Epicycloid (Hypocycloid) Mechanisms Design

Total Page:16

File Type:pdf, Size:1020Kb

Epicycloid (Hypocycloid) Mechanisms Design Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II IMECS 2008, 19-21 March, 2008, Hong Kong Epicycloid (Hypocycloid) Mechanisms Design Meng-Hui Hsu, Hong-Sen Yan, Jen-Yu Liu and Long-Chang Hsieh Abstract—An epicycloid or hypocycloid mechanism is 3-cusped epicycloid. capable of drawing an exact epicycloid or hypocycloid curve. An exact hypocycloid (epicycloids) curve can be also Similar mechanism designs can be found abundantly in produced by using a hypocycloid (epicycloids) mechanism. industrial machines or educational equipments. Currently, the Similar mechanism designs can be found abundantly in major type of epicycloid or hypocycloid configurations is industrial machines. Currently, the major type of epicycloid planetary gear trains, which contain a binary link that has one or hypocycloid configurations is planetary gear trains [5], fixed and one moving pivot, and a singular link adjacent to the which contain a binary link that has one fixed and one moving pivot. The main feature of the configurations is that a point on the singular link may describe an epicycloid or moving pivot, and a singular link adjacent to the moving hypocycloid curve when the binary link is rotated. The main pivot. The main feature of the configurations is that a point aim of this paper is to develop a new design method in designing on the singular link may describe an epicycloid or new configurations of epicycloid (hypocycloid) mechanisms. hypocycloid curve when the binary link is rotated. This paper analyses the characteristics of the topological This paper will analyses the characteristics of the structures of existing planetary gear train type epicycloid topological structures of existing planetary gear train type (hypocycloid) mechanisms. The motion equations and epicycloid (hypocycloid) mechanisms with one degree of kinematical model of the mechanism were derived and freedom. The equation of motion and kinematic model of the appropriate design constraints and criteria were implemented. Finally, using the design constraints and criteria, this work mechanism could be derived and appropriate design designs a new and simple epicycloid (hypocycloid) mechanism. constraints and criteria were implemented. Subsequently, using the design constraints and criteria, this work can design Index Terms—epicycloids, hypocycloid, mechanism, motion a new epicycloid (hypocycloid) mechanism. equation, kinematical model. INTRODUCTION NOMENCLATURE The hypocycloid curve produced by fixed a point P on n Radius ratio, n = ra / rb the circumference of a small circle of radius r rolling b n′ Link length ratio, n′ = rc / rb around the inside of a large circle of radius ra . A 3-cusped ri Radius or length of member i hypocycloid shown in Figure1 is also called a tricuspoid or deltoid [1]. The deltoid was first considered by Euler in 1745 Ti Number of teeth of gear i in connection with an optical problem. It was also x , y X and Y-coordinate of an epicycloid (hypocycloid) investigated by Steiner in 1856 and is sometimes called Steiner's hypocycloid [2]. A 4-cusped hypocycloid which is θ Angular displacement of driving member (the center sometimes also called a tetracuspid, cubocycloid, paracycle, of small circle., carrier, or binary link) or asteroid [3]. The parametric equations of the astroid can be ωi Angular velocity of member i obtained by plugging in n = r / r = 4 into the equations for a b a general hypocycloid. The epicycloids path traced out by a point P on the edge HYPOCYCLOID of a circle of radius rb rolling on the outside of a circle of The hypocycloid curve produced by fixed point P on the radius rA [4]. To get n cusps in the epicycloid, rb = ra / n , circumference of a small circle of radius rb rolling around because then n rotations of rb bring the point on the edge the inside of a large circle of radius ra . The Cartesian back to its starting position. An epicycloid with one cusp is parametric equations of the hypocycloid, path of point P, are: called a cardioid, one with two cusps is called a nephroid, and one with five cusps is called a ranunculoid. Figure 2 shows a ⎛ ra − rb ⎞ x = (ra − rb ) cosθ + rb cos⎜ θ ⎟ (1) ⎝ rb ⎠ Meng-Hui Hsu is the corresponding author and now with Department of Mechanical Engineering, Kun Shan University, Yung Kang 71003, Tainan, TAIWAN (phone: +886-6-205-0761/0730; fax: +886-6-205-0509; e-mail: ⎛ ra − rb ⎞ [email protected]). y = (ra − rb ) sinθ − rb sin⎜ θ ⎟ (2) Hong-Sen Yan is with Department of Mechanical Engineering, National ⎝ rb ⎠ Cheng kung University, 71001, Tainan, TAIWAN (e-mail: hsyan@ mail.ncku.edu.tw). Where θ is the angular displacement of the center of Jen-Yu Liu is with Department of Power Mechanical Engineering, National Formosa University, Hu Wei 63201, Yunlin, TAIWAN (e-mail: small circle. n-cusped hypocycloids can also be constructed [email protected]). by beginning with the diameter of a circle, offsetting one end Long-Chang Hsieh is with Department of Power Mechanical Engineering, by a series of steps while at the same time offsetting the other National Formosa University, Hu Wei 63201, Yunlin, TAIWAN (e-mail: end by steps (n −1) times as large in the opposite direction [email protected]). ISBN: 978-988-17012-1-3 IMECS 2008 Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II IMECS 2008, 19-21 March, 2008, Hong Kong and extending beyond the edge of the circle. After traveling The parametric equations of the asteroid (4-cusped around the circle once, an n-cusped hypocycloid is produced. hypocycloid) can be obtained by plugging in n = ra / rb = 4 The equation of the deltoid (3-cusped hypocycloid) is into the equations for a general hypocycloid, giving obtained by setting n = ra / rb = 3 in the equation of the parametric equations: hypocycloid, where ra is the radius of the large fixed circle ⎡3 1 ⎤ 3 and rb is the radius of the small rolling circle, yielding the x = ⎢ cosθ + cos3θ ⎥ ra = racos θ (5) ⎣4 4 ⎦ parametric equations: ⎡3 1 ⎤ 3 ⎡2 1 ⎤ y = sinθ − sin 3θ ra = ra sin θ (6) x = ⎢ cosθ + cos 2θ ⎥ ra (3) ⎢4 4 ⎥ ⎣3 3 ⎦ ⎣ ⎦ The following tables summarizes the names given to ⎡2 1 ⎤ y = sinθ − sin 2θ ra (4) this and other hypocycloids with special integer values of ⎢3 3 ⎥ ⎣ ⎦ n = ra / rb . Y Table 1 Hypocycloids with special integer values of n n = ra / rb Hypocycloid 2 line segment (Tusi couple) rb 3 deltoid −2θ ra = 3 rb 4 astroid θ P X O EPICYCLOID The epicycloid path traced out by a point P on the edge of a circle of radius rb rolling on the outside of a circle of radius ra . Epicycloids are given by the parametric equations: ⎛ ra + rb ⎞ x =(ra + rb )cosθ − rb cos⎜ θ ⎟ (7) ⎝ rb ⎠ Figure1 A 3-cusped hypocycloid ⎛ ra + rb ⎞ y =(ra + rb )sinθ − rb sin⎜ θ ⎟ (8) ⎝ rb ⎠ Y Where θ is the angular displacement of the center of small circle. To get n cusps in the epicycloid, rb = ra / n , because then n rotations of rb bring the point on the edge rb back to its starting position. An epicycloid with one cusp is P called a cardioid, one with two cusps is called a nephroid, and 4θ one with five cusps is called a ranunculoid. ra = 3 rb The following tables summarizes the names given to θ X this and other epicycloid with special integer values of n = r / r . O a b Table 2 Epicycloids with special integer values of n n = ra / rb Epicycloid 1 cardioid 2 nephroid Figure 2 A 3-cusped epicycloids 5 ranunculoid ISBN: 978-988-17012-1-3 IMECS 2008 Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II IMECS 2008, 19-21 March, 2008, Hong Kong HYPOCYCLOID AND EPICYCLOID DESIGN CRITERIA Substituting ωa = 0 and Ta = 3Tb into Equation (14) and recasting: A. Motion equations of the planetary hypocycloid A hypocycloid mechanism with simple planetary gear ωb = 4ωc (15) train comprises a fixed ring gear, a, a planetary gear, b , and Similarly, in a n-cusped epicycloid planetary gear system, the a planetary carrier, c . In a 3-cusped hypocycloid planetary Cartesian parametric equations of the epicycloid are gear system, Figure 3, the number of teeth in ring gear a is Equations (7) and (8), the relationship among the three Ta , which is thrice that of gear b , i.e., Ta = 3Tb . When the angular velocities is: carrier, c , acts as the input link and rotates one revolution, a ω −ω T r r − r b c = − a = − a = − c b = −n (16) fixed point, P, on the pitch circle of gear b will describe a ωa −ωc Tb rb rb hypocycloid path. and we have: The angular velocity of gear b is ωb and that of the ω = (n +1)ω (17) carrier is ωc . The fixed ring gear a has a angular velocity b c r ωa = 0 and the relationship among the three angular n′ = c = n +1 (18) velocities is [6]: rb ω −ω T Y b c = a (9) ωa −ωc Tb Substituting ωa = 0 and Ta = 3Tb into Equation (9) and recasting: ω = − 2ω (10) b c Planetary gear b Similarly, in a n-cusped hypocycloid planetary gear ra = 3rb Carrier c system, the Cartesian parametric equations of the −2θ hypocycloid are Equations (1) and (2), the relationship rc = 2 rb rb among the three angular velocities is: X θ P ω − ω T r r + r O b c = a = a = c b = n (11) ωa − ωc Tb rb rb Frame 1 and we have: ωc = − ωb 2 ω = −(n −1)ω = −n′ω (12) b c c Ta = 3Tb r n′ = c = n −1 (13) rb Fixed ring gear a Where n′ is link length ratio.
Recommended publications
  • Brief Information on the Surfaces Not Included in the Basic Content of the Encyclopedia
    Brief Information on the Surfaces Not Included in the Basic Content of the Encyclopedia Brief information on some classes of the surfaces which cylinders, cones and ortoid ruled surfaces with a constant were not picked out into the special section in the encyclo- distribution parameter possess this property. Other properties pedia is presented at the part “Surfaces”, where rather known of these surfaces are considered as well. groups of the surfaces are given. It is known, that the Plücker conoid carries two-para- At this section, the less known surfaces are noted. For metrical family of ellipses. The straight lines, perpendicular some reason or other, the authors could not look through to the planes of these ellipses and passing through their some primary sources and that is why these surfaces were centers, form the right congruence which is an algebraic not included in the basic contents of the encyclopedia. In the congruence of the4th order of the 2nd class. This congru- basis contents of the book, the authors did not include the ence attracted attention of D. Palman [8] who studied its surfaces that are very interesting with mathematical point of properties. Taking into account, that on the Plücker conoid, view but having pure cognitive interest and imagined with ∞2 of conic cross-sections are disposed, O. Bottema [9] difficultly in real engineering and architectural structures. examined the congruence of the normals to the planes of Non-orientable surfaces may be represented as kinematics these conic cross-sections passed through their centers and surfaces with ruled or curvilinear generatrixes and may be prescribed a number of the properties of a congruence of given on a picture.
    [Show full text]
  • Around and Around ______
    Andrew Glassner’s Notebook http://www.glassner.com Around and around ________________________________ Andrew verybody loves making pictures with a Spirograph. The result is a pretty, swirly design, like the pictures Glassner EThis wonderful toy was introduced in 1966 by Kenner in Figure 1. Products and is now manufactured and sold by Hasbro. I got to thinking about this toy recently, and wondered The basic idea is simplicity itself. The box contains what might happen if we used other shapes for the a collection of plastic gears of different sizes. Every pieces, rather than circles. I wrote a program that pro- gear has several holes drilled into it, each big enough duces Spirograph-like patterns using shapes built out of to accommodate a pen tip. The box also contains some Bezier curves. I’ll describe that later on, but let’s start by rings that have gear teeth on both their inner and looking at traditional Spirograph patterns. outer edges. To make a picture, you select a gear and set it snugly against one of the rings (either inside or Roulettes outside) so that the teeth are engaged. Put a pen into Spirograph produces planar curves that are known as one of the holes, and start going around and around. roulettes. A roulette is defined by Lawrence this way: “If a curve C1 rolls, without slipping, along another fixed curve C2, any fixed point P attached to C1 describes a roulette” (see the “Further Reading” sidebar for this and other references). The word trochoid is a synonym for roulette. From here on, I’ll refer to C1 as the wheel and C2 as 1 Several the frame, even when the shapes Spirograph- aren’t circular.
    [Show full text]
  • A Tale of the Cycloid in Four Acts
    A Tale of the Cycloid In Four Acts Carlo Margio Figure 1: A point on a wheel tracing a cycloid, from a work by Pascal in 16589. Introduction In the words of Mersenne, a cycloid is “the curve traced in space by a point on a carriage wheel as it revolves, moving forward on the street surface.” 1 This deceptively simple curve has a large number of remarkable and unique properties from an integral ratio of its length to the radius of the generating circle, and an integral ratio of its enclosed area to the area of the generating circle, as can be proven using geometry or basic calculus, to the advanced and unique tautochrone and brachistochrone properties, that are best shown using the calculus of variations. Thrown in to this assortment, a cycloid is the only curve that is its own involute. Study of the cycloid can reinforce the curriculum concepts of curve parameterisation, length of a curve, and the area under a parametric curve. Being mechanically generated, the cycloid also lends itself to practical demonstrations that help visualise these abstract concepts. The history of the curve is as enthralling as the mathematics, and involves many of the great European mathematicians of the seventeenth century (See Appendix I “Mathematicians and Timeline”). Introducing the cycloid through the persons involved in its discovery, and the struggles they underwent to get credit for their insights, not only gives sequence and order to the cycloid’s properties and shows which properties required advances in mathematics, but it also gives a human face to the mathematicians involved and makes them seem less remote, despite their, at times, seemingly superhuman discoveries.
    [Show full text]
  • The Nephroid
    1/13 The Nephroid Breanne Perry and Brian Meyer Introduction:Definitions Cycloid:The locus of a point on the outside of a circle with a set radius (r) rolling along a straight line. 2/13 Epicycloid:An epicycloid is a cycloid rolling along the outside of a circle instead of along a straight line. The description of an epicycloid depends on the radius of the circle being traversed (b) and the radius of the rolling circle (a). Nephroid:A bicuspid epicycloid. Nephroid Literally means ”kidney shaped”. The nephroid arises when the radius of the center circle is twice that of the rolling circle (b=a/2). Catacaustic:The curve formed by reflecting light off of another curve. Catacaustic of the Cardiod 3/13 History of the Nephroid The Nephroid was first studied by Christiaan Huygens and Tshirn- hausen in 1678, they found it to be the catacaustic of a circle when the 4/13 light source is at infinity. George Airy proved this to be true through the wave theory of light in 1838. In 1878 Richard Proctor coined the term nephroid in his book The Geometry of cycloids. The term Nephroid replaced the existing two-cusped epicycloid. Some members of the epicycloid family 5/13 line 2 b=a Cardioid line 3 b=a/2 Nephroid line 4 b=a/3 three cusped epicycloid Deriving the formula for the Nephroid First to determine the relationship between the change in angle from the large circle to the small circle, we analyze the the relationship be- 6/13 tween point D and E as they traverse the outside of their respected circles.
    [Show full text]
  • Engineering Curves and Theory of Projections
    ME 111: Engineering Drawing Lecture 4 08-08-2011 Engineering Curves and Theory of Projection Indian Institute of Technology Guwahati Guwahati – 781039 Distance of the point from the focus Eccentrici ty = Distance of the point from the directric When eccentricity < 1 Ellipse =1 Parabola > 1 Hyperbola eg. when e=1/2, the curve is an Ellipse, when e=1, it is a parabola and when e=2, it is a hyperbola. 2 Focus-Directrix or Eccentricity Method Given : the distance of focus from the directrix and eccentricity Example : Draw an ellipse if the distance of focus from the directrix is 70 mm and the eccentricity is 3/4. 1. Draw the directrix AB and axis CC’ 2. Mark F on CC’ such that CF = 70 mm. 3. Divide CF into 7 equal parts and mark V at the fourth division from C. Now, e = FV/ CV = 3/4. 4. At V, erect a perpendicular VB = VF. Join CB. Through F, draw a line at 45° to meet CB produced at D. Through D, drop a perpendicular DV’ on CC’. Mark O at the midpoint of V– V’. 3 Focus-Directrix or Eccentricity Method ( Continued) 5. With F as a centre and radius = 1–1’, cut two arcs on the perpendicular through 1 to locate P1 and P1’. Similarly, with F as centre and radii = 2– 2’, 3–3’, etc., cut arcs on the corresponding perpendiculars to locate P2 and P2’, P3 and P3’, etc. Also, cut similar arcs on the perpendicular through O to locate V1 and V1’. 6. Draw a smooth closed curve passing through V, P1, P/2, P/3, …, V1, …, V’, …, V1’, … P/3’, P/2’, P1’.
    [Show full text]
  • Distance Minimizing Paths on Certain Simple Flat Surfaces with Singularities
    Millersville University Distance Minimizing Paths on Certain Simple Flat Surfaces with Singularities A Senior Thesis Submitted to the Department of Mathematics & The University Honors Program In Partial Fulfillment of the Requirements for the University & Departmental Honors Baccalaureate By Joel B. Mohler Millersville, Pennsylvania December 2002 1 This Senior Thesis was completed in the Department of Mathematics, defended before and approved by the following members of the Thesis committee Ronald Umble, Ph.D (Thesis Advisor) Professor of Mathematics Dorothee Blum, Ph.D Associate Professor of Mathematics Roxana Costinescu, Ph.D Assistant Professor of Mathematics 2 Abstract We analyze a conical cup with lid and a circular tin can to find the shortest path connecting two points anywhere on the surface. We show how to transform the problem into an equivalent problem in plane geometry and prove that such paths can be found in most cases. 3 Distance Minimizing Paths on Certain Simple Flat Surfaces with Singularities Contents 1 Introduction 5 2 Simple Flat Surfaces 6 3 Singularities along the Rim 7 3.1 Roulettes Along Lines . 8 3.2 Roulettes Along Circles . 10 4 Distance Minimizing Paths 12 4.1 Derivation of geodesics on cone . 13 4.2 Self Intersecting geodesics on the cone side . 14 5 Geodesics over the Rim 15 6 Tin Can: Lid to Base 18 7 Minimal Geodesics at the Vertex 21 8 Geodesics Minimizing Distance 22 9 Non-Unique Minimal Geodesics 26 9.1 Diametrically Opposed Points . 27 9.2 Open Questions Concerning Non-unique Minimal Paths . 29 References 30 4 1 Introduction In the spring of 2001, I participated in a research seminar directed by Dr.
    [Show full text]
  • The Mechanical Drawing of Cycloids, the Geometric Chuck
    The Mechanical Drawing of Cycloids, The Geometric Chuck Robert Craig 8633 E. 96th Terrace Kansas City, MO 64134 E-mail [email protected] Abstract This paper discusses cycloids and their construction using the 19th century mechanical drawing instrument known as the Geometric Chuck. The first part of the paper is a brief history and description of the Geometric Chuck. The last part of the paper is devoted to a discussion the definition of cycloids and examples showing the results that various settings of the Geometric Chuck have on the cycloid patterns produced. This paper is an attempt, in part, to respond to the comment in the Savory book "As this book does not aim at giving a scientific account of the principles on which it works. It might be an exceedingly interesting subject for the scientific person, ….the scientific knowledge required to understand a three-part chuck would be so great that I doubt if there is the person existing who could describe the course of a line that would be produced…."[6] 1. History 1.1 Definition. "The Geometric Chuck is an arrangement of mechanism for producing two or more circular movements in parallel planes. The combination of these movements with different velocity ratios and different radii results in the formation of a great variety of highly interesting curves and geometric figures"[1]. The Geometric Chuck is just one of many devices that were designed to be used as accessories to the Rose Engine Lathe. This lathe, similar to the modern lathe in name only, was designed to produce ornately decorated items.
    [Show full text]
  • Hermite Interpolation with HE-Splines Miroslav L´Aviˇcka, Zbynˇek S´Irˇ and Bohum´Ir Bastl Dept
    Geometry and Graphics 2009 205 Hermite interpolation with HE-splines Miroslav L´aviˇcka, Zbynˇek S´ırˇ and Bohum´ır Bastl Dept. of Mathematics, Fac. of Applied Sciences, Univ. of West Bohemia Univerzitn´ı22, 301 00 Plzeˇn, Czech Republic lavicka,zsir,bastl @kma.zcu.cz { } Abstract. Hypo/epicycloids (shortly HE-cycloids) are well-known curves, in detail studied in classical geometry. Hence, one may wonder what new can be said about these traditional geometric objects. It has been proved recently, cf. [12], that all rational HE-cycloids are curves with rational offsets, i.e. they belong to the class of rational Pythagorean hodograph curves. In this paper, we present an algorithm for G1 Hermite interpolation with hypo/epicycloidal arcs which results from their support function representation. Keywords: Hypocycloids; epicycloids; Pythagorean hodograph curves; rational offsets; support function; Hermite interpolation 1 Introduction Hypocycloids and epicycloids are a subclass of the so called roulettes, i.e., planar curves traced by a fixed point on a closed convex curve as that curve rolls without slipping along a second curve. In this case, both curves are circles, cf. [13, 1, 9]. Various sizes of circles generate different hypo/epicycloids, which are closed when the ratio of the radius of the rolling circle and the radius of the other circle is rational. It has been proved recently, cf. [12], that all rational hypo/epicycloids are curves with Pythagorean normals and therefore they provide ratio- nal offsets. This new result was obtained with the help of support function (SF) representation of hypo/epicycloids. In this paper, we present the main idea of the algorithm for G1 Hermite interpolation with hypo/epicycloidal arcs.
    [Show full text]
  • Representations of Epitrochoids and Hypotrochoids
    REPRESENTATIONS OF EPITROCHOIDS AND HYPOTROCHOIDS by Michelle Natalie Rene Marie Bouthillier Submitted in partial fulfillment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia March 2018 © Copyright by Michelle Natalie Rene Marie Bouthillier, 2018 Table of Contents List of Figures ..................................... iii Abstract ......................................... iv Acknowledgements .................................. v Chapter 1 Introduction ............................. 1 Chapter 2 The Implicitization Problem .................. 5 2.1 Introduction . 5 2.2 Resultants . 9 2.3 Gr¨obnerBases . 18 2.4 Resultants versus Gr¨obnerBasis . 47 Chapter 3 Implicitization of Hypotrochoids and Epitrochoids ... 51 3.1 Implicitization Method . 51 3.2 Results for Small Values of m and n . 56 3.3 Examples . 64 Chapter 4 Envelopes ............................... 79 4.1 Introduction . 79 4.2 Epicycloids . 80 4.3 Hypocycloids . 87 Chapter 5 Conclusion .............................. 94 Bibliography ....................................... 95 Appendix ......................................... 97 ii List of Figures 1.1 Epitrochoid with R = 1, r = 3, d = 4. 1 1.2 Hypotrochoid with R = 4, r = 1, d = 3~2. 2 1.3 A trochoid with a = 2r ........................ 3 2.1 Example of a curve that we may wish to implicitize . 8 3.1 Epicycloids with implicit forms described by Conjecture 2 . 66 3.2 Epicycloids with implicit forms described by Conjecture 3 . 67 3.3 Hypocycloids with implicit forms described by Conjecture 4 . 69 3.4 Hypocycloids with implicit forms described by Conjecture 5 . 71 3.5 Hypocycloids with implicit forms described by Conjecture 6 . 73 3.6 Hypocycloids with implicit forms described by Conjecture 7 . 74 3.7 Hypocycloids with implicit forms described by Conjecture 8 . 76 3.8 Hypocycloids with implicit forms described by Conjecture 9 .
    [Show full text]
  • Closed Cycloids in a Normed Plane
    Closed Cycloids in a Normed Plane Marcos Craizer, Ralph Teixeira and Vitor Balestro Abstract. Given a normed plane P, we call P-cycloids the planar curves which are homothetic to their double P-evolutes. It turns out that the radius of curvature and the support function of a P-cycloid satisfy a differential equation of Sturm-Liouville type. By studying this equation we can describe all closed hypocycloids and epicycloids with a given number of cusps. We can also find an orthonormal basis of C0(S1) with a natural decomposition into symmetric and anti-symmetric functions, which are support functions of symmetric and constant width curves, respectively. As applications, we prove that the iterations of involutes of a closed curve converge to a constant and a generalization of the Sturm-Hurwitz Theorem. We also prove versions of the four vertices theorem for closed curves and six vertices theorem for closed constant width curves. Mathematics Subject Classification (2010). 52A10, 52A21, 53A15, 53A40. Keywords. Minkowski Geometry, Sturm-Liouville equations, evolutes, hypocycloids, curves of constant width, Sturm-Hurwitz theorem, Four vertices theorem, Six vertices theorem. arXiv:1608.01651v2 [math.DG] 2 Feb 2017 1. Introduction Euclidean cycloids are planar curves homothetic to their double evolutes. When the ratio of homothety is λ > 1, they are called hypocycloids, and when 0 <λ< 1, they are called epicycloids. In a normed plane, or Minkowski plane ([8, 9, 10, 14]), there exists a natural way to define the double evolute of a locally convex curve ([3]). Cycloids with respect to a normed plane P are curves homothetic to their double P-evolutes.
    [Show full text]
  • Exploring Cycloids …
    Using Geometer’s Sketchpad to Support Mathematical Thinking Exploring Cycloids … The cycloid is the locus of a point on the rim of a circle of radius a rolling along a straight line. It was studied and named by Galileo in 1599. Eric W. Weisstein. "Cycloid." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Cycloid.html € A curtate cycloid, sometimes also called a contracted cycloid, is the path traced out by a fixed point at a radius b < a, where a is the radius of a rolling circle. Curtate cycloids are used by some violin makers for the back arches of some instruments, and they resemble those found in some of the great Cremonese instruments of the early 18th century, such as those by Stradivari. € Eric W. Weisstein. "Curtate Cycloid."€ From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CurtateCycloid.html The prolate cycloid is the path traced out by a fixed point at a radius b > a, where a is the radius of a rolling circle, also sometimes called an extended cycloid. The prolate cycloid contains loops. Eric W. Weisstein. "Prolate Cycloid." From MathWorld--A Wolfram Web Resource. € http://mathworld.wolfram.com/ProlateCycloid.html € Shelly Berman p. 1 of 4 Jo Ann Fricker Cycloids.doc Using Geometer’s Sketchpad to Support Mathematical Thinking Adpated from Algebra in Motion by Audrey Weeks http://www.calculusinmotion.com Want More? CYCLOIDS Show Epi/Hypocycloid (c)AWeeks1/03 www.calculusinmotion.com At any time, ESC erases traces. For wheel size, drag W ⇒ W wheel radius = 46.000 pixels For pebble size, drag P ⇒ P 1 rev.
    [Show full text]
  • Collected Atos
    Mathematical Documentation of the objects realized in the visualization program 3D-XplorMath Select the Table Of Contents (TOC) of the desired kind of objects: Table Of Contents of Planar Curves Table Of Contents of Space Curves Surface Organisation Go To Platonics Table of Contents of Conformal Maps Table Of Contents of Fractals ODEs Table Of Contents of Lattice Models Table Of Contents of Soliton Traveling Waves Shepard Tones Homepage of 3D-XPlorMath (3DXM): http://3d-xplormath.org/ Tutorial movies for using 3DXM: http://3d-xplormath.org/Movies/index.html Version November 29, 2020 The Surfaces Are Organized According To their Construction Surfaces may appear under several headings: The Catenoid is an explicitly parametrized, minimal sur- face of revolution. Go To Page 1 Curvature Properties of Surfaces Surfaces of Revolution The Unduloid, a Surface of Constant Mean Curvature Sphere, with Stereographic and Archimedes' Projections TOC of Explicitly Parametrized and Implicit Surfaces Menu of Nonorientable Surfaces in previous collection Menu of Implicit Surfaces in previous collection TOC of Spherical Surfaces (K = 1) TOC of Pseudospherical Surfaces (K = −1) TOC of Minimal Surfaces (H = 0) Ward Solitons Anand-Ward Solitons Voxel Clouds of Electron Densities of Hydrogen Go To Page 1 Planar Curves Go To Page 1 (Click the Names) Circle Ellipse Parabola Hyperbola Conic Sections Kepler Orbits, explaining 1=r-Potential Nephroid of Freeth Sine Curve Pendulum ODE Function Lissajous Plane Curve Catenary Convex Curves from Support Function Tractrix
    [Show full text]