Professor at Cork [Edit]

Total Page:16

File Type:pdf, Size:1020Kb

Professor at Cork [Edit] 1997George Boole School Mathematical foundations ofcomputer science Main interests Mathematics, Logic,Philosophy of mathematics Notable ideas Boolean algebra Influenced by[show] Influenced[show] dedicated to George Boole. Plaque beneath Boole's window in Lincoln Cathedral. Professor at Cork [edit] Boole's status as mathematician was recognised by his appointment in 1849 as the first professor of mathematics at Queen's College, Cork inIreland. He met his future wife, Mary Everest, there in 1850 while she was visiting her uncle John Ryall who was Professor of Greek. They married some years later.[11] He maintained his ties with Lincoln, working there with E. R. Larken in a campaign to reduce prostitution.[12] The house in Cork in which Boole lived between 1849 and 1855. Boole was elected Fellow of the Royal Society in 1857;[7] and received honorary degrees ofLL.D. from the University of Dublin and Oxford University. Death [edit] On 8 December 1864, Boole died of an attack of fever, ending in pleural effusion. He was buried in the Church of Ireland cemetery of St Michael's, Church Road, Blackrock (a suburb of Cork City). There is a commemorative plaque inside the adjoining church. Boole's gravestone, Cork, Ireland. Works [edit] Boole's first published paper was Researches in the theory of analytical transformations, with a special application to the reduction of the general equation of the second order, printed in the Cambridge Mathematical Journal in February 1840 (Volume 2, no. 8, pp. 64–73), and it led to a friendship between Boole and Duncan Farquharson Gregory, the editor of the journal. His works are in about 50 articles and a few separate publications.[13] In 1841 Boole published an influential paper in early invariant theory.[7] He received a medal from the Royal Society for his memoir of 1844, On A General Method of Analysis. It was a contribution to the theory of linear differential equations, moving from the case of constant coefficients on which he had already published, to variable coefficients.[14] The innovation in operational methods is to admit that operations may not commute.[15] In 1847 Boole publishedThe Mathematical Analysis of Logic , the first of his works on symbolic logic.[16] Differential equations [edit] Two systematic treatises on mathematical subjects were completed by Boole during his lifetime. The Treatise on Differential Equationsappeared in 1859, and was followed, the next year, by a Treatise on the Calculus of Finite Differences, a sequel to the former work. In the sixteenth and seventeenth chapters of theDifferential Equations is an account of the general symbolic method, and of a general method in analysis, originally described in his memoir printed in the Philosophical Transactions for 1844. During the last few years of his life Boole worked on a second edition of his Differential Equations, and part of his last vacation was spent in the libraries of the Royal Society and the British Museum; but it was left incomplete. Isaac Todhunter printed the manuscripts in 1865, in a supplementary volume. Analysis [edit] In 1857, Boole published the treatise On the Comparison of Transcendents, with Certain Applications to the Theory of Definite Integrals,[17] in which he studied the sum of residues of a rational function. Among other results, he proved what is now called Boole's identity: [18] for any real numbers ak > 0, bk, and t > 0. Generalisations of this identity play an important role in the theory of the Hilbert transform.[18] Symbolic logic [edit] Main article: Boolean algebra In 1847 Boole published the pamphlet Mathematical Analysis of Logic. He later regarded it as a flawed exposition of his logical system, and wanted An Investigation of the Laws of Thought (1854), on Which are Founded the Mathematical Theories of Logic and Probabilities to be seen as the mature statement of his views. Boole's initial involvement in logic was prompted by a current debate onquantification, between Sir William Hamilton who supported the theory of "quantification of the predicate", and Boole's supporterAugustus De Morgan who advanced a version of De Morgan duality, as it is now called. Boole's approach was ultimately much further reaching than either sides' in the controversy.[19] It founded what was first known as the "algebra of logic" tradition.[20] Boole did not regard logic as a branch of mathematics, but he provided a general symbolic method of logical inference. Boole proposed that logical propositions should be expressed by means of algebraic equations. Algebraic manipulation of the symbols in the equations would provide a fail-safe method of logical deduction: i.e. logic is reduced to a type of algebra. By 1 (unity) Boole denoted the "universe of thinkable objects"; literal symbols, such as x, y, z, v, u, etc., were used with the "elective" meaning attaching to adjectives and nouns of natural language. Thus, if x = horned and y = sheep, then the successive acts of election (i.e. choice) represented by x and y, if performed on unity, give the class "horned sheep". Thus, (1 – x) would represent the operation of selecting all things in the world except horned things, that is, all not horned things, and (1 – x) (1 – y) would give all things neither horned nor sheep. Treatment of addition in logic [edit] Boole conceived of "elective symbols" of his kind as an algebraic structure. But this general concept was not available to him: he did not have the segregation standard in abstract algebra of postulated (axiomatic) properties of operations, and deduced properties.[21] His work was a beginning to the algebra of sets, again not a concept available to Boole as a familiar model. His pioneering efforts encountered specific difficulties, and the treatment of addition was an obvious difficulty in the early days. Boole replaced the operation of multiplication by the word 'and' and addition by the word 'or'. But in Boole's original system, + was apartial operation: in the language of set theory it would correspond only to disjoint union of subsets. Later authors changed the interpretation, commonly reading it as exclusive or, or in set theory terms symmetric difference; this step means that addition is always defined.[20][22] In fact there is the other possibility, that + should be read as disjunction,[21] This other possibility extends from the disjoint union case, where exclusive or and non-exclusive or both give the same answer. Handling this ambiguity was an early problem of the theory, reflecting the modern use of both Boolean rings and Boolean algebras (which are simply different aspects of one type of structure). Boole and Jevons struggled over just this issue in 1863, in the form of the correct evaluation of x + x. Jevons argued for the result x, which is correct for + as disjunction. Boole kept the result as something undefined. He argued against the result 0, which is correct for exclusive or, because he saw the equation x + x = 0 as implying x = 0, a false analogy with ordinary algebra.[7] Probability theory [edit] The second part of the Laws of Thought contained a corresponding attempt to discover a general method in probabilities. Here the goal was algorithmic: from the given probabilities of any system of events, to determine the consequent probability of any other event logically connected with the those events. Legacy [edit] Boolean algebra is named after him, as is the crater Boole on the Moon. The keyword Bool represents a Boolean datatype in many programming languages, though Pascal and Java, among others, both use the full name Boolean.[23] The library, underground lecture theatre complex and the Boole Centre for Research in Informatics[24] at University College Cork are named in his honour. 19th century development [edit] Boole's work was extended and refined by a number of writers, beginning with William Stanley Jevons. Augustus De Morgan had worked on the logic of relations, and Charles Sanders Peirce integrated his work with Boole's during the 1870s.[25] Other significant figures were Platon Sergeevich Poretskii, and William Ernest Johnson. The conception of a Boolean algebra structure on equivalent statements of a propositional calculus is credited to Hugh MacColl (1877), in work surveyed 15 years later by Johnson.[25] Surveys of these developments were published by Ernst Schröder, Louis Couturat, and Clarence Irving Lewis. 20th century development [edit] In 1921 the economist John Maynard Keynes published a book on probability theory, A Treatise of Probability. Keynes believed that Boole had made a fundamental error in his definition of independence which vitiated much of his analysis.[26] In his book The Last Challenge Problem, David Miller provides a general method in accord with Boole's system and attempts to solve the problems recognised earlier by Keynes and others.Theodore Hailperin showed much earlier that Boole had used the correct mathematical definition of independence in his worked out problems [27] In modern notation, the free Boolean algebra on basic propositions p and qarranged in a Hasse diagram. The Boolean combinations make up 16 different propositions, and the lines show which are logically related. Boole's work and that of later logicians initially appeared to have no engineering uses.Claude Shannon attended a philosophy class at the University of Michigan which introduced him to Boole's studies. Shannon recognised that Boole's work could form the basis of mechanisms and processes in the real world and that it was therefore highly relevant. In 1937 Shannon went on to write a master's thesis, at the Massachusetts Institute of Technology, in which he showed how Boolean algebra could optimise the design of systems of electromechanical relays then used in telephone routing switches. He also proved that circuits with relays could solve Boolean algebra problems.
Recommended publications
  • 147 MISCELLANEOUS NOTES ASHBUKNHAM DEED No
    Archaeologia Cantiana Vol. 63 1950 MISCELLANEOUS NOTES DISCOVERY Off MASONRY ON CASTLE HILL, FOLKESTONE CASTLE HILL, Folkestone, was excavated by Major-General A. H. L. F. Pitt-Rivers about 70 years ago and a report printed in Archceologia Vol. XLVII (1882). His conclusion from the " finds " was that the earthworks were Norman. He found no trace of masonry. In the summer of 1949 a fall of earth exposed a portion of walling about 10 feet long and 3 feet high in the southern face of the causeway across the inner ditch of the " camp." The masonry is of natural flints, chalk blocks, and blocks of iron- impregnated greensand set in coarse mortar. The wall appears to have been originally faced with roughly squared ironstone blocks. Near the base of the exposed wall was found a piece of Roman ridge-tile (imbrex), now in the custody of Folkestone Museum—the association of this may be purely accidental as it was a surface find. The exposed portion of wall showed no sign of Roman brick. It seems to have supported a causeway across the innermost trench round the hill-top. The causeway runs from W. to E. and the exposed wall is on its southern face. This causeway at present carries the main track eastwards from the crest of the hill (which is the centre of the " camp ") and is about the middle of the east-side of the central camp enclosure. The writer intended to carry out excavation during the summer of 1950 but circumstances prevented. The matter is worthy of further investigation.
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Victorian Network
    Victorian Network Volume 7, Number 1 Summer 2016 Victorian Brain © Victorian Network Volume 7, Number 1 Summer 2016 www.victoriannetwork.org Guest Editor Sally Shuttleworth General Editor Sophie Duncan Founding Editor Katharina Boehm Editorial Board Megan Anderluh Sarah Crofton Rosalyn Gregory Tammy Ho Lai-Ming Sarah Hook Alison Moulds Heidi Weig Victorian Network is funded by the Arts & Humanities Research Council and supported by King’s College London. Victorian Network Volume 7, Number 1 (Summer 2016) TABLE OF CONTENTS GUEST EDITOR’S INTRODUCTION: VICTORIAN BRAIN 1 Sally Shuttleworth ARTICLES Lucid Daydreaming: Experience and Pathology in Charlotte Brontë 12 Timothy Gao Two Brains and a Tree: Defining the Material Bases 36 for Delusion and Reality in the Woodlanders Anna West ‘The Apotheosis of Voice’: Mesmerism as Mechanisation 61 in George Du Maurier’s Trilby Kristie A. Schlauraff Female Transcendence: Charles Howard Hinton 83 and Hyperspace Fiction Patricia Beesley The Hand and the Mind, the Man and the Monster 107 Kimberly Cox BOOK REVIEWS A Cultural History of the Senses in the Age of Empire, 137 Vol. 5, ed. Constance Classen (Bloomsbury, 2014) Ian Middlebrook Popular Fiction and Brain Science in the Late Nineteenth Century, 142 by Anne Stiles (Cambridge, 2011) Arden Hegele Thomas Hardy’s Brains: Psychology, Neurology, and Hardy’s Imagination, 148 by Suzanne Keen (Ohio State, 2014) Nicole Lobdell Victorian Network Volume 7, Number 1 (Summer 2016) The Poet’s Mind: The Psychology of Victorian Poetry 1830-1870, 153 by Gregory Tate (Oxford, 2012) Benjamin Westwood Theatre and Evolution from Ibsen to Beckett, 158 by Kirsten Shepherd-Barr (Columbia, 2015) Katharina Herold Victorian Network Volume 7, Number 1 (Summer 2016) Sally Shuttleworth 1 VICTORIAN BRAIN SALLY SHUTTLEWORTH, PROFESSOR OF ENGLISH (UNIVERSITY OF OXFORD) In April 1878 the first issue of Brain: A Journal of Neurology was published.
    [Show full text]
  • George Boole?
    iCompute For more fun computing lessons and resources visit: Who was George Boole? 8 He was an English mathematician 8 He believed that human thought could be George Boole written down as ‘rules’ 8 His ideas led to boolean logic which is Biography for children used by computers today The story of important figures in the history of computing George Boole (1815 – 1864) © iCompute 2015 www.icompute -uk.com iCompute Why is George Boole important? 8 He invented a set of rules for thinking that are used by computers today 8 The rules were that some statements can only ever be ‘true’ or ‘false’ 8 His idea was first used in computers as switches either being ‘on’ or ‘off’ 8 Today this logic is used in almost every device and almost every line of computer code His early years nd 8 Born 2 November 1815 8 His father was a struggling shoemaker 8 George had had very little education and taught himself maths, French, German and Latin © iCompute 2015 www.icompute -uk.com iCompute 8 He also taught himself Greek and published a translation of a Greek poem in 1828 at the age of 14! 8 Aged 16, the family business collapsed and George began working as a teacher to support the family 8 At 19 he started his own school 8 In 1840 he began having his books about mathematics published 8 In 1844, he was given the first gold medal for Mathematics by the Royal Society 8 Despite never having been to University himself, in 1849 he became professor of Mathematics at Queens College Cork in Ireland 8 He married Mary Everett in 1855 8 They had four daughters between 1956-1864
    [Show full text]
  • Objects Proposed for Protection Under Part 6 of the Tribunals, Courts and Enforcement Act 2007 (Protection of Cultural Objects on Loan)
    Immunity from Seizure Objects proposed for protection under Part 6 of the Tribunals, Courts and Enforcement Act 2007 (protection of cultural objects on loan) Illuminating India: 5000 years of Science & Innovation. 3 October 2017 to 22 April 2018 Science Museum, Exhibition Road, London, SW7 2DD 1. c. Sir JC Bose Trust Object description: Crescograph developed by JC Bose to measure plant growth Date made: early 20th Century Inventory number: n/a Materials: Various metals and unknown wood Dimensions: c. 762mm x 457mm x 731mm Nationality of maker: Indian Lender’s name and address: Sir JC Bose Trust, Acharya Bhaban Science Heritage Museum, 93 Archarya Prafulla Chandra Road, Kolkata 700009, India Provenance: The object was built by JC Bose in the 1910s and, upon his death, passed into the ownership of the JC Bose Trust. The Trust have been in possession of this object since then. The object has a complete history of ownership from the beginning of the year 1933 to the end of the year 1945. 2. c. Sir JC Bose Trust Object description: Oscillating plate phytograph developed by JC Bose to present data on species performance by plants Title: Oscillating plate phytograph Date made: c. 1920 Inventory number: n/a Materials: various metals and unknown wood. Dimensions: 735mm x 365mm x 335mm Nationality of maker: Indian Lender’s name and address: Sir JC Bose Trust, Acharya Bhaban Science Heritage Museum, 93 Archarya Prafulla Chandra Road, Kolkata 700009, India Provenance: The object was built by JC Bose in the 1910s and, upon his death, passed into the ownership of the JC Bose Trust.
    [Show full text]
  • Ore Bin / Oregon Geology Magazine / Journal
    Vol . 36, No . 2 February 1974 STATE OF OREGON DEPARTMENT OF GEOlOGY AND MINERAL INDUSTRIES The Ore Bin Published Monthly By STATE OF OREGON DEPARTMENT OF GEOlOGY AND MINERAL INDUSTRIES Head Office: 1069 State Office Bldg., Portland, Oregon - 97201 Telephone: 229 - 5580 FIELD OFFICES 2033 First Street 521 N . E. "E" Street Baker 97814 Grants Pass 97526 xxxxxxxxxxxxxxxxxxxx Subscription rate - $2.00 per calencbr year Available bock issues $.25 each Second class postage paid at Portland, Oregon GOVERNING SOARD R. W. deWeese, Portland, Chairman Willic:m E. Miller, Bend H. lyle Von Gordon, Grants Pass STATE GEOlOGIST R. E. Corcoran GEOLOGISTS IN CHARGE OF FIELD OFFICES Howard C. Brooks, Boker len Romp, Grants Pass Permission i. granted to reprint information contaiMd herein . Credit given the State of Oregon Oepcrtment af Geology and Min_allndustries fO( compiling this information will be appreciated. State of Oregon The ORE BIN Departmentof Geology Volume 36,No.2 and Mineral Industries 1069 State Office Bldg. February 1974 Portland Oregon 97201 ECONOMICS OF GEOTHERMAL DEVELOPMENT The following article by Dr. RobertW. Rex is the text of his remarks to the Sub-Committee on Energy, Committee on Science and Astronautics, U. S. House of Representatives, on September 18, 1973. This text was previously published in Geothermal Energy, vol. 1, no. 4, December 1973. We are reprinting it in this issue of The ORE BIN because we believe the thoughts expressed are pertinent to Oregon at this time and should have as wide dissemination as possible. Dr. Rex is the President of Republic Geothermal, Inc., Playa del Rey, California.
    [Show full text]
  • Radhanath Sikdar First Scientist of Modern India Dr
    R.N. 70269/98 Postal Registration No.: DL-SW-1/4082/12-14 ISSN : 0972-169X Date of posting: 26-27 of advance month Date of publication: 24 of advance month July 2013 Vol. 15 No. 10 Rs. 5.00 Maria Goeppert-Mayer The Second Woman Nobel Laureate in Physics Puzzles and paradoxes (1906-1972) Editorial: Some important facets 35 of Science Communications Maria Goeppert-Mayer: The 34 Second Woman Nobel Laureate in Physics Puzzles and paradoxes 31 Radhanath Sikdar: First 28 Scientist of Modern India Surgical Options for a Benign 25 Prostate Enlargement Recent developments 22 in science and technology VP News 19 Editorial Some important facets of Science Communications Dr. R. Gopichandran recent White Paper by Hampson (2012)1 presents an insightful forums for coming together including informal settings appear to Aanalysis of the process and impacts of science communication. help fulfil communication goals. These are also directly relevant The author indicates that the faith of the public in science is to informal yet conducive learning environment in rural areas modulated by the process and outcome of communicating science, of India and hence the opportunity to further strengthen such with significant importance attributed to understanding the needs interactions. and expectations from science by communities. Hampson also Bultitude (2011)3 presents an excellent overview of the highlights the need to improve communication through systematic “Why and how of Science Communication” with special reference and logical guidance to institutions to deliver appropriately. This to the motivation to cater to specific needs of the end users of deficit also negatively impacts engagement amongst stakeholders.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • The GREAT ARC 1-23.Qxd 6/24/03 5:27 PM Page 2
    1-23.qxd 6/24/03 5:27 PM Page 1 The GREAT ARC 1-23.qxd 6/24/03 5:27 PM Page 2 SURVEY of INDIA AN INTRODUCTION Dr. Prithvish Nag, Surveyor General of India he Survey of lndia has played an invaluable respite, whether on the slopes of the Western Ghats, role in the saga of India’s nation building. the swampy areas of the Sundarbans, ponds and TIt has seldom been realized that the founding tanks, oxbow lakes or the meandering rivers of of modern India coincides with the early activities of Bengal, Madurai or the Ganga basin. Neither were this department, and the contribution of the Survey the deserts spared, nor the soaring peaks of the has received little emphasis - not even by the Himalayas, the marshlands of the Rann of Kutch, department itself. Scientific and development rivers such as the Chambal in the north and Gandak initiatives in the country could not have taken place to the east, the terai or the dooars.With purpose and without the anticipatory actions taken by the dedication the intrepid men of the Survey confronted department, which played an indispensable the waves of the Arabian Sea and Bay of Bengal, dust pioneering role in understanding the country’s storms of Rajasthan, cyclones of the eastern coast, the priorities in growth and defense. cold waves of the north and the widespread The path-breaking activities of the Survey came, monsoons and enervating heat. of course, at a price and with immense effort. The It was against this price, and with the scientific measurement of the country, which was the determination and missionary zeal of the Survey’s Survey’s primary task, had several ramifications.
    [Show full text]
  • AUGUSTUS DE MORGAN and the LOGIC of RELATIONS the New Synthese Historical Library Texts and Studies in the History of Philosophy
    AUGUSTUS DE MORGAN AND THE LOGIC OF RELATIONS The New Synthese Historical Library Texts and Studies in the History of Philosophy VOLUME 38 Series Editor: NORMAN KRETZMANN, Cornell University Associate Editors: DANIEL ELLIOT GARBER, University of Chicago SIMO KNUUTTILA, University of Helsinki RICHARD SORABJI, University of London Editorial Consultants: JAN A. AERTSEN, Free University, Amsterdam ROGER ARIEW, Virginia Polytechnic Institute E. JENNIFER ASHWORTH, University of Waterloo MICHAEL AYERS, Wadham College, Oxford GAIL FINE, Cornell University R. J. HANKINSON, University of Texas JAAKKO HINTIKKA, Boston University, Finnish Academy PAUL HOFFMAN, Massachusetts Institute of Technology DAVID KONSTAN, Brown University RICHARD H. KRAUT, University of Illinois, Chicago ALAIN DE LIBERA, Ecole Pratique des Hautes Etudes, Sorbonne DAVID FATE NORTON, McGill University LUCA OBERTELLO, Universita degli Studi di Genova ELEONORE STUMP, Virginia Polytechnic Institute ALLEN WOOD, Cornell University The titles published in this series are listed at the end of this volume. DANIEL D. MERRILL Department of Philosophy, Oberlin College, USA AUGUSTUS DE MORGAN AND THE LOGIC OF RELATIONS KLUWER ACADEMIC PUBLISHERS DORDRECHT I BOSTON I LONDON Library of Congress Cataloging. in·Publication Data Merrill, Daniel D. (Daniel Davy) Augustus De Morgan and the lOglC of relations / Daniel D. Merril. p. cm. -- <The New synthese historical library; 38) 1. De Morgan, Augustus, 1806-1871--Contributions in logic of relations. 2. Inference. 3. Syllogism. 4. Logic, Symbolic and mathematical--History--19th cenTury. I. Title. II. Series. BC185.M47 1990 160' .92--dc20 90-34935 ISBN·13: 978·94·010·7418·6 e-ISBN -13: 978-94-009-2047-7 DOl: 10.1007/978-94-009-2047-7 Published by Kluwer Academic Publishers, P.O.
    [Show full text]
  • Literature in the Louisiana Plantation Home Prior to 1861: a Study in Literary Culture
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1937 Literature in the Louisiana Plantation Home Prior to 1861: A Study in Literary Culture. Walton R. Patrick Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Part of the English Language and Literature Commons Recommended Citation Patrick, Walton R., "Literature in the Louisiana Plantation Home Prior to 1861: A Study in Literary Culture." (1937). LSU Historical Dissertations and Theses. 7803. https://digitalcommons.lsu.edu/gradschool_disstheses/7803 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. MANUSCRIPT THESES Unpublished theses submitted for the master^ and doctor*s degrees and deposited in the Louisiana State University Library are available for inspection* Use of any thesis is limited by the rights of the author* Bibliographical references may be noted, but passages may not be copied unless the author has given permission# Credit must be given in subsequent written or published work* A library which borrows this thesis for use by its clientele is expected to make sure that the borrower is aware of the above res trictions * LOUISIANA STATE UNIVERSITY LIBRARY LITERATURE IN THE LOUISIANA PLANTATION HOME PRIOR TO 1861 A STUDY IN LITERARY CULTURE A DISSERTATION SUBMITTED TO THE FACULTY OF THE LOUISIANA STATE UNIVERSITY AND AGRICULTURAL AND MECHANICAL COLLEGE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ENGLISH Walton Richard Patrick M.
    [Show full text]