District of Columbia Wildlife Action Plan

Total Page:16

File Type:pdf, Size:1020Kb

District of Columbia Wildlife Action Plan District of Columbia Wildlife Action Plan 2015 UPDATE District Department of the Environment July 2015 Acknowledgements Coordinator and Lead Author Damien Ossi, DDOE–Fisheries and Wildlife Lead Authors Dan Rauch, DDOE–Fisheries and Wildlife Lindsay Rohrbaugh, DDOE–Fisheries and Wildlife Shellie Spencer, DDOE–Fisheries and Wildlife Climate Change Vulnerability Assessments Jennifer L. Murrow, University of Maryland, Department of Environmental Science and Technology Editor Sherry Schwechten, DDOE–Natural Resources Updating the District of Columbia’s State Wildlife Action Plan required guidance, technical analysis, review, and editing from technical committees, internal groups, and sister agencies. Members of the DDOE review team were Jonathan Champion, Julia Robey Christian, Adriana Hochberg, Kate Johnson, Hamid Karimi, Bryan King, Karim Marshall, Daniel Ryan, Steve Saari, Mary Searing, and Matt Weber. Individuals from local, regional, and federal agencies; academia; and conservation organizations provided invaluable input concerning species, ecosystems, habitats, threats, conservation challenges, and solutions for the District. iii Preface The District of Columbia is a rapidly growing city, known in part for its beautiful parks and green spaces. With large sites like Rock Creek Park, Fort DuPont Park, the National Arboretum, and the Chesapeake and Ohio Canal Historical Park, and smaller places like Pope Branch, Alger, Linnean, and Hillcrest Parks, the District has the second highest amount of green space per capita of any city in the country. These spaces provide great value to the District’s residents and visitors, but they also act as homes or refuges for somewhat less apparent residents. Bald eagles nest overlooking the Anacostia River. American shad and rockfish swim thousands of miles to spawn in the Potomac River. Spotted turtles swim through the marshes of Kenilworth Park and Aquatic Gardens, and five- lined skinks tread the boardwalk on Analostan Island (also known as Theodore Roosevelt Island). Monarchs find milkweed in meadows and backyards, and rocky, ice-scoured forests along the Potomac River retain plants typically found on the Great Plains. Oxon Run Park is home to globally rare magnolia bogs, and the Hay’s Spring amphipod, a tiny shrimp-like crustacean, lives in a few springs in Rock Creek Park and nowhere else in the world. The District Department of the Environment’s Fisheries and Wildlife Division manages these diverse wildlife resources. The District is unique in that it is the only completely urban jurisdiction required to manage its wildlife as a state. This aspect provides a host of novel challenges and opportunities that are addressed in this plan. This update of the District’s Wildlife Action Plan is a roadmap for the next ten years of conserving, sustaining, and protecting the District’s wildlife and habitats for the benefit and enjoyment of residents and visitors. It is an adaptable document that allows agencies, landowners, and natural resource managers to adjust methods to meet emerging threats, and it provides metrics to measure the effectiveness of conservation actions. The Wildlife Action Plan also serves as a companion to the Sustainable DC plan and other citywide plans that aim to protect and enhance the District’s natural systems. The update to this plan also provides an opportunity to strengthen relationships and cooperation with federal, regional, and local partners and with sister agencies. Success will depend on coordinating the goals, plans, and conservation efforts of numerous partners and stakeholders. Success also depends on public input and participation. This plan includes rewarding opportunities for residents to play a role that has significant benefits for local wildlife. These opportunities include participating in the citizen science program’s cottontail rabbit survey, planting pollinator gardens, and creating backyard habitats. v Working together to implement this Wildlife Action Plan will ensure the District of Columbia is not only a sustainable city, but continues to be a living city for the enjoyment of current and future generations. vi Contents Acknowledgements ...................................................................................................... iii Preface ............................................................................................................... v List of Tables ............................................................................................................. xii List of Figures ............................................................................................................ xiv Chapter 1 Introduction .......................................................................................... 1 1.1 Sustaining Biodiversity ....................................................................................... 1 1.2 DDOE Jurisdiction .............................................................................................. 2 1.3 Vision for the District’s Wildlife ........................................................................... 3 1.4 State Wildlife Grant Program ............................................................................. 3 1.4.1 Required SWAP Elements ........................................................................... 4 1.4.2 Summary of Key Changes from SWAP 2005 .............................................. 5 1.5 SWAP 2015 Approach ....................................................................................... 6 1.5.1 SWAP Development Team and Technical Committees .............................. 6 1.5.2 Designating SGCN and Critical Habitats ..................................................... 7 1.5.3 Threats, Actions, and Effectiveness Measures ............................................ 8 1.5.4 Stakeholder and Public Input ....................................................................... 9 1.5.5 Conclusion ................................................................................................. 10 Chapter 2 Species of Greatest Conservation Need .......................................... 11 2.1 District of Columbia’s Wildlife Diversity ............................................................ 11 2.1.1 Terrestrial Wildlife Diversity ....................................................................... 11 2.1.2 Aquatic Wildlife Diversity ........................................................................... 12 2.1.3 Wildlife Ecology ......................................................................................... 13 2.2 What is an SGCN? ........................................................................................... 14 2.3 Selection Process for SGCN ............................................................................ 15 2.3.1 Millsap Process ......................................................................................... 15 2.3.3 Vertebrate SGCN Selection ....................................................................... 17 2.3.4 Invertebrate SGCN Selection .................................................................... 17 2.4 Prioritization Process for SGCN ....................................................................... 19 2.5 SGCN Designations ......................................................................................... 19 2.6 Changes from SWAP 2005 .............................................................................. 27 Chapter 3 Habitats............................................................................................... 30 vii 3.1 District of Columbia’s Diverse Habitats ............................................................ 30 3.1.1 Local Context ............................................................................................. 30 3.1.2 Northeast Regional Context ....................................................................... 33 3.2 Process for Defining and Describing Habitats .................................................. 33 3.3 Habitat Descriptions ......................................................................................... 36 3.3.1 Critical Habitat and Vegetation Systems.................................................... 38 3.3.2 Vegetative Systems ................................................................................... 40 3.3.3 Semi-natural Systems................................................................................ 51 3.3.4 Aquatic Habitat Systems ............................................................................ 52 3.3.5 Developed Systems ................................................................................... 61 3.4 Condition of Vegetative Habitats ...................................................................... 62 3.4.1 Core Habitats/ Invaded Habitat Data Layer ............................................... 63 3.4.2 SGCN Richness and Abundance Data Layers .......................................... 65 3.4.3 Soil Data Layer .......................................................................................... 65 3.4.4 Tree Canopy Data Layer ........................................................................... 69 3.4.5 Deer Browse Data Layer ........................................................................... 71 3.4.6 Ranking Process for Habitats .................................................................... 73 3.4.7 Final Map ................................................................................................... 73
Recommended publications
  • Winter Populations, Behavior, and Seasonal Dispersal of Bald Eagles in Northwestern Illinois
    WINTER POPULATIONS, BEHAVIOR, AND SEASONAL DISPERSAL OF BALD EAGLES IN NORTHWESTERN ILLINOIS WILLIAM E. SOUTHERN s a result of efforts by Bent (1937)) Broley (1952)) Herrick (1924, A 1932, and 1933), Imler (1955)) and others, numerous data on the Bald Eagle (Haliaeetus Zeucocephalus) are available. Little of the published information, however, pertains to the winter habits of the species or to winter population dynamics and seasonal movements. Between 27 November 1961 and 1 April 1962, at the Savanna Army Depot, Carroll and Jo Daviess counties, Illinois, my assistants and I spent 232 hours observing and attempting to trap eagles. Additional time was devoted to other aspects of the project (making and setting traps, securing bait, etc.). On several occasions we spent the entire daylight period in the area. The study area extended for 14 miles along the Mississippi River and its backwaters and sloughs, which were proliferated with islands (Fig. 1). Most of the slightly rolling terrain bordering the river was covered by deciduous forest. The trees along a portion of the main channel had been thinned to the point that the area (between points 1 and 2, Fig. 1) resembled a park. The study area represented only a small part of the habitat suitable for eagles near Savanna; however, it probably had the greatest abundance of food and, there- fore, eagles (we observed only four outside the Depot; three of these during spring dispersal). The concentrations reported during our study were larger than those reported elsewhere in the state. My objectives were to record behavior, live-trap, color-mark, and determine the movements of Bald Eagles during the winter and early spring.
    [Show full text]
  • Scientific Support for Successful Implementation of the Natura 2000 Network
    Scientific support for successful implementation of the Natura 2000 network Focus Area B Guidance on the application of existing scientific approaches, methods, tools and knowledge for a better implementation of the Birds and Habitat Directives Environment FOCUS AREA B SCIENTIFIC SUPPORT FOR SUCCESSFUL i IMPLEMENTATION OF THE NATURA 2000 NETWORK Imprint Disclaimer This document has been prepared for the European Commis- sion. The information and views set out in the handbook are Citation those of the authors only and do not necessarily reflect the Van der Sluis, T. & Schmidt, A.M. (2021). E-BIND Handbook (Part B): Scientific support for successful official opinion of the Commission. The Commission does not implementation of the Natura 2000 network. Wageningen Environmental Research/ Ecologic Institute /Milieu guarantee the accuracy of the data included. The Commission Ltd. Wageningen, The Netherlands. or any person acting on the Commission’s behalf cannot be held responsible for any use which may be made of the information Authors contained therein. Lead authors: This handbook has been prepared under a contract with the Anne Schmidt, Chris van Swaay (Monitoring of species and habitats within and beyond Natura 2000 sites) European Commission, in cooperation with relevant stakehold- Sander Mücher, Gerard Hazeu (Remote sensing techniques for the monitoring of Natura 2000 sites) ers. (EU Service contract Nr. 07.027740/2018/783031/ENV.D.3 Anne Schmidt, Chris van Swaay, Rene Henkens, Peter Verweij (Access to data and information) for evidence-based improvements in the Birds and Habitat Kris Decleer, Rienk-Jan Bijlsma (Guidance and tools for effective restoration measures for species and habitats) directives (BHD) implementation: systematic review and meta- Theo van der Sluis, Rob Jongman (Green Infrastructure and network coherence) analysis).
    [Show full text]
  • Species-Specific Effects of Turbidity on the Physiology of Imperiled Blackline Shiners Notropis Spp. in the Laurentian Great Lakes
    Vol. 31: 271–277, 2016 ENDANGERED SPECIES RESEARCH Published November 28 doi: 10.3354/esr00774 Endang Species Res OPENPEN ACCESSCCESS Species-specific effects of turbidity on the physiology of imperiled blackline shiners Notropis spp. in the Laurentian Great Lakes Suzanne M. Gray1,4,*, Laura H. McDonnell1, Nicholas E. Mandrak2, Lauren J. Chapman1,3 1Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada 2Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada 3Wildlife Conservation Society, Bronx, NY 10460, USA 4Present address: School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA ABSTRACT: Increased sedimentary turbidity associated with human activities is often cited as a key stressor contributing to the decline of fishes globally. The mechanisms underlying negative effects of turbidity on fish populations have been well documented, including effects on behavior (e.g. visual impairment) and/or respiratory function (e.g. clogging of the gills); however, the long- term physiological consequences are less well understood. The decline or disappearance of sev- eral blackline shiners Notropis spp. in the Laurentian Great Lakes has been associated with increased turbidity. Here, we used non-lethal physiological methods to assess the responses of 3 blackline shiners under varying degrees of threat in Canada (Species at Risk Act; pugnose shiner N. anogenus: endangered; bridle shiner N. bifrenatus: special concern; blacknose shiner N. het- erolepis: common) to increased turbidity. Fish were exposed for 3 to 6 mo to continuous low levels of turbidity (~7 nephelometric turbidity units, NTU). To test for effects on respiratory function, we measured both resting metabolic rate (RMR) and critical oxygen tension (the oxygen partial pres- sure at which the RMR of fish declines).
    [Show full text]
  • Shad in the Schools, NC
    Attachment 1 Food Web Activity Student Sheet Background Information: Shad in the Schools, N.C. The coastal rivers and shallow marine environments along the coast of North Carolina are home to complex ecosystems. Within these freshwater and saltwater ecosystems there is an intimate relationship between many different producers and consumers. These produces and consumers create an interconnected food web. Each organism is dependent on clean water, oxygen, and healthy riparian corridors on the lands adjacent to these waters. The disruption of just one component of any food web can disturb all living things, including humans. American shad, a member of the herring family, is one species of fish that plays a critical role in the river and near shore shallow marine ecosystems of North Carolina. Shad are an anadromous species, meaning they live in the ocean but return to the rivers of North Carolina in the spring to spawn, or reproduce, each spring. This means that shad serve as a food source for many animals living in both inland freshwater and marine environments. Predators of shad include other fishes such as striped bass and king mackerel, bald eagles, bottlenose dolphin, and humans. Bald eagles have evolved to raise their young at the same time that anadromous fishes, such as shad, return to the rivers to spawn so that the young eaglets will have a plentiful food source. This evolutionary trait highlights the connectivity that can be found within food webs. Bald Eagles can be viewed now through a new technology, web cams. To see eagles that feed on herring near North Carolina, view http://www.friendsofblackwater.org/camhtm2.html.
    [Show full text]
  • Grasshopper Sparrow,Ammodramus Savannarum Pratensis
    COSEWIC Assessment and Status Report on the Grasshopper Sparrow Ammodramus savannarum pratensis pratensis subspecies (Ammodramus savannarum pratensis) in Canada SPECIAL CONCERN 2013 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2013. COSEWIC assessment and status report on the Grasshopper Sparrow pratensis subspecies Ammodramus savannarum pratensis in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. ix + 36 pp. (www.registrelep- sararegistry.gc.ca/default_e.cfm). Production note: COSEWIC acknowledges Carl Savignac for writing the status report on the Grasshopper Sparrow pratensis subspecies, Ammodramus savannarum pratensis in Canada, prepared with the financial support of Environment Canada. This report was overseen and edited by Marty Leonard, Co-chair of the COSEWIC Birds Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le Bruant sauterelle de la sous- espèce de l’Est (Ammodramus savannarum pratensis) au Canada. Cover illustration/photo: Grasshopper Sparrow pratensis subspecies — photo by Jacques Bouvier. Her Majesty the Queen in Right of Canada, 2014. Catalogue No. CW69-14/681-2014E-PDF ISBN 978-1-100-23548-6 Recycled paper COSEWIC Assessment Summary Assessment Summary – November 2013 Common name Grasshopper Sparrow - pratensis subspecies Scientific name Ammodramus savannarum pratensis Status Special Concern Reason for designation In Canada, this grassland bird is restricted to southern Ontario and southwestern Quebec.
    [Show full text]
  • Myxozoan and Helminth Parasites of the Dwarf American Toad, Anaxyrus Americanus Charlesmithi (Anura: Bufonidae), from Arkansas and Oklahoma Chris T
    51 Myxozoan and Helminth Parasites of the Dwarf American Toad, Anaxyrus americanus charlesmithi (Anura: Bufonidae), from Arkansas and Oklahoma Chris T. McAllister Science and Mathematics Division, Eastern Oklahoma State College, Idabel, OK 74745 Charles R. Bursey Department of Biology, Pennsylvania State University-Shenango Campus, Sharon, PA 16146 Matthew B. Connior Health and Natural Sciences, South Arkansas Community College, El Dorado, AR 71730 Stanley E. Trauth Department of Biological Sciences, Arkansas State University, State University, AR 72467 Abstract: We examined 69 dwarf American toads, Anaxyrus americanus charlesmithi, from McCurtain County, Oklahoma (n = 37) and Miller, Nevada and Union counties, Arkansas (n = 32) for myxozoan and helminth parasites. The following endoparasites were found: a myxozoan, Cystodiscus sp., a trematode, Clinostomum marginatum, two tapeworms, Cylindrotaenia americana (Oklahoma only) and Distoichometra bufonis, five nematodes, acuariid larvae, Cosmocercoides variabilis, Oswaldocruzia pipiens, larval Physaloptera sp. (Arkansas only), and Rhabdias americanus (Arkansas only), and acanthocephalans (Oklahoma only). We document six new host and four new geographic distribution records for these select parasites.©2014 Oklahoma Academy of Science Introduction (McAllister et al. 2008), Cosmocercoides The dwarf American toad, Anaxyrus variabilis (McAllister and Bursey 2012a) and americanus charlesmithi, is a small anuran tetrathyridia of Mesocestoides sp. (McAllister that ranges from southwestern Indiana and et al. 2014c) from A. a. charlesmithi from southern Illinois south through central Arkansas, and Clinostomum marginatum from Missouri, western Kentucky and Tennessee, dwarf American toads from Oklahoma (Cross and all of Arkansas, to eastern Oklahoma and and Hranitz 2000). In addition, Langford and northeastern Texas (Conant and Collins 1998). Janovy (2013) reported Rhabdias americanus It occurs in various habitats, from suburban from A.
    [Show full text]
  • L O U I S I a N A
    L O U I S I A N A SPARROWS L O U I S I A N A SPARROWS Written by Bill Fontenot and Richard DeMay Photography by Greg Lavaty and Richard DeMay Designed and Illustrated by Diane K. Baker What is a Sparrow? Generally, sparrows are characterized as New World sparrows belong to the bird small, gray or brown-streaked, conical-billed family Emberizidae. Here in North America, birds that live on or near the ground. The sparrows are divided into 13 genera, which also cryptic blend of gray, white, black, and brown includes the towhees (genus Pipilo), longspurs hues which comprise a typical sparrow’s color (genus Calcarius), juncos (genus Junco), and pattern is the result of tens of thousands of Lark Bunting (genus Calamospiza) – all of sparrow generations living in grassland and which are technically sparrows. Emberizidae is brushland habitats. The triangular or cone- a large family, containing well over 300 species shaped bills inherent to most all sparrow species are perfectly adapted for a life of granivory – of crushing and husking seeds. “Of Louisiana’s 33 recorded sparrows, Sparrows possess well-developed claws on their toes, the evolutionary result of so much time spent on the ground, scratching for seeds only seven species breed here...” through leaf litter and other duff. Additionally, worldwide, 50 of which occur in the United most species incorporate a substantial amount States on a regular basis, and 33 of which have of insect, spider, snail, and other invertebrate been recorded for Louisiana. food items into their diets, especially during Of Louisiana’s 33 recorded sparrows, Opposite page: Bachman Sparrow the spring and summer months.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • American Toad (Anaxyrus Americanus) Fowler's Toad (Anaxyrus Fowleri
    Vermont has eleven known breeding species of frogs. Their exact distributions are still being determined. In order for these species to survive and flourish, they need our help. One way you can help is to report the frogs that you come across in the state. Include in your report as much detail as you can on the appearance and location of the animal; also include the date of the sighting, your name, and how to contact you. Photographs are ideal, but not necessary. When attempting to identify a particular species, check at least three different field markings so that you can be sure of what it is. To contribute a report, you may use our website (www.vtherpatlas.org) or contact Jim Andrews directly at [email protected]. American Bullfrog (Lithobates catesbeianus) American Toad (Anaxyrus americanus) The American Bullfrog is our largest frog and can reach 7 inches long. The Bullfrog is one of the three The American Toad is one of Vermont’s two toad species. Toads can be distinguished from other green-faced frogs in Vermont. It has a green and brown mottled body with dark stripes across its legs. frogs in Vermont by their dry and bumpy skin, and the long oval parotoid glands on each side of their The Bullfrog does not have dorsolateral ridges, but it does have a ridge that starts at the eye and goes necks. The American Toad has at least one large wart in each of the large black spots found along its around the eardrum (tympana) and down. The Bullfrog’s call is a deep low jum-a-rum.
    [Show full text]
  • 2017 City of York Biodiversity Action Plan
    CITY OF YORK Local Biodiversity Action Plan 2017 City of York Local Biodiversity Action Plan - Executive Summary What is biodiversity and why is it important? Biodiversity is the variety of all species of plant and animal life on earth, and the places in which they live. Biodiversity has its own intrinsic value but is also provides us with a wide range of essential goods and services such as such as food, fresh water and clean air, natural flood and climate regulation and pollination of crops, but also less obvious services such as benefits to our health and wellbeing and providing a sense of place. We are experiencing global declines in biodiversity, and the goods and services which it provides are consistently undervalued. Efforts to protect and enhance biodiversity need to be significantly increased. The Biodiversity of the City of York The City of York area is a special place not only for its history, buildings and archaeology but also for its wildlife. York Minister is an 800 year old jewel in the historical crown of the city, but we also have our natural gems as well. York supports species and habitats which are of national, regional and local conservation importance including the endangered Tansy Beetle which until 2014 was known only to occur along stretches of the River Ouse around York and Selby; ancient flood meadows of which c.9-10% of the national resource occurs in York; populations of Otters and Water Voles on the River Ouse, River Foss and their tributaries; the country’s most northerly example of extensive lowland heath at Strensall Common; and internationally important populations of wetland birds in the Lower Derwent Valley.
    [Show full text]
  • Volume III, Chapter 6 American Shad
    Volume III, Chapter 6 American Shad TABLE OF CONTENTS 6.0 American Shad (Alosa sapidissima) ........................................................................... 6-1 6.1 Introduction................................................................................................................. 6-1 6.2 Life History & Requirements...................................................................................... 6-1 6.2.1 Spawning Conditions ........................................................................................... 6-2 6.2.2 Incubation ............................................................................................................ 6-2 6.2.3 Larvae & Juveniles .............................................................................................. 6-2 6.2.4 Adult..................................................................................................................... 6-2 6.2.5 Movements in Fresh Water.................................................................................. 6-3 6.2.6 Ocean Migration.................................................................................................. 6-4 6.3 Population Identification & Distribution .................................................................... 6-4 6.3.1 Life History Differences....................................................................................... 6-4 6.3.2 Genetic Differences.............................................................................................. 6-4 6.4 Status & Abundance
    [Show full text]
  • Nightjar Distribution and Abundance in Eastern Nebraska Nongame Bird Program
    Range limits and habitat associations of Eastern Whip-poor will (Antrostomus vociferous) and Chuck-wills-widow (Antrostomus carolinensis ) across eastern Nebraska Stephen J. Brenner & Joel G. Jorgensen Nongame Bird Program Nebraska Game and Parks Commission 2 Range limits and habitat associations of Eastern Whip-poor will (Antrostomus vociferous) and Chuck-wills-widow (Antrostomus carolinensis) across eastern Nebraska. Prepared by Stephen J. Brenner & Joel G. Jorgensen Nongame Bird Program Wildlife Division Nebraska Game and Parks Commission 2200 North 33rd Street Lincoln, Nebraska 68503 Recommended Citation Brenner, S.J. and J.G. Jorgensen. 2020. Range limits and habitat associations of Eastern Whip-poor will (Antrostomus vociferous) and Chuck-wills-widow (Antrostomus carolinensis) across eastern Nebraska. Nongame Bird Program of the Nebraska Game and Parks Commission, Lincoln, Nebraska, USA. Cover photo: Eastern whip-poor will at Great Swamp Management Area, Rhode Island - May 2017. Photo by Stephen J. Brenner NIGHTJAR DISTRIBUTION AND ABUNDANCE IN EASTERN NEBRASKA NONGAME BIRD PROGRAM 3 An important step in effectively conserving species of concern is defining their distributions and habitat associations. Eastern Whip-poor-will (Antrostomus vociferous; EWPW) and Chuck-will’s-widow (Antrostomus carolinensis; CWWI) are insectivorous birds whose breeding ranges cover much of eastern North America. Similar to other nightjars, both species are primarily active at night. EWPW and CWWI sing loudly between dusk and dark and consequently, are more often heard than seen. During the day, both species roost on or near the ground and each is cryptically-colored and are rarely detected by observers. Because of their behavior and life history, both species are infrequently and inconsistently detected by observers and by traditional avian monitoring programs such as the Breeding Bird Survey (BBS).
    [Show full text]