Journal of Communications Vol. 11, No. 12, December 2016 Deblocking Scheme for JPEG-Coded Images Using Sparse Representation and All Phase Biorthogonal Transform Liping Wang, Chengyou Wang, and Xiao Zhou School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China Email:
[email protected]; {wangchengyou, zhouxiao}@sdu.edu.cn Abstract—For compressed images, a major drawback is that The image deblocking algorithm aims to alleviate those images will exhibit severe blocking artifacts at very low blocking artifacts and improve visual quality of bit rates due to adopting Block-Based Discrete Cosine compressed images. Deblocking methods can be mainly Transform (BDCT). In this paper, a novel deblocking scheme divided into two categories: in-loop processing methods using sparse representation is proposed. A new transform called All Phase Biorthogonal Transform (APBT) was proposed in and post-processing methods. The in-loop deblocking recent years. APBT has the similar energy compaction property processing methods not only avoid the propagation of with Discrete Cosine Transform (DCT). It has very good blocking artifacts between adjacent frames, but also can column properties, high frequency attenuation characteristics, enhance coding efficiency. For example, H.264/AVC [2] low frequency energy aggregation, and so on. In this paper, we adopts the in-loop deblocking processing. Some use it to generate the over-completed dictionary for sparse researchers have designed the in-loop deblocking filter coding. For Orthogonal Matching Pursuit (OMP), we select an [4]. Numerous experimental results manifest that the in- adaptive residual threshold by combining blind image blocking assessment. Experimental results show that this new scheme is loop deblocking filter can provide both objective and effective in image deblocking and can avoid over-blurring of subjective improvement compared with the compressed edges and textures.