6 Lekovic ABI-Website

Total Page:16

File Type:pdf, Size:1020Kb

6 Lekovic ABI-Website Copyright © 2004, Barrow Neurological Institute Auditory Brainstem Implantation ince 1979 auditory brainstem im- Gregory P. Lekovic, MD, PhD, JD Splants (ABIs) have provided pros- L. Fernando Gonzalez, MD thetic hearing for patients deafened by † Mark J. Syms, MD neurofibromatosis-2 (NF-2). The first † C. Phillip Daspit, MD ABI was a comparatively primitive, sin- Randall W. Porter, MD gle-channel device that aided users by increasing awareness of environmental Auditory brainstem implants (ABIs) can restore meaningful hearing to patients sounds and lipreading. Contemporary deafened by neurofibromatosis type 2. These devices are similar to cochlear multichannel ABIs afford a level of per- implants on which their design is based. Current multichannel ABI technology formance comparable to that achieved affords a level of performance in aiding speech comprehension similar to that of- with single-channel cochlear implants, fered by single-channel cochlear implants. ABIs differ from cochlear implants in that is, the ability to discriminate envi- that the brainstem implants stimulate the cochlear nuclei directly, bypassing the ronmental sounds, marked improve- cochlear nerve. Multichannel ABIs can be implanted at the time of first or second ment in lipreading, and limited open- side surgery for tumors involving the auditory nerve. Most surgeons favor a trans- set speech comprehension. Some ABI labyrinthine approach for ABI placement, because the stimulating leads need to users can even communicate on the be implanted within the lateral recess of the fourth ventricle. At this location, the telephone. This article reviews the de- ventral cochlear nucleus can be stimulated along its lateral to medial axis. Intra- velopment of ABIs, emphasizing rele- operative monitoring of brainstem auditory evoked potentials is essential and vant neuroanatomical and physiological helps confirm adequate positioning of the device. After programming, about 85% principles, intraoperative technique, re- of patients experience auditory percepts. Only a relatively rare, but significant, mi- lated surgical anatomy, clinical out- nority of patients is able to attain sound-only open-set speech comprehension with comes, and future directions for re- their ABI. Most experience a significant improvement in open-set speech com- search. prehension when used as an adjunct to lipreading. Speech comprehension con- tinues to increase as long as 8 years after device implantation. More than 90% of recipients use their ABI daily. Most are satisfied with their decision to obtain an History of ABIs ABI and would recommend the device to others. At the time of this writing, more than 400 ABIs have been placed world- Key Words: acoustic neuroma, auditory brainstem implantation, auditory wide.17 The first ABI implant was a sim- prosthesis, neurofibromatosis type 2, vestibular schwannoma ple ball electrode implanted into the pa- renchyma of the cochlear nucleus at the House Ear Institute in 1979. This elec- trode migrated from its implantation site, and the design was soon modified into a pair of platinum plates with a syn- thetic mesh backing. Subsequent iter- ations of ABI design culminated in the development of multichannel implants composed of 8 to 21 platinum discs em- bedded in plastic with a synthetic mesh backing, depending on the manufac- Division of Neurological Surgery and †Section of Neurotology, Barrow Neurological Institute, St. turer or model. Joseph’s Hospital and Medical Center, Phoenix, Arizona In 1994 a clinical trial was begun in 40 BARROW QUARTERLY • Vol. 20, No. 4 • 2004 Lekovic et al: Auditory Brainstem Implantation the United States to evaluate the safety the ear above the canthomeatal line. A ing loss is not a deciding factor (i.e., and efficacy of multichannel ABIs. This second component consists of micro- there is no audiological cut-off for ABI trial was concluded in 2000 and culmi- phone, speech processor, and radio- placement). Other factors also distin- nated in the Food and Drug Adminis- transmitter coil that detects sound, con- guish optimal ABI candidates: good tration (FDA) approving the Nucleus verts it to a digital signal, and transmits overall health, acceptable vision (because 24 Contour (Cochlear Corporation, it to the receiver, respectively. The the ABI may aid most with lipreading), Englewood, CO) and Nucleus 22 (Co- transmitter attaches to the receiver-stim- high motivation, excellent family sup- chlear Corporation, Englewood, CO) ulator by a magnet. Once an ABI is im- port, acceptable anatomical status, and for implantation via the translabyrin- planted, monopolar cauterization is an interest in spoken communication. thine approach for the treatment of strictly forbidden from use for fear of Because the ABI creates an ‘unnatural’ deafness related to NF-2. Currently, the damaging the electrode, brain, or both. quality of sound, many users are disap- Nucleus 24 is the most widely implant- Recently, the magnet has been replaced pointed with it at first. High motiva- ed ABI in the world, including North with a nonmagnetic plug at surgery, and tion and excellent family support are America, Australia, and the European the transmitter coil is fixed to the scalp important to ensure that users do not Union. Other available ABIs include the with adhesive. These changes permit drop out of the ABI program. MXM Digisonic (Laboratories MXM, MR imaging from the outset. These issues are exemplified in the Valaurious Cedex, France), Med-EL ABIs are not activated until a patient House experience with placing ABIs in (Med EL Corporation, Research Tri- recovers from surgery. Because of con- teenagers.17 Of 21 teens implanted, four angle Park, NC), and Clarion (Ad- cerns about the potential activation of dropped out of the program. One later vanced Bionics, Sylmar, CA). So far no brainstem structures, many centers pre- returned and has become an above av- evidence suggests that the efficacy of the fer that the electrode be activated in a erage ABI user as a result of strong fam- various multichannel ABIs differs. monitored setting. After successful ABI ily support and encouragement. Qual- implantation, medical and audiological ities most characteristic of program follow-up is performed at least every 3 dropouts included low motivation and Design of ABIs months for the first year and then an- poor family support. However, an im- All ABIs share certain features re- nually thereafter. portant lesson from the House experi- gardless of specifications (Fig. 1). The ence has been that the ideal candidate is basic electrode itself is placed within the self-motivated to hear again rather than lateral recess of the fourth ventricle and Indications for ABIs motivated for the benefit of family connected via a cable implanted into a The FDA has approved the ABI for members. groove in the temporal bone to a re- patients with NF-2 who are 12 years or The only absolute contraindication ceiver-stimulator. The latter is seated in older who have reasonable expectations to the placement of an ABI is an active the bone of the skull behind the helix of and motivation. The degree of hear- infection. Relative contraindications Ground electrode Paddle Microphone Speech processor- digitizer Transmitter coil A Receiver-stimulator B Figure 1. (A) The auditory brainstem implant consists of a radio receiver-stimulator that is implanted in the temporal bone. A ground electrode is inserted under the temporalis muscle, and the multichannel brainstem implant paddle is inserted into the lateral recess of the fourth ventricle. (B) Sound is picked up at the pinna by a microphone that sends the signal to a speech-processor/digitizer. The latter sends the signal to the brainstem implant receiver through the transmitter coil. Photographs courtesy of Cochlear Ltd. BARROW QUARTERLY • Vol. 20, No. 4 • 2004 41 Lekovic et al: Auditory Brainstem Implantation are rare and include patients who may on the first side. If the device is im- Marangos et al.15 examined 19 ears meet the formal criteria but who lack properly positioned within the lateral with promontory testing in patients adequate support or motivation, as out- recess of the fourth ventricle, does not with profound bilateral deafness. The lined above. As discussed later, if the co- elicit auditory sensations, or creates in- promontory tests were positive in five chlear nerve can be preserved intact after tolerable side effects that prevent its use, of six ears that had not undergone pre- resection of an acoustic neuroma, place- then the contralateral side can be im- vious surgery and in three other surgi- ment of a cochlear implant may be in- planted when surgery is performed on cally treated ears with residual tumor. dicated if promontory testing is positive. the second side. The patient thereby The patient who responded negatively The FDA has approved the use of has a second chance to obtain a func- on promontory testing but who had ABIs only in the setting of NF-2. How- tioning implant. Conversely, if the first undergone no previous surgery had bi- ever, off-label use of the device has been side is implanted and functions well, the lateral acoustic neuromas causing pro- reported (predominantly in Europe) for user can become accustomed to the de- found brainstem compression. A pa- other indications, including deafness re- vice while still able to hear with the tient presenting with deafness one year lated to bilateral skull base trauma,3 spo- other ear. This situation may help the after undergoing a subtemporal ap- radic acoustic neuroma in patients with patient to acclimatize to and interpret proach in which hearing was preserved only one hearing ear,4 cochlear nerve the ABI sound. However, most patients had a positive promontory test. This hypoplasia or aplasia,2,5 cochlear ossifica- implanted during surgery on the first patient was fitted with a cochlear im- tion,11 bilateral auditory nerve deafness,22 side do not become daily users of ABI plant and had an excellent response. or involvement with other neoplastic until their deafness is bilateral.
Recommended publications
  • Projections from the Trigeminal Nuclear Complex to the Cochlear Nuclei: a Retrograde and Anterograde Tracing Study in the Guinea Pig
    Journal of Neuroscience Research 78:901–907 (2004) Projections From the Trigeminal Nuclear Complex to the Cochlear Nuclei: a Retrograde and Anterograde Tracing Study in the Guinea Pig Jianxun Zhou and Susan Shore* Department of Otolaryngology and Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan In addition to input from auditory centers, the cochlear cuneate nucleus innervation of cochlear nucleus has been nucleus (CN) receives inputs from nonauditory centers, hypothesized to convey information about head and pinna including the trigeminal sensory complex. The detailed position for the purpose of localizing a sound source in anatomy, however, and the functional implications of the space (Young et al., 1995). In addition, interactions be- nonauditory innervation of the auditory system are not tween somatosensory and auditory systems have been fully understood. We demonstrated previously that the linked increasingly to phantom sound perception, also trigeminal ganglion projects to CN, with terminal labeling known as tinnitus. This is demonstrated in the observa- most dense in the marginal cell area and secondarily in tions that injuries of the head and neck region can lead to the magnocellular area of the ventral cochlear nucleus the onset of tinnitus in patients with no hearing loss (VCN). We continue this line of study by investigating the (Lockwood et al., 1998). projection from the spinal trigeminal nucleus to CN in We demonstrated previously projections from the guinea pig. After injections of the retrograde tracers Flu- trigeminal ganglion to CN in guinea pigs (Shore et al., oroGold or biotinylated dextran amine (BDA) in VCN, 2000). Terminal labeling of trigeminal ganglion projec- labeled cells were found in the spinal trigeminal nuclei, tions to the CN was found to be most dense in the most densely in the pars interpolaris and pars caudalis marginal cell area and secondarily in the magnocellular with ipsilateral dominance.
    [Show full text]
  • Multisensory Integration in the Dorsal Cochlear Nucleus: Unit Responses to Acoustic and Trigeminal Ganglion Stimulation
    European Journal of Neuroscience, Vol. 21, pp. 3334–3348, 2005 ª Federation of European Neuroscience Societies Multisensory integration in the dorsal cochlear nucleus: unit responses to acoustic and trigeminal ganglion stimulation S. E. Shore Kresge Hearing Research Institute and Department of Otolaryngology, University of Michigan, 1301 East Ann Street, Ann Arbor, MI 48109, USA Keywords: auditory, guinea pig, multisensory, neural pathways, somatosensory, trigeminal Abstract A necessary requirement for multisensory integration is the convergence of pathways from different senses. The dorsal cochlear nucleus (DCN) receives auditory input directly via the VIIIth nerve and somatosensory input indirectly from the Vth nerve via granule cells. Multisensory integration may occur in DCN cells that receive both trigeminal and auditory nerve input, such as the fusiform cell. We investigated trigeminal system influences on guinea pig DCN cells by stimulating the trigeminal ganglion while recording spontaneous and sound-driven activity from DCN neurons. A bipolar stimulating electrode was placed into the trigeminal ganglion of anesthetized guinea pigs using stereotaxic co-ordinates. Electrical stimuli were applied as bipolar pulses (100 ls per phase) with amplitudes ranging from 10 to 100 lA. Responses from DCN units were obtained using a 16-channel, four-shank electrode. Current pulses were presented alone or preceding 100- or 200-ms broadband noise (BBN) bursts. Thirty percent of DCN units showed either excitatory, inhibitory or excitatory–inhibitory responses to trigeminal ganglion stimulation. When paired with BBN stimulation, trigeminal stimulation suppressed or facilitated the firing rate in response to BBN in 78% of units, reflecting multisensory integration. Pulses preceding the acoustic stimuli by as much as 95 ms were able to alter responses to BBN.
    [Show full text]
  • Direct Projections from Cochlear Nuclear Complex to Auditory Thalamus in the Rat
    The Journal of Neuroscience, December 15, 2002, 22(24):10891–10897 Direct Projections from Cochlear Nuclear Complex to Auditory Thalamus in the Rat Manuel S. Malmierca,1 Miguel A. Mercha´n,1 Craig K. Henkel,2 and Douglas L. Oliver3 1Laboratory for the Neurobiology of Hearing, Institute for Neuroscience of Castilla y Leo´ n and Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain, 2Wake Forest University School of Medicine, Department of Neurobiology and Anatomy, Winston-Salem, North Carolina 27157-1010, and 3University of Connecticut Health Center, Department of Neuroscience, Farmington, Connecticut 06030-3401 It is known that the dorsal cochlear nucleus and medial genic- inferior colliculus and are widely distributed within the medial ulate body in the auditory system receive significant inputs from division of the medial geniculate, suggesting that the projection somatosensory and visual–motor sources, but the purpose of is not topographic. As a nonlemniscal auditory pathway that such inputs is not totally understood. Moreover, a direct con- parallels the conventional auditory lemniscal pathway, its func- nection of these structures has not been demonstrated, be- tions may be distinct from the perception of sound. Because cause it is generally accepted that the inferior colliculus is an this pathway links the parts of the auditory system with prom- obligatory relay for all ascending input. In the present study, we inent nonauditory, multimodal inputs, it may form a neural have used auditory neurophysiology, double labeling with an- network through which nonauditory sensory and visual–motor terograde tracers, and retrograde tracers to investigate the systems may modulate auditory information processing.
    [Show full text]
  • Auditory and Vestibular Systems Objective • to Learn the Functional
    Auditory and Vestibular Systems Objective • To learn the functional organization of the auditory and vestibular systems • To understand how one can use changes in auditory function following injury to localize the site of a lesion • To begin to learn the vestibular pathways, as a prelude to studying motor pathways controlling balance in a later lab. Ch 7 Key Figs: 7-1; 7-2; 7-4; 7-5 Clinical Case #2 Hearing loss and dizziness; CC4-1 Self evaluation • Be able to identify all structures listed in key terms and describe briefly their principal functions • Use neuroanatomy on the web to test your understanding ************************************************************************************** List of media F-5 Vestibular efferent connections The first order neurons of the vestibular system are bipolar cells whose cell bodies are located in the vestibular ganglion in the internal ear (NTA Fig. 7-3). The distal processes of these cells contact the receptor hair cells located within the ampulae of the semicircular canals and the utricle and saccule. The central processes of the bipolar cells constitute the vestibular portion of the vestibulocochlear (VIIIth cranial) nerve. Most of these primary vestibular afferents enter the ipsilateral brain stem inferior to the inferior cerebellar peduncle to terminate in the vestibular nuclear complex, which is located in the medulla and caudal pons. The vestibular nuclear complex (NTA Figs, 7-2, 7-3), which lies in the floor of the fourth ventricle, contains four nuclei: 1) the superior vestibular nucleus; 2) the inferior vestibular nucleus; 3) the lateral vestibular nucleus; and 4) the medial vestibular nucleus. Vestibular nuclei give rise to secondary fibers that project to the cerebellum, certain motor cranial nerve nuclei, the reticular formation, all spinal levels, and the thalamus.
    [Show full text]
  • Cochlear Implants in Unilateral Hearing Loss for Tinnitus Suppression
    Central Annals of Otolaryngology and Rhinology Review Article *Corresponding author Mohamed Salah Elgandy, Department of Otolaryngology-Head and Neck Surgery, University of Cochlear Implants in Unilateral Iowa hospital and clinics, 200 Hawkins drive, Iowa, Iowa City 52242.PFP 21167, USA, Tel; +1(319)519-3862; Email; Hearing Loss for Tinnitus Submitted: 19 January 2019 Accepted: 06 February 2019 Suppression Published: 08 February 2019 ISSN: 2379-948X 1,2 2,3 Mohamed Salah Elgandy *and Richard S. Tyler Copyright 1Department of Otolaryngology-Head and Neck Surgery, Zagazig University, Egypt © 2019 Elgandy et al. 2Department of Otolaryngology-Head and Neck Surgery, University of Iowa, USA 3Department of Communication Sciences and Disorders, University of Iowa, USA OPEN ACCESS Keywords Abstract • Unilateral hearing loss Tinnitus is a pervasive symptom that can affect many people with hearing loss. • Tinnitus It is found that its incidence is increasing due to accompanying occupational and • Electrical stimulation environmental noise. Even, there is no standard treatment is present up till now, but • Cochlear implants cochlear implants (CIs) positive effects are well proven and documented. This article provides an overview of many publicly available reports about cochlear implants and tinnitus, with review of several articles demonstrating the benefit of cochlear implants for unilateral hearing loss and tinnitus. We believe that this approach will help many, and should be considered as standard practice and reimbursed. INTRODUCTION An increase in rate. Unilateral hearing loss affecting approximately18.1 million • Decrease in rate persons in the United States [1]. Patients with unilateral deafness • Periodic activity frequently also experience tinnitus, which can have a profound • Synchronous activity cross neurons has been associated with an increased incidence of depression, impact on an individual’s quality of life.
    [Show full text]
  • Use of Calcium-Binding Proteins to Map Inputs in Vestibular Nuclei of the Gerbil
    THE JOURNAL OF COMPARATIVE NEUROLOGY 386:317–327 (1997) Use of Calcium-Binding Proteins to Map Inputs in Vestibular Nuclei of the Gerbil GOLDA ANNE KEVETTER* AND ROBERT B. LEONARD Departments of Otolaryngology, Anatomy and Neurosciences, and Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77555 ABSTRACT We wished to determine whether calbindin and/or calretinin are appropriate markers for vestibular afferents, a population of neurons in the vestibular nuclear complex, or cerebellar Purkinje inputs. To accomplish this goal, immunocytochemical staining was observed in gerbils after lesions of the vestibular nerve central to the ganglion, the cerebellum, or both. Eleven to fourteen days after recovery, the brain was processed for immunocytochemical identification of calretinin and calbindin. After lesion of the vestibular nerve, no calretinin staining was seen in any of the vestibular nuclei except for a population of intrinsic neurons, which showed no obvious change in number or staining pattern. Calbindin staining was reduced in all nuclei except the dorsal part of the lateral vestibular nuclei. The density of staining of each marker, measured in the magnocellular medial vestibular nucleus, was signifi- cantly reduced. After the cerebellar lesion, no differences in calretinin staining were noted. However, calbindin staining was greatly reduced in all nuclei. The density of staining, measured in the caudal medial vestibular nucleus, was significantly lower. After a combined lesion of the cerebellum and vestibular nerve, the distribution and density of calretinin staining resembled that after vestibular nerve section alone, whereas calbindin staining was no longer seen. This study demonstrates that calretinin and calbindin are effective markers for the identification of vestibular afferents.
    [Show full text]
  • Selective Degeneration of Synapses in the Dorsal Cochlear Nucleus of Chinchilla Following Acoustic Trauma and Effects of Antioxidant Treatment
    Hearing Research 283 (2012) 1e13 Contents lists available at SciVerse ScienceDirect Hearing Research journal homepage: www.elsevier.com/locate/heares Research paper Selective degeneration of synapses in the dorsal cochlear nucleus of chinchilla following acoustic trauma and effects of antioxidant treatment Xiaoping Du a, Kejian Chen a,1, Chul-Hee Choi a,2, Wei Li a, Weihua Cheng a, Charles Stewart a,b, Ning Hu a, Robert A. Floyd b, Richard D. Kopke a,c,d,* a Hough Ear Institute, Oklahoma, OK 73112, USA b Experimental Therapeutic Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA c Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA d Department of Otolaryngology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA article info abstract Article history: The purpose of this study was to reveal synaptic plasticity within the dorsal cochlear nucleus (DCN) as Received 31 May 2011 a result of noise trauma and to determine whether effective antioxidant protection to the cochlea can Received in revised form also impact plasticity changes in the DCN. Expression of synapse activity markers (synaptophysin and 18 November 2011 precerebellin) and ultrastructure of synapses were examined in the DCN of chinchilla 10 days after Accepted 30 November 2011 a 105 dB SPL octave-band noise (centered at 4 kHz, 6 h) exposure. One group of chinchilla was treated Available online 9 December 2011 with a combination of antioxidants (4-hydroxy phenyl N-tert-butylnitrone, N-acetyl-L-cysteine and acetyl-L-carnitine) beginning 4 h after noise exposure. Down-regulated synaptophysin and precerebellin expression, as well as selective degeneration of nerve terminals surrounding cartwheel cells and their primary dendrites were found in the fusiform soma layer in the middle region of the DCN of the noise exposure group.
    [Show full text]
  • Effectiveness of Cochlear Implants in Adults with Sensorineural Hearing Loss
    Technology Assessment Effectiveness of Cochlear Implants in Adults with Sensorineural Hearing Loss Technology Assessment Program Prepared for: Original: April 11, 2011 Agency for Healthcare Correction: June 17, 2011 Research and Quality 540 Gaither Road Rockville, Maryland 20850 i Effectiveness of Cochlear Implants in Adults with Sensorineural Hearing Loss Technology Assessment Report Project ID: AUDT0510 Original date: April 11, 2011 Correction date: June 17, 2011 * See Errata document for a summary of corrections. Tufts Evidence-based Practice Center Gowri Raman, M.D., M.S. Jounghee Lee, PhD Mei Chung, PhD, MPH James M. Gaylor, BA Srila Sen, M.A. (Editor) Madhumathi Rao, M.D., PhD Joseph Lau, M.D. Technical Consultants Dennis S. Poe, M.D. Associate Professor, Dept of Otology & Laryngology Harvard Medical School, Boston Marilyn W. Neault, PhD, CCC-A Director, Habilitative Audiology Program Children's Hospital, Boston ii This report is based on research conducted by the Tufts Evidence-based Practice Center under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290 2007 10055 1). The findings and conclusions in this document are those of the author(s) who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. No statement in this article should be construed as an official position of the Agency for Healthcare Research and Quality or of the U.S. Department of Health and Human Services. The information in this report is intended to help health care decision-makers; patients and clinicians, health system leaders, and policymakers, make well- informed decisions and thereby improve the quality of health care services.
    [Show full text]
  • Auditory Nerve.Pdf
    1 Sound waves from the auditory environment all combine in the ear canal to form a complex waveform. This waveform is deconstructed by the cochlea with respect to time, loudness, and frequency and neural signals representing these features are carried into the brain by the auditory nerve. It is thought that features of the sounds are processed centrally along parallel and hierarchical pathways where eventually percepts of the sounds are organized. 2 In mammals, the neural representation of acoustic information enters the brain by way of the auditory nerve. The auditory nerve terminates in the cochlear nucleus, and the cochlear nucleus in turn gives rise to multiple output projections that form separate but parallel limbs of the ascending auditory pathways. How the brain normally processes acoustic information will be heavily dependent upon the organization of auditory nerve input to the cochlear nucleus and on the nature of the different neural circuits that are established at this early stage. 3 This histology slide of a cat cochlea (right) illustrates the sensory receptors, the auditory nerve, and its target the cochlear nucleus. The orientation of the cut is illustrated by the pink line in the drawing of the cat head (left). We learned about the relationship between these structures by inserting a dye-filled micropipette into the auditory nerve and making small injections of the dye. After histological processing, stained single fibers were reconstruct back to their origin, and traced centrally to determine how they terminated in the brain. We will review the components of the nerve with respect to composition, innervation of the receptors, cell body morphology, myelination, and central terminations.
    [Show full text]
  • Auditory Pathway of the Epileptic Waltzing Mouse I
    Auditory Pathway of the Epileptic Waltzing Mouse I. A COMPARISON OF THE ACOUSTIC PATHWAYS OF THE NORMAL MOUSE WITH THOSE OF THE TOTALLY DEAF EPILEPTIC WALTZER MURIEL D. ROSS Department of Anatomy, Medical Center, University of Michigan, Ann Arbor, Michigan Waltzing and epilepsy are hereditary cisms of this paper, and to Dr. Edward traits which appear independently or to- Lauer for his suggestions and his assist- gether in various stocks of mice of the ance in matters of technique. She is also genus Peromyscus. They are inherited in grateful to Dr. Lee R. Dice and the Labo- general as Mendelian recessives (Dice, '35; ratory of Vertebrate Biology for making Watson, '39 j. Young members of the par- the mice and the testing equipment avail- ticular stock of Peromyscus rnnniculatus able to her for this study, and to Dr. Eliza- artemisiae to be described in this study ex- beth Barto, who tested the mice for range hibit both waltzing and epilepsy when of hearing. Assistance was obtained from stimulated by sounds of various kinds. a grant from the Alfonso Morton Clover At the sound of jingling keys, or of certain Scholarship and Research Fund to the pure tones, the young epileptic waltzer Laboratory of Comparative Neurology for whirls in circles and then dashes wildly the preparation of the material for micro- about the enclosure. After a few seconds, scopic examination. Aid in testing the he falls upon his side in an epileptic responses of the experimental animals seizure. His body becomes rigid, his fore- used in this study was supplied through legs are flexed and his hind legs are ex- a grant (MH 375 j to Dr.
    [Show full text]
  • Cochlear Implant Guide
    Cochlear Implant Guide Ear & Hearing Center at Texas Children’s Hospital® Dear Families, Welcome to the Cochlear Implant Program at Texas Children’s Hospital! Our goal is to provide comprehensive, specialized care for children with severe hearing loss, and help them achieve the best possible communication outcomes. Since our program started in 2001, we have performed more than 700 implants. Your child may be a candidate for a cochlear implant in one or both ears. Cochlear implants, or CIs, are innovative devices which can directly stimulate the auditory nerve and provide access to sound in children with severe or profound hearing loss. The decision about whether to recommend a CI is highly individualized, and requires the input of specialists in multiple areas, including Otolaryngology, Audiology, Speech Pathology, and Neuropsychology, among others. These specialists make up the members of the Cochlear Implant Team. They work in close collaboration to determine who is a candidate for a CI, perform the implantation surgery, and help patients through the rehabilitation afterwards. This guide will help you understand the entire process, who may be considered a CI candidate, the basics of how the device works, how the surgery is done, and the necessary rehabilitation to achieve a successful outcome. Thank you for the opportunity to help your family through this journey. All of our team members are dedicated to helping children with hearing loss achieve their full potential. If you have any questions or concerns, please do not hesitate to contact us. Sincerely, The Cochlear Implant Team at Texas Children’s Hospital Table of Contents 1.
    [Show full text]
  • Sensori-Neural Deafness and the Cochlear Implant
    Rochester Institute of Technology RIT Scholar Works Theses 9-30-1997 Sensori-neural deafness and the cochlear implant Margaret Pence Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Pence, Margaret, "Sensori-neural deafness and the cochlear implant" (1997). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Approvals Chief Advisor: Glen Hintz Date Associate Advisor: Robert Wabnitz Date : i - /] - q'} Associate Advisor: Catherine Clark Date /~J I '/ f? Associate Advisor: Dr. Paul Dutcher Date /LO/77 Chairperson: Tom Lightfoot Date / 7 2-/;I/?~ 1 I I, Margaret Pence, hereby grant permission to the Wallace Memorial Library of RIT to reproduce my thesis in whole or in part. Any reproduction will not be for commercial use or profit. Signature Date Rochester Institute of Technology A Thesis submitted to the Faculty of the College of Imaging Arts and Sciences in candidacy for the degree of Master of Fine Arts. Sensori-neural Deafness and the Cochlear Implant by Margaret Pence 9/30/97 Introduction The inner ear is part of an intricate network of fluid filled cavities located in the temporal bone of the skull. Within this bony labyrinth is the cochlea which houses the organ of hearing called the organ of Corti. Any number of factors, including disease, trauma and congenital malformations may interrupt the processing of sound through the inner ear.
    [Show full text]