Recent Developments of Cobalt-Catalyzed Hydrofunctionalization of Olefins
Total Page:16
File Type:pdf, Size:1020Kb
Recent Developments of Cobalt-Catalyzed Hydrofunctionalization of Olefins radical R Me III Co Ln alkylcobalt R Me Co + silane R olefin carbocation R Me carbanion R Me Yufan Liang MacMillan Group Meeting February 5th, 2020 Outline III Co Ln R Me R Me Co + silane Co radical alkylcobalt R R Me regioselective olefin alkyl radical R Me R Me carbocation carbanion Selected examples from these research groups will be discussed in detail Prof. Erick Carreira (ETH Zürich) Prof. Seth Herzon (Yale) Prof. Ryan Shenvi (Scripps) Prof. Hiroki Shigehisa (Musashino University, Japan) Prof. Sergey Pronin (UC Irvine) Prof. Rong Zhu (Peking University, China) Mukaiyama Hydration 5 mol% Co(acac)2 2 equiv PhSiH3 OH O BzO BzO Me BzO Me O2, THF, r.t., 18 h 84% yield 14% yield III LnCo –H BzO BzO Me II – LnCo Generating a stable radical + O2 Highly regioselective process II O OH + LnCo O BzO Me + silane BzO Me Teruaki Mukaiyama et al., Chem. Lett. 1989, 449; 1989, 569; 1989, 573; 1989, 1071. Quenching Alkyl Radicals with Radicalophiles: Summary of Carreira’s Work III LnCo –H radicalophile R R Me R Me olefin alkyl radical OBn N Ph t-BuO2C N Ts N3 Ts CN Ts Cl S X N CO2t-Bu O O (X = H or CN) H Boc N X N N Boc N3 CN Cl OBn R Me R Me R Me R Me R Me JACS 2004, 5676 JACS 2005, 8294 ACIE 2007, 4519 ACIE 2008, 5758 JACS 2009, 13214 Org. Lett. 2005, 4249 Synthesis 2007, 3839 Quenching Alkyl Radicals with Radicalophiles: Selected Examples Me Boc Me N NH 2 75% yield NH Boc Ph Ph Me Me 66% yield Me N3 Me + PhSiD3 Cl 54% yield Ph D Ph H N H O OBn 82% yield Ph (over 2 steps) Ph Me Ph Me Quenching Alkyl Radicals with Radicalophiles: Important Findings Ligand Me Me Me Me Ph Ph Me Me t-Bu O N N O N N OK t-Bu OH HO t-Bu ONa OH OH t-Bu t-Bu t-Bu Silane ◉ Most commonly used solvent: EtOH PhSiH3 ◉ In some cases, addition of t-BuOOH improves efficiency, especially when Co(II) catalyst was used: Me H H Me Si Si Me O Me t-BuOOH II III LnCo LnCo –H (TMDSO) silane For a full article (including a SAR study of the ligands): Waser, J.; Gasper, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693. Quenching Alkyl Radicals with Radicalophiles: Hydroheteroarylation N 1 equiv Co(acac)2 (MeO)SO3 R2 1 equiv t-BuOOH R1 N R3 5 equiv Et SiH, DCM, r.t. MeO 3 R1 R2 R3 N-methoxy salt olefin Me Me Cbz N Me Me Me OH Me Me Cbz Me N Me Me Me Me Me Me Me OH N Me N Me Me N Me N Me CF3 Me N Me 71% yield 71% yield 79% yield 52% yield 60% yield Ma, X.; Herzon, S. B. J. Am. Chem. Soc. 2016, 138, 8718 Ma, X.; Dang, H.; Rose, J. A.; Rablen, P.; Herzon, S. B. J. Am. Chem. Soc. 2017, 139, 5998 (full article) Quenching Alkyl Radicals with Radicalophiles: Hydroheteroarylation N 1 equiv Co(acac)2 (MeO)SO3 R2 1 equiv t-BuOOH R1 N R3 5 equiv Et SiH, DCM, r.t. MeO 3 R1 R2 R3 N-methoxy salt olefin R2 R1 t-BuOOH 3 R 1 2 III R R Co(acac)2 LnCo –H 3 II R Et3SiH – LnCo Me N MeO Me OMe Me N Me II Me N Me + LnCo SET H 1 2 III 1 2 R R – LnCo , – MeOH R R R3 R3 Ma, X.; Herzon, S. B. J. Am. Chem. Soc. 2016, 138, 8718 Ma, X.; Dang, H.; Rose, J. A.; Rablen, P.; Herzon, S. B. J. Am. Chem. Soc. 2017, 139, 5998 (full article) Quenching Alkyl Radicals with Radicalophiles: A Versatile Strategy O O Co(acac)2, t-BuOOH, Et3SiH Me PMP O PMP O 36–96% yield radicalophile Me Me H F Cl Br 1,4-dihydrobenzene NFSI TsCl TsBr I OH SPh SePh CH2I2 O2 PhSO2SPh TsSePh N3 N PMP OBn OBn N N N + H CN ArSO2N3 PMP–N2 Ma, X.; Herzon, S. B. Beilstein J. Org. Chem. 2018, 14, 2259 Outline III Co Ln R Me R Me Co + silane Co radical alkylcobalt R R Me regioselective olefin alkyl radical R Me R Me carbocation carbanion Olefin Isomerization via Reversible HAT 1 mol% Co(SaltBu,tBu)Cl 2 mol% PhSiH3 Me C8H17 C8H17 Me benzene, Ar, r.t., 3 h Me 1,1-disubstituted olefin 96% yield silane III III LnCo –Cl LnCo –H N N C8H17 CoIII Me t-Bu O O t-Bu Cl t-Bu t-Bu II Me Me + L Co Co(SaltBu,tBu)Cl n C8H17 C8H17 Me Me III – LnCo –H H Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788 Olefin Isomerization via Reversible HAT 1–10 mol% Co(SaltBu,tBu)Cl 2–50 mol% PhSiH3 Me R1 R1 R benzene, Ar, r.t. R 1,1-disubstituted olefin O Me Me Me H O Me Me H Ph Me Me Me Me 3 Me Me O Me Me O Me Me Me Ph Me Me Me Me Me 3 Me 83% yield 74% yield 90% yield 95% yield Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788 Diene Cycloisomerization via Reversible HAT X X 3–6 mol% Co(SaltBu,tBu)Cl n n 6–12 mol% PhSiH3 R1 R2 R1 R2 benzene, Ar, r.t. H H R3 R3 diene EtO2C CO2Et EtO C CO Et O 2 2 Me Me Me Ph Me Me EtO C CO Et EtO2C CO2Et 2 2 H Me O H Me Me Me Me H Me Me Me H 94% yield 89% yield, >20:1 d.r. 92% yield 75% yield, >20:1 d.r. Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788 Terminal Olefin as Substrate: Temperature Effect 5 mol% Co(SalOMe,tBu)Cl 50 mol% PhSiH3 Me C7H15 C7H15 benzene, r.t. terminal olefin 10% yield (3:1 E/Z) 5 mol% Co(SalOMe,tBu)Cl 50 mol% PhSiH3 Me C7H15 C7H15 benzene, 60 ºC terminal olefin 90% yield (3:1 E/Z) N N CoIII MeO O O OMe Cl t-Bu t-Bu Co(SalOMe,tBu)Cl Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788 Terminal Olefin as Substrate: Temperature Effect 5 mol% Co(SalOMe,tBu)Cl 50 mol% PhSiH3 Me C7H15 C7H15 benzene, r.t. 10% yield 5 mol% Co(SalOMe,tBu)Cl 50 mol% PhSiH3 Me C7H15 C7H15 benzene, 60 ºC 90% yield 5 mol% Co(SalOMe,tBu)Cl 50 mol% PhSiH3 Me C8H17 C8H17 Me benzene, r.t. Me 95% yield 5 mol% Co(SalOMe,tBu)Cl 50 mol% PhSiH3 Me C8H17 C8H17 C7H15 Me benzene, r.t. Me trace Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788 Proposed Mechanism: Off-Cycle Alkylcobalt Species R Me silane off-cycle pathway CoIIIL R n L CoIII–Cl L CoIII–H II n n Me + LnCo R Me H 60 ºC stable at r.t. R For 1,2-disubstituted olefin, formation of an alkylcobalt species with a tertiaryl alkyl is not favored. Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788 Olefin Hydroarylation via Dual Nickel and Cobalt Catalysis CF3 5 mol% NiBr2(dtbbpy) tBu,tBu CF3 20 mol% Co(Sal ) 75% yield C H 8 17 >20:1 b/l I 50 mol% oxidant 2 equiv Ph(i-PrO)SiH2 olefin aryl iodide C8H17 Me DMPU, r.t. t-Bu Me BF N N N Br 4 NiII CoII N Br t-Bu O O t-Bu Me N Me t-Bu F t-Bu t-Bu tBu,tBu Co(Sal ) NiBr2(dtbbpy) Oxidant Green, S. A.; Matos, J. L. M.; Yagi, A.; Shenvi, R. A. J. Am. Chem. Soc. 2016, 138, 12779 Olefin Hydroarylation via Dual Nickel and Cobalt Catalysis 5 mol% NiBr2(dtbbpy) X 20 mol% Co(SaltBu,tBu) X hydroarylation R >20:1 b/l I 50 mol% oxidant 2 equiv Ph(i-PrO)SiH2 R Me olefin aryl iodide DMPU, r.t. Me Me Ph S C8H17 C8H17 Me NBoc CF3 CF3 Ts N N Me Me Ph Me Me S Me C8H17 Me C8H17 Me 70% yield 55% yield 61% yield 80% yield Green, S. A.; Matos, J. L. M.; Yagi, A.; Shenvi, R. A. J. Am. Chem. Soc. 2016, 138, 12779 Mechanistic Studies: Roles of the Oxidant Me OTf N N N N CoII OTf CoIII t-Bu O O t-Bu t-Bu O O t-Bu Me N Me t-Bu t-Bu F t-Bu t-Bu Co(SaltBu,tBu) X-ray III oxidant silane R Co Ln II III + III LnCo [LnCo ] LnCo –H R Me Shevick, S. L.; Obradors, C.; Shenvi, R. A. J. Am. Chem. Soc. 2018, 140, 12056 Mechanistic Studies: Roles of the Oxidant CF3 5 mol% NiBr2(dOMe-bpy) CF3 20 mol% Cobalt Bn I oxidant 2 equiv Ph(i-PrO)SiH2 Bn 1.3 equiv 1 equiv Me DMPU, r.t. 20 mol% CoII(SaltBu,tBu), 50 mol% oxidant 82% yield III tBu,tBu 20 mol% Co (Sal )(BF4), no oxidant 56% yield III tBu,tBu 20 mol% Co (Sal )(BF4), 30 mol% oxidant 70% yield Roles of oxidant: ◉ Generating CoIII to initiate the reaction ◉ Reoxidizing CoII to the active CoIII oxidation state Shevick, S.