient situation comes now to an end with this scholarly edition by Ivor Grattan-Guinness and G´erard Bornet. The editors have compiled a selection of about 40 % of Boole’s unpublished manuscripts on logic “from a scattered and chronologically unclear textual universe” (p. xxv). The bad condition of the manuscripts is due to Boole’s working style. He usually started each time from scratch producing not really substantial texts but notes and further work-plans. This is explained by Boole himself when he reported his plans to Augustus De Morgan in March 1859 (quoted p. -
Download Article (PDF)
Nonlinear Engineering 2015; 4(1): 39–41 Majid Khan*, Tariq Shah, and Ali Shahab A brief description about the fathers of computer and information sciences Abstract: In this article, we are mainly presenting a trib- 1985) [1]. We will utilize both this book [1] and the life story ute to the fathers of computer and information sciences, composed by O’connor and Robertson for the Mactutor George Boole and Claude Elwood Shannon with their hard- History of Mathematics document [2]. Also, we have taken ships and achievements. This piece of writing also elabo- some of historical memories from the book of Thomas [3]. rates the applications of George Boole’s and Claude Shan- George Boole was born in November 1815 in Lincoln, non’s works in dierent disciplines. England. His father was an ordinary tradesman. He gave Boole his rst mathematics lessons and planted in him the Keywords: George Boole; Computer Science; Claude Shan- passion of learning. A family friend ,who was a local book- non; Information Science seller, helped him learn basic Latin. By the age of 12, Boole was beginning to translate Latin poetry. By 14, the adoles- DOI 10.1515/nleng-2014-0029 cent Boole was uent in French, German, and Italian as Received December 31, 2014; accepted February 27, 2015. well. His love for poetry and novels was remarkable. His capabilities in higher maths did not indicate un- til he was 17 years of age . He read his maiden progressed arithmetic book, in particular Lacroix’s Dierential and 1 The Contributions of George Integral Calculus. Since his father’s business zzled, he Boole was compelled to earn his bread to look after his family. -
Abductive Reasoning As a Way of Worldmaking
Foundations of Science, special issue on "The Impact of Radical Constructivism on Science", edited by A. Riegler, 2001, vol. 6, no.4: 361–383. Abductive Reasoning as a Way of Worldmaking Hans Rudi Fischer Heidelberger Institut für systemische Forschung und Therapie Kussmaulstr. 10 D-69120 Heidelberg, Germany The Gods have certainty, whereas to us as men conjecture [only is possible]..” Alcmaion von Kroton (Diels /Kranz, Vol. I,p. 214) "...the true method of philosophical construction is to frame a scheme of ideas , the best that one can, and unflinchingly to explore the interpretation of experience in terms of that scheme." (Alfred North Whitehead 1978, p.xiv) "...man's truth is never absolute because the basis of fact is hypothesis." (Ch. S. Peirce, Writings vol. I, p. 7.) Abstract The author deals with the operational core of logic, i.e. its diverse procedures of inference, in order to show that logically false inferences may in fact be right because - in contrast to logical rationality - they actually enlarge our knowledge of the world. This does not only mean that logically true inferences say nothing about the world, but also that all our inferences are invented hypotheses the adequacy of which cannot be proved within logic but only pragmatically. In conclusion the author demonstrates, through the relationship between rule-following and rationality, that it is most irrational to want to exclude the irrational: it may, at times, be most rational to think and infer irrationally. Focussing on the operational aspects of knowing as inferring does away with the hiatus between logic and life, cognition and the world (reality) - or whatever other dualism one wants to invoke -: knowing means inferring, inferring means rule-governed interpreting, interpreting is a constructive, synthetic act, and a construction that proves adequate (viable) in the “world of experience”, in life, in the praxis of living, is, to the constructivist mind, knowledge. -
On the Interplay Between Logic and Philosophy : a Historical Perspective Séminaire De Philosophie Et Mathématiques, 1992, Fascicule 7 « Logique Et Philosophie », , P
Séminaire de philosophie et mathématiques YEHUDA RAV On the Interplay between Logic and Philosophy : a Historical Perspective Séminaire de Philosophie et Mathématiques, 1992, fascicule 7 « Logique et philosophie », , p. 1-21 <http://www.numdam.org/item?id=SPHM_1992___7_A1_0> © École normale supérieure – IREM Paris Nord – École centrale des arts et manufactures, 1992, tous droits réservés. L’accès aux archives de la série « Séminaire de philosophie et mathématiques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ON THE INTERPLAY BETWEEN LOGIC AND PHILOSOPHY: A HISTORICAL PERSPECTIVE Yehuda RAV* ABSTRACT In this historical essay, we examine the reciprocal influences of philosophical doctrines and logic, their interrelations with language, and the place of mathematics in these developments. Our concern in this essay is the interplay between logic and philosophy. The spectrum of philosophical traditions and topics is wide, ranging from inspirational, aphoristic, and poetic wisdom-searching philosophies to stark anti- metaphysical logical positivism. However, logic has flourished only within those philosophical traditions in which critical discussion and debates played a major role. "Formal logic, -
John Venn on the Foundations of Symbolic Logic: a Non-Conceptualist Boole
UvA-DARE (Digital Academic Repository) "A terrible piece of bad metaphysics"? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic Verburgt, L.M. Publication date 2015 Document Version Final published version Link to publication Citation for published version (APA): Verburgt, L. M. (2015). "A terrible piece of bad metaphysics"? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:25 Sep 2021 chapter 7 John Venn on the foundations of symbolic logic: a non-conceptualist Boole 0. Introduction: Venn, -
George Boole, John Venn and CS Peirce
Origins of Boolean Algebra in the Logic of Classes: George Boole, John Venn and C. S. Peirce Janet Heine Barnett∗ 9 March 2013 1 Introduction On virtually the same day in 1847, two major new works on logic were published by prominent British mathematicians. Augustus De Morgan (1806{1871) opened his Formal Logic with the following description of what is known today as `logical validity' [6, p. 1]: The first notion which a reader can form of Logic is by viewing it as the examination of that part of reasoning which depends upon the manner in which inferences are formed, and the investigation of general maxims and rules for constructing arguments, so that the conclusion may contain no inaccuracy which was not previously asserted in the premises. It has so far nothing to do with the truth of the facts, opinions, or presump- tions, from which an inference is derived; but simply takes care that the inference shall certainly be true, if the premises be true. Whether the premises be true or false, is not a question of logic, but of morals, philosophy, history, or any other knowledge to which their subject-matter belongs: the question of logic is, does the conclusion certainly follow if the premises be true? The second of these new nineteenth century works on logic was The Mathematical Analysis of Logic by George Boole (1815{1864). Like De Morgan, Boole sought to stretch the boundaries of traditional syllogistic1 logic by developing a general method for representing and manipulating all logically valid inferences or, as DeMorgan described it to Boole in a letter dated 28 November 1847, to develop `mechanical modes of making transitions, with a notation which represents our head work' [22, p. -
Arxiv:1412.2953V1 [Math.LO]
BOOLE’S PRINCIPLES OF SYMBOLICAL REASONING STANLEY BURRIS AND H.P. SANKAPPANAVAR Abstract. In modern algebra it is well-known that one cannot, in general, apply ordinary equational reasoning when dealing with partial algebras. However Boole did not know this, and he took the opposite to be a fundamental truth, which he called the Principles of Symbolical Reasoning in his 1854 book Laws of Thought. Although Boole made no mention of it, his Principles were clearly a generalization of the earlier publications on algebra by the Cambridge mathematician Peacock. After a detailed examination of Boole’s presentation of his Principles, we give a correct version that is applicable to his algebra of logic for classes. When Boole started his mathematical research in the late 1830s, he was particularly fascinated by two tools recently introduced into mathematics, the use of operators (to solve differential equations), and the symbolical method (which justified algebraic derivations even though the intermediate steps were not interpretable). Differential operators had been introduced by the French and used by prominent French mathematicians such as Cauchy; but by 1830 the French had pretty much abandoned them—Cauchy felt that not enough was known about them to ensure that their use led to correct results. English mathematicians, especially Boole, took up differential operators with great en- thusiasm, and in 1844 he won a gold medal from the Royal Society for a paper based on them. When he turned to create his algebra of logic for classes in 1847, it was natural for Boole to build it on a foundation of operators, namely selection operators. -
Some Views of Russell and Russell's Logic by His
SOME VIEWS OF RUSSELL AND RUSSELL’S LOGIC BY HIS CONTEMPORARIES, WITH PARTICULAR REFERENCE TO PEIRCE IRVING H. ANELLIS In the years prior to World War I, it was not yet definitively certain that the new logistic developed and espoused by Frege and Russell was the “wave of the future” of mathematical logic. Ernst Schröder’s Vorlesungen über die Algebra der Logik (1895– 1905) was still new and viewed as the cutting edge of (algebraic—as opposed to Aristote- lian) logic; Giuseppe Peano still proclaimed, in his earliest work on logic, his indebted- ness to George Boole, Charles Peirce, and Ernst Schröder, in the first footnote of his Arithmetices principia nova methodo exposita (1898), while, in a letter to Russell of 19 March 1901,1 Peano told Russell that his paper “Sur la logique des relations avec des ap- plications à la théorie des séries” on the logic of relations (1901) just “fills a gap between the work of Peirce and Schröder on the one hand and” his own “Formulaire on the other;” Alfred North Whitehead’s Treatise on Universal Algebra (1898) also still new, brought together the algebraic logic of Boole with the linear and multilinear algebras of Arthur Cayley, James Joseph Sylvester, William Rowan Hamilton, and Charles Peirce’s father Benjamin Peirce, and the calculus of extension of Hermann Grassmann. In his Treatise, Whitehead (p. x) not only named Hamilton and De Morgan as “the first to ex- press quite clearly the general possibilities of algebraic symbolism,” but continually ex- pressed his indebtedness to Boole, Grassmann, De Morgan, Schröder, and John Venn; and he described his Treatise (p.