FX 260 Training Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Implementation and Design of Calculator
Implementation and Design of Calculator Submitted To: Sir. Muhammad Abdullah Submitted By: Muhammad Huzaifa Bashir 2013-EE-125 Department of Electrical Engineering University of Engineering and Technology, Lahore Contents Abstract ........................................................................................................................................... 2 Introduction ..................................................................................................................................... 3 Input Unit: ................................................................................................................................... 3 Processing Unit: .......................................................................................................................... 3 Output Unit: ................................................................................................................................ 3 Interfacing and Implementation ...................................................................................................... 4 LCD: ........................................................................................................................................... 4 Hardware Interfacing: ............................................................................................................. 4 Problem and Solution of hardware interfacing: ...................................................................... 4 Software Interfacing: ............................................................................................................. -
Inverse of Exponential Functions Are Logarithmic Functions
Math Instructional Framework Full Name Math III Unit 3 Lesson 2 Time Frame Unit Name Logarithmic Functions as Inverses of Exponential Functions Learning Task/Topics/ Task 2: How long Does It Take? Themes Task 3: The Population of Exponentia Task 4: Modeling Natural Phenomena on Earth Culminating Task: Traveling to Exponentia Standards and Elements MM3A2. Students will explore logarithmic functions as inverses of exponential functions. c. Define logarithmic functions as inverses of exponential functions. Lesson Essential Questions How can you graph the inverse of an exponential function? Activator PROBLEM 2.Task 3: The Population of Exponentia (Problem 1 could be completed prior) Work Session Inverse of Exponential Functions are Logarithmic Functions A Graph the inverse of exponential functions. B Graph logarithmic functions. See Notes Below. VOCABULARY Asymptote: A line or curve that describes the end behavior of the graph. A graph never crosses a vertical asymptote but it may cross a horizontal or oblique asymptote. Common logarithm: A logarithm with a base of 10. A common logarithm is the power, a, such that 10a = b. The common logarithm of x is written log x. For example, log 100 = 2 because 102 = 100. Exponential functions: A function of the form y = a·bx where a > 0 and either 0 < b < 1 or b > 1. Logarithmic functions: A function of the form y = logbx, with b 1 and b and x both positive. A logarithmic x function is the inverse of an exponential function. The inverse of y = b is y = logbx. Logarithm: The logarithm base b of a number x, logbx, is the power to which b must be raised to equal x. -
Unit 2. Powers, Roots and Logarithms
English Maths 4th Year. European Section at Modesto Navarro Secondary School UNIT 2. POWERS, ROOTS AND LOGARITHMS. 1. POWERS. 1.1. DEFINITION. When you multiply two or more numbers, each number is called a factor of the product. When the same factor is repeated, you can use an exponent to simplify your writing. An exponent tells you how many times a number, called the base, is used as a factor. A power is a number that is expressed using exponents. In English: base ………………………………. Exponente ………………………… Other examples: . 52 = 5 al cuadrado = five to the second power or five squared . 53 = 5 al cubo = five to the third power or five cubed . 45 = 4 elevado a la quinta potencia = four (raised) to the fifth power . 1521 = fifteen to the twenty-first . 3322 = thirty-three to the power of twenty-two Exercise 1. Calculate: a) (–2)3 = f) 23 = b) (–3)3 = g) (–1)4 = c) (–5)4 = h) (–5)3 = d) (–10)3 = i) (–10)6 = 3 3 e) (7) = j) (–7) = Exercise: Calculate with the calculator: a) (–6)2 = b) 53 = c) (2)20 = d) (10)8 = e) (–6)12 = For more information, you can visit http://en.wikibooks.org/wiki/Basic_Algebra UNIT 2. Powers, roots and logarithms. 1 English Maths 4th Year. European Section at Modesto Navarro Secondary School 1.2. PROPERTIES OF POWERS. Here are the properties of powers. Pay attention to the last one (section vii, powers with negative exponent) because it is something new for you: i) Multiplication of powers with the same base: E.g.: ii) Division of powers with the same base : E.g.: E.g.: 35 : 34 = 31 = 3 iii) Power of a power: 2 E.g. -
Computing Systems
EECS 151/251A Homework 1 Due Friday, January 26th, 2018 Problem 1: Computing Systems A wide range of computing systems are currently in production. Consider the following devices when answering the questions below: a laptop, a digital watch, a scientific calculator, a supercomputer, and a smartphone. (a) Sketch a curve showing computational performance of all these systems as a function of their cost. Put performance on the y-axis (arbitrary units), and cost on the x-axis (dollar estimate). (b) Similarly, show a curve that relates computational performance to system power con- sumption, with performance on the y-axis (arbitrary units), and power consumption on the x-axis (watt estimate). In the case of the smartphone, ignore the power consumption of the radio. (a) Performance (IPS)! 1.E+16! Supercomputer! 1.E+14! 1.E+12! Laptop! 1.E+10! 1.E+08! Smartphone! 1.E+06! 1.E+04! 1.E+02! Scientific Calculator! Digital Watch! 1.E+00! 1.E+00! 1.E+01! 1.E+02! 1.E+03! 1.E+04! 1.E+05! 1.E+06! 1.E+07! 1.E+08! 1.E+09! Cost ($)! (b) Performance (IPS)! 1.E+16! Supercomputer! 1.E+14! 1.E+12! Laptop! 1.E+10! 1.E+08! Smartphone! 1.E+06! 1.E+04! Scientific Calculator! 1.E+02! Digital Watch! 1.E+00! 1.E-08! 1.E-06! 1.E-04! 1.E-02! 1.E+00! 1.E+02! 1.E+04! 1.E+06! Power Consumption (W)! EECS 151/251A Homework 1 2 Problem 2: Logic Consider the circuit below. -
Samsung Galaxy J3 V J327V User Manual
User guide. User guide. User usuario. Guía del Guía GH68-47432D Printed in USA Galaxy J7_COLL-78600-UG-PO-CVR-6x4-V3-F-R2R.indd All Pages 2/2/17 11:00 AM SMARTPHONE User Manual Please read this manual before operating your device and keep it for future reference. Table of Contents Special Features . 1 Navigation . 28 Side Speaker . 2 Entering Text . 30 Getting Started . 3 Multi Window . 33 Set Up Your Device . 4. Emergency Mode . 35 Assemble Your Device . .5 Apps . 37 Start Using Your Device . 10 Using Apps . 38 Set Up Your Device . 11 Applications Settings . 41 Learn About Your Device . .15 Calculator . 45 Front View . 16 Calendar . 46 Back View . .18 Camera and Video . 49 Home Screen . .19 Clock . 54 VZW_J727V_EN_UM_TN_QB1_031717_FINAL Contacts . 57 Connections . 104 Email . 64 Wi‑Fi . 105 Gallery . .67 Bluetooth . 108 Google Apps . 71 Data Usage . 111 Message+ . .74 Airplane Mode . 113 Messages . .77 Mobile Hotspot . .114 My Files . 82 Tethering . 117 Phone . 84 Mobile Networks . 117 S Health . 94 Location . 118 Samsung Gear . 96 Advanced Calling . .119 Samsung Notes . 97 Nearby Device Scanning . .121 Verizon Apps . 99 Phone Visibility . .121 Settings . 101 Printing . .121 How to Use Settings . 102 Virtual Private Networks (VPN) . .121 Change Carrier . 123 Table of Contents iii Data Plan . 123 Smart Alert . 133 Sounds and Vibration . 124 Display . 134 Sound Mode . 125 Screen Brightness . 135 Easy Mute . 125 Screen Zoom and Font . 135 Vibrations . 125 Home Screen . 136 Volume . 126. Easy Mode . 136 Ringtone . .127 Icon Frames . .137 Notification Sounds . 128 Status Bar . .137 Do Not Disturb . 128 Screen Timeout . -
Calculating Solutions Powered by HP Learn More
Issue 29, October 2012 Calculating solutions powered by HP These donations will go towards the advancement of education solutions for students worldwide. Learn more Gary Tenzer, a real estate investment banker from Los Angeles, has used HP calculators throughout his career in and outside of the office. Customer corner Richard J. Nelson Learn about what was discussed at the 39th Hewlett-Packard Handheld Conference (HHC) dedicated to HP calculators, held in Nashville, TN on September 22-23, 2012. Read more Palmer Hanson By using previously published data on calculating the digits of Pi, Palmer describes how this data is fit using a power function fit, linear fit and a weighted data power function fit. Check it out Richard J. Nelson Explore nine examples of measuring the current drawn by a calculator--a difficult measurement because of the requirement of inserting a meter into the power supply circuit. Learn more Namir Shammas Learn about the HP models that provide solver support and the scan range method of a multi-root solver. Read more Learn more about current articles and feedback from the latest Solve newsletter including a new One Minute Marvels and HP user community news. Read more Richard J. Nelson What do solutions of third degree equations, electrical impedance, electro-magnetic fields, light beams, and the imaginary unit have in common? Find out in this month's math review series. Explore now Welcome to the twenty-ninth edition of the HP Solve Download the PDF newsletter. Learn calculation concepts, get advice to help you version of articles succeed in the office or the classroom, and be the first to find out about new HP calculating solutions and special offers. -
How to Enter Answers in Webwork
Introduction to WeBWorK 1 How to Enter Answers in WeBWorK Addition + a+b gives ab Subtraction - a-b gives ab Multiplication * a*b gives ab Multiplication may also be indicated by a space or juxtaposition, such as 2x, 2 x, 2*x, or 2(x+y). Division / a a/b gives b Exponents ^ or ** a^b gives ab as does a**b Parentheses, brackets, etc (...), [...], {...} Syntax for entering expressions Be careful entering expressions just as you would be careful entering expressions in a calculator. Sometimes using the * symbol to indicate multiplication makes things easier to read. For example (1+2)*(3+4) and (1+2)(3+4) are both valid. So are 3*4 and 3 4 (3 space 4, not 34) but using an explicit multiplication symbol makes things clearer. Use parentheses (), brackets [], and curly braces {} to make your meaning clear. Do not enter 2/4+5 (which is 5 ½ ) when you really want 2/(4+5) (which is 2/9). Do not enter 2/3*4 (which is 8/3) when you really want 2/(3*4) (which is 2/12). Entering big quotients with square brackets, e.g. [1+2+3+4]/[5+6+7+8], is a good practice. Be careful when entering functions. It is always good practice to use parentheses when entering functions. Write sin(t) instead of sint or sin t. WeBWorK has been programmed to accept sin t or even sint to mean sin(t). But sin 2t is really sin(2)t, i.e. (sin(2))*t. Be careful. Be careful entering powers of trigonometric, and other, functions. -
Calculator Policy
CALCULATOR POLICY 1. Examination Candidates may take a non-programmable calculator into any component of the examination for their personal use. 2. Instruction booklets or cards (eg reference cards) on the operation of calculators are NOT permitted in the examination room. Candidates are expected to familiarise themselves with the calculator’s operation beforehand. 3. Calculators must have been switched off for entry into the examination room. 4. Calculators will be checked for compliance with this policy by the examination invigilator or observer. 5. Features of approved calculators: 5.1. In addition to the features of a basic (four operation) calculator, a scientific calculator typically includes the following: 5.1.1. fraction keys (for fraction arithmetic) 5.1.2. a percentage key 5.1.3. a π key 5.1.4. memory access keys 5.1.5. an EXP key and a sign change (+/-) key 5.1.6. square (x²) and square root (√) keys 5.1.7. logarithm and exponential keys (base 10 and base e) 5.1.8. a power key (ax, xy or similar) 5.1.9. trigonometrical function keys with an INVERSE key for the inverse functions 5.1.10. a capacity to work in both degree and radian mode 5.1.11. a reciprocal key (1/x) 5.1.12. permutation and/or combination keys ( nPr , nCr ) 5.1.13. cube and/or cube root keys 5.1.14. parentheses keys 5.1.15. statistical operations such as mean and standard deviation 5.1.16. metric or currency conversion 6. Features of calculators that are NOT permitted include: 6.1. -
The Logarithmic Chicken Or the Exponential Egg: Which Comes First?
The Logarithmic Chicken or the Exponential Egg: Which Comes First? Marshall Ransom, Senior Lecturer, Department of Mathematical Sciences, Georgia Southern University Dr. Charles Garner, Mathematics Instructor, Department of Mathematics, Rockdale Magnet School Laurel Holmes, 2017 Graduate of Rockdale Magnet School, Current Student at University of Alabama Background: This article arose from conversations between the first two authors. In discussing the functions ln(x) and ex in introductory calculus, one of us made good use of the inverse function properties and the other had a desire to introduce the natural logarithm without the classic definition of same as an integral. It is important to introduce mathematical topics using a minimal number of definitions and postulates/axioms when results can be derived from existing definitions and postulates/axioms. These are two of the ideas motivating the article. Thus motivated, the authors compared manners with which to begin discussion of the natural logarithm and exponential functions in a calculus class. x A related issue is the use of an integral to define a function g in terms of an integral such as g()() x f t dt . c We believe that this is something that students should understand and be exposed to prior to more advanced x x sin(t ) 1 “surprises” such as Si(x ) dt . In particular, the fact that ln(x ) dt is extremely important. But t t 0 1 must that fact be introduced as a definition? Can the natural logarithm function arise in an introductory calculus x 1 course without the -
The Demise of the Slide Rule (And the Advent of Its Successors)
OEVP/27-12-2002 The Demise of the Slide Rule (and the advent of its successors) Every text on slide rules describes in a last paragraph, sadly, that the demise of the slide rule was caused by the advent of the electronic pocket calculator. But what happened exactly at this turning point in the history of calculating instruments, and does the slide rule "aficionado" have a real cause for sadness over these events? For an adequate treatment of such questions, it is useful to consider in more detail some aspects like the actual usage of the slide rule, the performance of calculating instruments and the evolution of electronic calculators. Usage of Slide Rules During the first half of the 20th century, both slide rules and mechanical calculators were commercially available, mass-produced and at a reasonable price. The slide rule was very portable ("palmtop" in current speak, but without the batteries), could do transcendental functions like sine and logarithms (besides the basic multiplication and division), but required a certain understanding by the user. Ordinary people did not know how to use it straight away. The owner therefore derived from his knowledge a certain status, to be shown with a quick "what-if" calculation, out of his shirt pocket. The mechanical calculator, on the other hand, was large and heavy ("desktop" format), and had addition and subtraction as basic functions. Also multiplication and division were possible, in most cases as repeated addition or subtraction, although there were models (like the Millionaire) that could execute multiplications directly. For mechanical calculators there was no real equivalent of the profession-specific slide rule (e.g. -
Rcttutorial1.Pdf
R Tutorial 1 Introduction to Computational Science: Modeling and Simulation for the Sciences, 2nd Edition Angela B. Shiflet and George W. Shiflet Wofford College © 2014 by Princeton University Press R materials by Stephen Davies, University of Mary Washington [email protected] Introduction R is one of the most powerful languages in the world for computational science. It is used by thousands of scientists, researchers, statisticians, and mathematicians across the globe, and also by corporations such as Google, Microsoft, the Mozilla foundation, the New York Times, and Facebook. It combines the power and flexibility of a full-fledged programming language with an exhaustive battery of statistical analysis functions, object- oriented support, and eye-popping, multi-colored, customizable graphics. R is also open source! This means two important things: (1) R is, and always will be, absolutely free, and (2) it is supported by a great body of collaborating developers, who are continually improving R and adding to its repertoire of features. To find out more about how you can download, install, use, and contribute, to R, see http://www.r- project.org. Getting started Make sure that the R application is open, and that you have access to the R Console window. For the following material, at a prompt of >, type each example; and evaluate the statement in the Console window. To evaluate a command, press ENTER. In this document (but not in R), input is in red, and the resulting output is in blue. We start by evaluating 12-factorial (also written “12!”), which is the product of the positive integers from 1 through 12. -
Scale Drawings, Similar Figures, Right Triangle Trigonometry
SCALE DRAWINGS, SIMILAR FIGURES, RIGHT TRIANGLE TRIGONOMETRY In this unit, you will review ratio and proportion and solve problems related to scale drawings and similar figures. You will then investigate right triangle trigonometry. You will examine how trigonometry is derived from the angles and sides of right triangles and then apply “trig” functions to solve problems. Proportions Applications of Proportions Scale Drawings and Map Distances Similar Polygons Trigonometric Ratios Table of Trigonometric Ratios Map of Ohio Proportions A ratio is a comparison of two quantities and is often written as a fraction. For example, Emily is on the basketball team and during her first game she made 14 out of 20 shots. You can make a ratio out of shots made and shots attempted. shots made 14 7 == shots attempted 20 10 A proportion is any statement that two ratios are equal. For example, if Rachel is on the same basketball team as Emily, and she made 21 out of 30 baskets, Rachel’s ratio can be written as: shots made 21 7 == shots attempted 30 10 14 21 It can now be said that Emily’s ratio and Rachel’s ratio are equal. To prove this 20 30 we will use the “cross products property”. For all real numbers a, b, c, and d, where b ≠ 0 and d ≠ 0 . ac = if ad= bc bd Let’s take a look at Emily and Rachel’s ratios and use the cross product property to make sure they are equal. 14 21 = 20 30 14×=× 30 20 21 420= 420 true Use cross products to determine if the two ratios are proportional.