Download.Shtml

Total Page:16

File Type:pdf, Size:1020Kb

Download.Shtml UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Investigations of Altered Aquatic Ecosystems: Biomonitoring, Disease, and Conservation Permalink https://escholarship.org/uc/item/9kg5h1jx Author Lunde, Kevin Bryce Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Investigations of Altered Aquatic Ecosystems: Biomonitoring, Disease, and Conservation by Kevin Bryce Lunde A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Vincent H. Resh, Chair Professor Adina M. Merenlender Professor G. Mathias Kondolf Fall 2011 Investigations of Altered Aquatic Ecosystems: Biomonitoring, Disease, and Conservation Copyright 2011 by Kevin Bryce Lunde ABSTRACT Investigations of Altered Aquatic Ecosystems: Biomonitoring, Disease, and Conservation by Kevin Bryce Lunde Doctor of Philosophy in Environmental Science, Policy, and Management University of California, Berkeley Professor Vincent H. Resh, Chair Changes to hydrology, water chemistry, physical habitat, and the landscape surrounding aquatic ecosystems can have profound effects on their biological communities, potentially reducing important ecosystem services and functions provided to wildlife and humans. In this dissertation, I examine how environmental variables, human activities, and management practices have affected stream and wetland biota throughout Northern California. The parasitic trematode Ribeiroia ondatrae has been shown to cause limb malformations in amphibian species through laboratory studies, but these small-scale experiments lacked important ecological co-factors that could alter parasite transmission rates and host susceptibility. Therefore, I conducted a multi-year, nested experiment at Hog Lake in Mendocino County to test host responses to Ribeiroia infection. The addition of Ribeiroia-infected snails to half of Hog Lake caused an increase in severe limb malformations in Pacific chorus frogs (Pseudacris regilla) and monitoring at different spatial scales revealed unique dose-response relationships because of ecological interactions and environmental co-factors. To determine if the parasite might contribute to population declines, I monitored juvenile and adult P. regilla at Hog Lake and a second wetland for four years. The consistently low (< 5%) malformation prevalence in adult frogs despite a generally high malformation prevalence (30-50%) in juvenile frogs confirmed that malformed amphibians do not survive to adulthood, indirect evidence that Ribeiroia may cause population declines. Multi-year surveys at 17 Northern California wetlands showed a strong dose-response relationship among the parasite and P. regilla malformation levels, providing evidence that Ribeiroia is an important cause of limb malformations in this region. Effective conservation of wetland species depends on understanding how anthropogenic stress, natural environmental variables, and management activities affect biological communities. To identify which of these explanatory variables were most influential and determine the conservation value of created wetlands, I sampled amphibians and insects from a total of 49 stormwater ponds, stockponds, and natural ponds in Northern California. Overall, landscape variables (i.e., percent urban and natural, number of ponds within 1 km, and elevation) were associated with differences in macroinvertebrate community structure, but specific conductance and percent littoral vegetation present were important co-factors. Compared to natural ponds, stockponds supported the most similar invertebrate assemblages and greater amphibian species richness. Light cattle-grazing of areas surrounding natural ponds and stockponds was associated 1 with increased amphibian richness, whereas the addition of exotic fishes was associated with mild differences in invertebrate populations. This research showed that stockponds are conservation resources for amphibians and invertebrates but that proper management is necessary to maximize this potential. To objectively quantify the ambient condition of wetlands, ecologists use the plants and animals found in aquatic habitats as biological indicators. Because no biological indicator has been developed for wetlands in California, I designed an index of biotic integrity (IBI) to determine the ecological condition of the wetland based on macroinvertebrate community structure. Eight metrics that showed significant responses to urbanization, had adequate range, and lacked redundancy with each other were incorporated into the IBI. The IBI was successfully validated and showed no bias along natural gradients (e.g., ecoregion, elevation, and precipitation), except that non-perennial and perennial ponds did support slightly different communities, indicating that the IBI is applicable across this region. Although biomonitoring data have been successfully used to quantity the ecological condition of perennial streams in many regions of California, no analysis tool (e.g., IBI) has been developed for the San Francisco Bay Area, a region which contains a large proportion of non- perennial streams. To identify least-disturbed reference sites in a highly urban region and examine how inter-site and temporal variability affect bioassessment data, I analyzed a large (> 400 sites) stream bioassessment dataset. I found that using geographic information system (GIS) watershed analysis and local physical habitat data were both necessary to identify least- disturbed reference sites. Among reference sites, the macroinvertebrate assemblages of perennial streams were different from non-perennial streams, a result which demonstrates the need for separate IBIs for these two habitat types. Interannual variability was moderate across 2000 to 2007, with index scores ranging from 10-15 out of 100 points, but some sites showed extreme variation of more than 50 points. In summary, this dissertation shows that effective management of wetlands and streams can be accomplished with the use of biomonitoring data to infer ecological condition and that stockponds are valuable conservation resources when properly managed. 2 TABLE OF CONTENTS Table of contents.............................................................................................................................. i Acknowledgments........................................................................................................................... ii Introduction.................................................................................................................................... iv CHAPTER 1: A practical guide for the study of malformed amphibians and their causes ................1 CHAPTER 2: Beyond laboratory experiments: Using an ecosystem-level manipulation to understand host-parasite dynamics ....................................................................................31 CHAPTER 3: Macroinvertebrate and amphibian assemblages in stormwater ponds, stockponds, and natural ponds in Northern California: The conservation value of created wetlands...68 CHAPTER 4: Development and validation of a macroinvertebrate index of biotic integrity (IBI) for assessing urban impacts to Northern California freshwater wetlands .............................100 CHAPTER 5: Identifying reference sites and quantifying biological variability within the benthic macroinvertebrate community at Northern California streams .......................................138 CHAPTER 6: Conclusions and future research..............................................................................168 i ACKNOWLEDGMENTS I would have not been able to complete this dissertation without the help of many individuals. First and foremost, I want to thank my advisor, Vince Resh. He has been a superb mentor during my tenure at UC Berkeley. His encouragement and support were invaluable in helping me write this dissertation. He allowed me the freedom to explore my ideas and provided the emotional, intellectual, and financial support I needed to complete this research. His dedication to teaching and mentoring undergraduate and graduate students was an inspiration. I would also like to thank my orals committee members Joe McBride (chair), Bob Lane, Adina Merenlender and Matt Kondolf for guiding me to important papers in their respective fields and helping me develop my prospectus, which formed the basis of this dissertation research. I want to thank my dissertation committee members Adina Merenlender and Matt Kondolf for providing valuable feedback on my dissertation chapters. I thank my long-time colleague and friend Pieter Johnson (University of Colorado Boulder) for his intellectual involvement with Chapters 1 and 2. His advice and encouragement were an immense help during graduate school. I am indebted to many Resh Lab graduate students for their support, advice, and friendship. I thank Leah Béche for being a role model when I started graduate school, Rafi Mazor for his statistical advice and encouragement to delve further into the data, Tina Mendez for being a “big sister”, Chris Solek for helping me apply the results of my dissertation, Matt Cover for getting me hooked on bioassessment research and for connecting me with the Water Board Surface Water Ambient Monitoring Program, Alison Purcell for teaching me ordination methods
Recommended publications
  • Fig. Ap. 2.1. Denton Tending His Fairy Shrimp Collection
    Fig. Ap. 2.1. Denton tending his fairy shrimp collection. 176 Appendix 1 Hatching and Rearing Back in the bowels of this book we noted that However, salts may leach from soils to ultimately if one takes dry soil samples from a pool basin, make the water salty, a situation which commonly preferably at its deepest point, one can then "just turns off hatching. Tap water is usually unsatis- add water and stir". In a day or two nauplii ap- factory, either because it has high TDS, or because pear if their cysts are present. O.K., so they won't it contains chlorine or chloramine, disinfectants always appear, but you get the idea. which may inhibit hatching or kill emerging If your desire is to hatch and rear fairy nauplii. shrimps the hi-tech way, you should get some As you have read time and again in Chapter 5, guidance from Brendonck et al. (1990) and temperature is an important environmental cue for Maeda-Martinez et al. (1995c). If you merely coaxing larvae from their dormant state. You can want to see what an anostracan is like, buy some guess what temperatures might need to be ap- Artemia cysts at the local aquarium shop and fol- proximated given the sample's origin. Try incu- low directions on the container. Should you wish bation at about 3-5°C if it came from the moun- to find out what's in your favorite pool, or gather tains or high desert. If from California grass- together sufficient animals for a study of behavior lands, 10° is a good level at which to start.
    [Show full text]
  • The Food of Illinois Fishes
    (71) THE FOOD OF ILLINOIS FISHES. By S. A. FORBES. But little has been written on the food of the fresh water fishes of this country, and n o thing whatever, so far as I can learn, on the food of the fishes of of this state. I have not found anything more elaborate than a short paper* by Prof. S. I. Smith, of Yale College, on the food of a few specimens of White Fish, Red Horse (^Myxostoma aareoluni), Yellow Perch and Sturgeon (Acipenser rubicundus), from Lakes Superior and Erie. An itemf relating to the food of the White Fish was published by Dr. Stimpson, of the Chicago Academy of Sciences, in 1870, and a few scattered notes of single observations occur in various papers on classification. J The importance of the subject, both to the scientific student and to the practical fish breeder, seems to warrant more systematic work ; and a methodical investigation has therefore been begun at the State Laboratory, the first results of which are given in the following memoranda. PURPOSES OF THE INVESTIGATION. A thorough knowledge of this subject should contribute something to our theories of distribution, since the food of those forms having appetites at all discriminating must have much to do with their range. Light might even be thrown upon past distribution, and the causes be suggested of ex- tensive migrations. The chosen haunts of different groups within their hab- itat, are probably determined largely by their gastronomic needs and pref- erences. Do the wide-spread species eat similar articles throughout their range, or are they wide-spread because they are omnivorous, or because their food habits are more flexible than those of other fishes ? On the other hand, are the narrowly limited species ever restricted by the local character of their food? * Report of U.
    [Show full text]
  • Water Beetles
    Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE .......................................................................................................................................................
    [Show full text]
  • Schriever, Bogan, Boersma, Cañedo-Argüelles, Jaeger, Olden, and Lytle
    Schriever, Bogan, Boersma, Cañedo-Argüelles, Jaeger, Olden, and Lytle. Hydrology shapes taxonomic and functional structure of desert stream invertebrate communities. Freshwater Science Vol. 34, No. 2 Appendix S1. References for trait state determination. Order Family Taxon Body Voltinism Dispersal Respiration FFG Diapause Locomotion Source size Amphipoda Crustacea Hyalella 3 3 1 2 2 2 3 1, 2 Annelida Hirudinea Hirudinea 2 2 3 3 6 2 5 3 Anostraca Anostraca Anostraca 2 3 3 2 4 1 5 1, 3 Basommatophora Ancylidae Ferrissia 1 2 1 1 3 3 4 1 Ancylidae Ancylidae 1 2 1 1 3 3 4 3, 4 Class:Arachnida subclass:Acari Acari 1 2 3 1 5 1 3 5,6 Coleoptera Dryopidae Helichus lithophilus 1 2 4 3 3 3 4 1,7, 8 Helichus suturalis 1 2 4 3 3 3 4 1 ,7, 9, 8 Helichus triangularis 1 2 4 3 3 3 4 1 ,7, 9,8 Postelichus confluentus 1 2 4 3 3 3 4 7,9,10, 8 Postelichus immsi 1 2 4 3 3 3 4 7,9, 10,8 Dytiscidae Agabus 1 2 4 3 6 1 5 1,11 Desmopachria portmanni 1 3 4 3 6 3 5 1,7,10,11,12 Hydroporinae 1 3 4 3 6 3 5 1 ,7,9, 11 Hygrotus patruelis 1 3 4 3 6 3 5 1,11 Hygrotus wardi 1 3 4 3 6 3 5 1,11 Laccophilus fasciatus 1 2 4 3 6 3 5 1, 11,13 Laccophilus maculosus 1 3 4 3 6 3 5 1, 11,13 Laccophilus mexicanus 1 2 4 3 6 3 5 1, 11,13 Laccophilus oscillator 1 2 4 3 6 3 5 1, 11,13 Laccophilus pictus 1 2 4 3 6 3 5 1, 11,13 Liodessus obscurellus 1 3 4 3 6 3 5 1 ,7,11 Neoclypeodytes cinctellus 1 3 4 3 7 3 5 14,15,1,10,11 Neoclypeodytes fryi 1 3 4 3 7 3 5 14,15,1,10,11 Neoporus 1 3 4 3 7 3 5 14,15,1,10,11 Rhantus atricolor 2 2 4 3 6 3 5 1,16 Schriever, Bogan, Boersma, Cañedo-Argüelles, Jaeger, Olden, and Lytle.
    [Show full text]
  • Red-Legged Frog Rana Aurora
    COSEWIC Assessment and Update Status Report on the Red-legged Frog Rana aurora in Canada SPECIAL CONCERN 2004 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION ENDANGERED WILDLIFE DES ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2004. COSEWIC assessment and update status report on the Red-legged Frog Rana aurora in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 46 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report: Waye, H. 1999. COSEWIC status report on the red-legged frog Rana aurora in Canada in COSEWIC assessment and status report on the red-legged frog Rana aurora in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-31 pp. Production note: COSEWIC would like to acknowledge Kristiina Ovaska and Lennart Sopuck for writing the status report on the Red-legged Frog Rana aurora. This report was prepared under contract with Environment Canada and was overseen and edited by David Green, the COSEWIC Amphibians and Reptiles Species Specialist Subcommittee Co-chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Ếgalement disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la situation de Grenouille à pattes rouges (Rana aurora) au Canada — Mise à jour.
    [Show full text]
  • Alaska Park Science 19(1): Arctic Alaska Are Living at the Species’ Northern-Most to Identify Habitats Most Frequented by Bears and 4-9
    National Park Service US Department of the Interior Alaska Park Science Region 11, Alaska Below the Surface Fish and Our Changing Underwater World Volume 19, Issue 1 Noatak National Preserve Cape Krusenstern Gates of the Arctic Alaska Park Science National Monument National Park and Preserve Kobuk Valley Volume 19, Issue 1 National Park June 2020 Bering Land Bridge Yukon-Charley Rivers National Preserve National Preserve Denali National Wrangell-St Elias National Editorial Board: Park and Preserve Park and Preserve Leigh Welling Debora Cooper Grant Hilderbrand Klondike Gold Rush Jim Lawler Lake Clark National National Historical Park Jennifer Pederson Weinberger Park and Preserve Guest Editor: Carol Ann Woody Kenai Fjords Managing Editor: Nina Chambers Katmai National Glacier Bay National National Park Design: Nina Chambers Park and Preserve Park and Preserve Sitka National A special thanks to Sarah Apsens for her diligent Historical Park efforts in assembling articles for this issue. Her Aniakchak National efforts helped make this issue possible. Monument and Preserve Alaska Park Science is the semi-annual science journal of the National Park Service Alaska Region. Each issue highlights research and scholarship important to the stewardship of Alaska’s parks. Publication in Alaska Park Science does not signify that the contents reflect the views or policies of the National Park Service, nor does mention of trade names or commercial products constitute National Park Service endorsement or recommendation. Alaska Park Science is found online at https://www.nps.gov/subjects/alaskaparkscience/index.htm Table of Contents Below the Surface: Fish and Our Changing Environmental DNA: An Emerging Tool for Permafrost Carbon in Stream Food Webs of Underwater World Understanding Aquatic Biodiversity Arctic Alaska C.
    [Show full text]
  • THE Fmmature STAGES of Cpf1o('Orixa Bilida (HUNG .) C. ('Xp
    JOVHXAL El'iTO.\IOL. SOl'. BIlIT. COIXMI!IA, VOl.. 63 (1966), DEC. 1, 1966 THE fMMATURE STAGES OF Cpf1o('orixa bilida (HUNG .) AND C. ('xp!('/a (U HLEH) (HEMIPTERA: CORIXfDAE) G . G. E . SCUDDER Department of Zoology, University of British Columbia, Vancouver INTRODUCTION rately in the corresponding lake wat­ In a study of the ecology and er. In this way, C. bifida was reared physiology of Corixidae living in a to the adult instar ana C. expleta through the first three larval instars. series of soda lakes in central British Columbia, it was essential to identify All drawings have been made with a squared reticule eye-piece or Cam­ the larval instal'S of two species of era Lucida, us ing both compound and Cenocorixa, which often occur sym­ stereo-zoom microscopes. The spines patrically. This was necessary in or­ on the hind femora of larvae were der to work out the details of the life usually only clearly visible when legs cycle and be able to iden tify with were mounted in polyvinyl lactophe­ nol or other similar mountant and certainty, insects used in experi­ viewed at magnifications over 150x. ments. This paper describes the im­ mature stages of these l,WO species, The terminology and characters C. bifida (Hungerford) and C. expleta utilized in the larval descriptions fol ­ (Uhler) . Both species have been pre­ low Cobben & Pillot (1960). However, viously recorded from British Colum­ I have interpreted the surfaces of the bia by Lansbury (1960) . legs differently. The surface of the hind leg seen in dorsal view is mor­ MATERIALS and METHODS phologically the posterior surface and The immature s tages were obtain­ is so interpreted.
    [Show full text]
  • Appendix C.5-California Red Legged Frog Report
    Appendix C: Biological Resources PROTOCOL-LEVEL CALIFORNIA RED-LEGGED FROG SURVEY REPORT FOR THE FORMER SAN LUIS OBISPO TANK FARM SITE (TANK FARM) SAN LUIS OBISPO COUNTY, CALIFORNIA Prepared for: CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY December 2008 C.5-1 Chevron Tank Farm EIR Appendix C: Biological Resources Chevron Tank Farm Site California Red-Legged Frog Survey Report Project No. 0601-3281 TABLE OF CONTENTS Page 1.0 INTRODUCTION............................................................................................... 1 2.0 PROJECT DESCRIPTION AND LOCATION.................................................... 1 3.0 PROJECT SITE SETTING................................................................................ 1 3.1 EAST BRANCH OF SAN LUIS OBISPO CREEK ................................. 2 3.2 FRESHWATER MARSH ....................................................................... 2 3.3 SEASONAL WET MEADOW................................................................. 3 4.0 CALIFORNIA RED-LEGGED FROG LIFE HISTORY....................................... 3 5.0 SURVEY METHODOLOGY .............................................................................. 4 6.0 CALIFORNIA RED-LEGGED FROG LITERATURE REVIEW.......................... 5 7.0 FIELD SURVEY RESULTS............................................................................... 7 8.0 CALIFORNIA RED-LEGGED FROG PREDATOR CONTROL......................... 10 9.0 CONCLUSION .................................................................................................. 10
    [Show full text]
  • Ecologia D'ostracodes
    Ecologia d’ostracodes simbionts (Entocytheridae) de carrancs invasors a Europa Tesi doctoral Alexandre Mestre Pérez Ecologia d’ostracodes simbionts (Entocytheridae) de carrancs invasors a Europa Ecology of symbiotic ostracods (Entocytheridae) inhabiting invasive crayfish in Europe Tesi doctoral 2014 Alexandre Mestre Pérez Departament de Microbiologia i Ecologia Universitat de València Programa de Doctorat en Biodiversitat i Biologia Evolutiva 2014 Ecologia d’ostracodes simbionts (Entocytheridae) de carrancs invasors a Europa Doctorand: Alexandre Mestre Pérez Directors: Francesc Mesquita Joanes Juan Salvador Monrós González La imatge de la portada està composada a partir de la foto d’un carranc de riu americà Pacifas- tacus leniusculus i una foto al microscopi electrònic (feta per Burkhard Scharf) d’una còpula d’ostracodes entocitèrids pertanyents a l’espècie Uncinocythere occidentalis, la qual s’ha tro- bat associada a poblacions exòtiques europees de P. leniusculus en aquest treball. Tesi presentada per Alexandre Mestre Pérez per optar al grau de Doctor en Biologia per la Universitat de València. Firmat: Alexandre Mestre Pérez Tesi dirigida pels doctors Francesc Mesquita Joanes Juan Salvador Monrós González Professors titulars d’Ecologia Universitat de València Firmat: Francesc Mesquita Joanes Firmat: Juan S. Monrós González Aquest treball ha estat finançat per un projecte del Ministeri de Ciència i In- novació (ECOINVADER, CGL2008-01296/BOS) i una beca predoctoral ("Cinc Segles") de la Universitat de València. A ma mare, a mon pare i al meu germà Agraïments Em considere molt afortunat i estic molt agraït d’haver gaudit, durant el llarg camí d’aprenentatge que representa la tesi, d’unes condicions excel lents per poder · desenvolupar aquest treball.
    [Show full text]
  • Table of Contents 2
    Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures.
    [Show full text]
  • UBC 1978 A6 7 C35.Pdf
    THE INFLUENCE OF TEMPERATURE AND SALINITY ON THE CUTICULAR PERMEABILITY OF SOME CORIXIDAE by SYDNEY GRAHAM CANNINGS B.Sc, University of British Columbia, 1975 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November, 19 77 © Sydney Graham Cannings, 1977 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of ZOOLOGY The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date November 14, 1977 ABSTRACT Most terrestrial, and many aquatic insects are made waterproof by a layer of lipid in or on the epicuticle. At a specific temperature, which is determined by their composition, these lipids undergo a phase .transition which markedly increases the permeability of the integument. The major purpose of this study was to assess the possibility that epicutic.ular wax transition could differ• entially affect the distribution of four species of water boatmen: Cenocorixa bifida hungerfordi Lansbury, Ceno- corixa expleta (Uhler), Cenocorixa blaisdelli. (Hunger- ford) , and Callicorixa vulnerata (Uhler).
    [Show full text]
  • Farm Ponds As Critical Habitats for Native Amphibians
    23 January 2002 Melinda G. Knutson Upper Midwest Environmental Sciences Center 2630 Fanta Reed Rd. La Crosse, WI 54603 608-783-7550 ext. 68; FAX 608-783-8058; Email [email protected] Farm Ponds As Critical Habitats For Native Amphibians: Field Season 2001 Interim Report Melinda G. Knutson, William B. Richardson, and Shawn Weick 1USGS Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Rd., La Crosse, WI 54603 [email protected] Executive Summary: We studied constructed farm ponds in the Driftless Area Ecoregion of southeastern Minnesota during 2000 and 2001. These ponds represent potentially significant breeding, rearing, and over-wintering habitat for amphibians in a landscape where natural wetlands are scarce. We collected amphibian, wildlife, invertebrate, and water quality data from 40 randomly-selected farm ponds, 10 ponds in each of 4 surrounding land use classes: row crop agriculture, grazed grassland, ungrazed grassland, and natural wetlands. This report includes chapters detailing information from the investigations we conducted. Manuscripts are in preparation describing our scientific findings and several management and public information documents are in draft form. Each of these components will be peer reviewed during winter 2002, with a final report due to LCMR by June 30, 2002. The USGS has initiated an Amphibian Research and Monitoring Initiative (ARMI) over the last 2 years. We obtained additional funding ($98K) in 2000 and 2001 for the radiotelemetry component of the project via a competitive USGS ARMI grant. Field work will be ongoing in 2002 for this component. USGS Water Resources (John Elder, Middleton, WI) ran pesticide analyses on water samples collected June 2001 from seven of the study ponds.
    [Show full text]