Neurosolutions Infinity

Total Page:16

File Type:pdf, Size:1020Kb

Neurosolutions Infinity NeuroSolutions Infinity Copyright © 2014 by NeuroDimension, Inc.. All rights are reserved. NeuroSolutions Infinity Table of contents Welcome to NeuroSolutions Infinity ...................................................................... 4 Quick Start Guides .............................................................................................. 4 Launching NeuroSolutions Infinity ..................................................................... 6 Choosing Your Database Server ........................................................................ 8 Creating a New Project .................................................................................. 10 Creating a New Experiment ............................................................................ 12 Evaluating Your Results ................................................................................. 14 Understanding the Interface ............................................................................... 15 Main Dashboard ............................................................................................ 17 Projects Panel ........................................................................................... 18 Production Models Panel ............................................................................ 19 Create New Project ........................................................................................ 22 Which data should this project analyze? ....................................................... 22 What is the focus of this project? ................................................................ 23 How should abnormal data be handled? ...................................................... 24 How should the data be allocated for verification? ......................................... 24 Data Settings and Analysis ......................................................................... 25 Create a New Experiment ............................................................................... 28 How should this experiment search for results? ............................................ 28 How should the data be allocated for optimization? ....................................... 30 When should this experiment adjust or halt? ................................................ 31 Data Settings & Analysis ............................................................................ 32 Experiment Dashboard ................................................................................... 34 Potential Models Tab ................................................................................. 35 Potential Inputs Tab .................................................................................. 37 Settings Tab ............................................................................................. 38 Search Characteristics and Adjust Priorities .............................................. 39 Project Dashboard ......................................................................................... 41 Management Panels ....................................................................................... 42 View Computer Settings ............................................................................. 43 Database Settings .................................................................................. 43 E-mail Notification Settings ..................................................................... 44 NeuroSolutions Accelerator Settings ........................................................ 45 Import Data .............................................................................................. 47 Manage Data Allocations ............................................................................ 49 Manage External Data ................................................................................ 52 Manage Processing Lists ............................................................................. 52 Manage Product Licenses ............................................................................ 54 Common Sections ......................................................................................... 55 Current Processing Section ......................................................................... 55 Selected Model Section ............................................................................... 57 Database Configuration & Installation .................................................................. 59 Selecting a Database Option ........................................................................... 59 Configuring Multi-Machine Setup ..................................................................... 60 Deploying with QuickDeploy ............................................................................... 62 Overview ...................................................................................................... 62 Running QuickDeploy .................................................................................... 62 2 / 92 NeuroSolutions Infinity Using the QuickDeploy Inspector .................................................................... 64 Using the Generated Files ............................................................................... 65 Overview of Using the Generated Files ......................................................... 65 Setting Up Your Project ............................................................................. 67 C# ...................................................................................................... 67 VB.NET ................................................................................................ 68 VBA (Microsoft Excel) ............................................................................ 69 Object Model ............................................................................................ 70 ProductionModel Object ......................................................................... 70 GetInputNameList ............................................................................. 71 GetLastErrorMessage ......................................................................... 71 GetOutputNameList ........................................................................... 72 GetResponse ..................................................................................... 73 InputColumnGroup ........................................................................... 74 LoadDefinitionFile .............................................................................. 74 OutputColumnGroup ......................................................................... 75 ReleaseResources .............................................................................. 76 Sample Code ............................................................................................ 77 C# ...................................................................................................... 77 VB.NET ................................................................................................ 78 Microsoft Excel (VBA) ............................................................................ 79 FAQ & Troubleshooting ..................................................................................... 81 General Technology ....................................................................................... 82 What do you use a neural network for? ........................................................ 82 What is a neural network? .......................................................................... 82 What is data preprocessing? ....................................................................... 82 What is distributed computing? ................................................................... 82 What is GPU (Graphical Processing Unit) processing? .................................... 83 What is Leave-N-Out? ................................................................................ 83 What is Sensitivity Analysis? ....................................................................... 83 What is the difference between NVIDIA CUDA and OpenCL? .......................... 83 What is the difference between Single vs Double Precision? ............................ 83 Why are neural networks so powerful? ........................................................ 83 Sales & License Information ........................................................................... 83 Contacting NeuroDimension ....................................................................... 84 Do you provide educational discounts? ........................................................ 84 Do you provide site licenses? ...................................................................... 84 How to buy NeuroSolutions Infinity? ........................................................... 85 Related Products & Modules ....................................................................... 85 NeuroSolutions Infinity .................................................................................. 86 How many Infinity Processors do I need? .................................................... 86 What are the system requirements? ............................................................. 87 What do all of these acronyms mean? .......................................................... 87 Why should I setup the Shared Import Folder? ............................................. 90 What is a "Plateau"?
Recommended publications
  • Neural Networks
    AIAI andand thethe NetNet •• Buyer’sBuyer’s GuideGuide 19.1 Where Intelligent Technology Meets the Real World www.pcai.com IntelligentIntelligent Applications Applications TThehe ModernModern RoboticRobotic Also:Also: “Movement”“Movement” Agents, Business Applications, TThehe StateState ofof AIAI Today:Today: TheThe Business Intelligence, WWeb:eb: AI’sAI’s NewNew PlaygroundPlayground Computational Intelligence, Data Analysis & Mining, Robotics:Robotics: RobotsRobots ThatThat Intelligent Applications, Intelligent Tools, MimicMimic AnimalsAnimals Intelligent Tutoring, Intelligent Web Searching, TThehe NationalNational ScienceScience Neural Networks, Foundation:Foundation: EncouragingEncouraging Robotics, tthehe ResearchersResearchers ofof Speech Recognition, TTomorrowomorrow Web Based Expert Systems, Plus:Plus: AIAI andand thethe Net,Net, Training, Bookzone,Bookzone, Buyer’sBuyer’s Guide,Guide, AI Conferences, ProductProduct UUpdatespdates and more! PC AI 2 19.1 Quantities Limited Buy PC AI Back Issues 1995 1999 A Great Resource 9 #1 Intelligent Tools 13 #1 Intelligent Tools & Languages 9 #2 Fuzzy Logic / Neural Networks (Knowledge Verification) for AI Research 9 #3 Object Oriented Development 13 #2 Rule and Object Oriented 9 #4 Knowledge-Based Systems Development (Data Mining) $8.00/Issue - US 9 #5 AI Languages 13 #3 Neural Nets & Fuzzy Logic (For Us and Canadian and 9 #6 Business Applications (Searching) Foreign Postage 13 #4 Knowledge-Based Systems contact PC AI or visit the 1996 (Fuzzy Logic) 10 #1 Intelligent Applications PC AI web site) 13 #5 Data Mining (Simulation and 10 #2 Object Oriented Development Modeling) Order online at 10 #3 Neural Networks / Fuzzy Logic 13 #6 Business Applications www.pcai.com 10 #4 Knowledge-Based Systems (Machine Learning) Total amount enclosed 10 #5 Genetic Algorithm & Modeling 10 #6 Business Applications 2000 $____________.
    [Show full text]
  • Artificial Neural Networks
    ARTIFICIAL NEURAL NETWORKS: A REVIEW OF TRAINING TOOLS Darío Baptista, Fernando Morgado-Dias Madeira Interactive Technologies Institute and Centro de Competências de Ciências Exactas e da Engenharia, Universidade da Madeira Campus da Penteada, 9000-039 Funchal, Madeira, Portugal. Tel:+351 291-705150/1, Fax: +351 291-705199 Abstract: Artificial Neural Networks became a common solution for a wide variety of problems in many fields. The most frequent solution for its implementation consists of building and training the Artificial Neural Network within a computer. For implementing a network in an efficient way, the user can access a large choice of software solutions either commercial or prototypes. Choosing the most convenient solution for the application according to the network architecture, training algorithm, operating system and price can be a complex task. This paper helps the Artificial Neural Network user by providing a large list of solution available and explaining their characteristics and terms of use. The paper is confined to reporting the software products that have been developed for Artificial Neural Networks. The features considered important for this kind of software to have in order to accommodate its users effectively are specified. The development of software that implements Artificial Neural is a rapidly growing field driven by strong research interests as well as urgent practical, economical and social needs. Copyright CONTROLO2012 Keywords: Artificial Neural Networks, Training Tools, Training Algorithms, Software. 1. INTRODUCTION commercialization of new ANN tools. With the purpose to inform which tools are available at present Nowadays, in different areas, it is important to and make the choice of which tool to use, this paper analyse nonlinear data to do prediction, classification contains the description of software that has been or to build models.
    [Show full text]
  • Reverse Image Search for Scientific Data Within and Beyond the Visible
    Journal, Vol. XXI, No. 1, 1-5, 2013 Additional note Reverse Image Search for Scientific Data within and beyond the Visible Spectrum Flavio H. D. Araujo1,2,3,4,a, Romuere R. V. Silva1,2,3,4,a, Fatima N. S. Medeiros3,Dilworth D. Parkinson2, Alexander Hexemer2, Claudia M. Carneiro5, Daniela M. Ushizima1,2,* Abstract The explosion in the rate, quality and diversity of image acquisition instruments has propelled the development of expert systems to organize and query image collections more efficiently. Recommendation systems that handle scientific images are rare, particularly if records lack metadata. This paper introduces new strategies to enable fast searches and image ranking from large pictorial datasets with or without labels. The main contribution is the development of pyCBIR, a deep neural network software to search scientific images by content. This tool exploits convolutional layers with locality sensitivity hashing for querying images across domains through a user-friendly interface. Our results report image searches over databases ranging from thousands to millions of samples. We test pyCBIR search capabilities using three convNets against four scientific datasets, including samples from cell microscopy, microtomography, atomic diffraction patterns, and materials photographs to demonstrate 95% accurate recommendations in most cases. Furthermore, all scientific data collections are released. Keywords Reverse image search — Content-based image retrieval — Scientific image recommendation — Convolutional neural network 1University of California, Berkeley, CA, USA 2Lawrence Berkeley National Laboratory, Berkeley, CA, USA 3Federal University of Ceara,´ Fortaleza, CE, Brazil 4Federal University of Piau´ı, Picos, PI, Brazil 5Federal University of Ouro Preto, Ouro Preto, MG, Brazil *Corresponding author: [email protected] aContributed equally to this work.
    [Show full text]
  • The Nnlib2 Library and Nnlib2rcpp R Package for Implementing Neural Networks
    The nnlib2 library and nnlib2Rcpp R package for implementing neural networks Vasilis N Nikolaidis1 1 University of Peloponnese DOI: 10.21105/joss.02876 Software • Review Summary • Repository • Archive Artificial Neural Networks (ANN or NN) are computing models used in various data-driven applications. Such systems typically consist of a large number of processing elements (or Editor: Kakia Chatsiou nodes), usually organized in layers, which exchange data via weighted connections. An ever- increasing number of different neural network models have been proposed and used. Among Reviewers: the several factors differentiating each model are the network topology, the processing and • @schnorr training methods in nodes and connections, and the sequences utilized for transferring data • @MohmedSoudy to, within and from the model etc. The software presented here is a C++ library of classes and templates for implementing neural network components and models and an R package Submitted: 22 October 2020 that allows users to instantiate and use such components from the R programming language. Published: 23 May 2021 License Authors of papers retain copyright and release the work Statement of need under a Creative Commons Attribution 4.0 International A significant number of capable, flexible, high performance tools for NN are available today, License (CC BY 4.0). including frameworks such as Tensorflow (Abadi et al., 2016) and Torch (Collobert et al., 2011), and related high level APIs including Keras (Chollet & others, 2015) and PyTorch (Paszke et al., 2019). Ready-to-use NN models are also provided by various machine learning platforms such as H2O (H2O.ai, 2020) or libraries, SNNS (Zell et al., 1994) and FANN (Nissen, 2003).
    [Show full text]
  • Neural Network FAQ, Part 1 of 7
    Neural Network FAQ, part 1 of 7: Introduction Archive-name: ai-faq/neural-nets/part1 Last-modified: 2002-05-17 URL: ftp://ftp.sas.com/pub/neural/FAQ.html Maintainer: [email protected] (Warren S. Sarle) Copyright 1997, 1998, 1999, 2000, 2001, 2002 by Warren S. Sarle, Cary, NC, USA. --------------------------------------------------------------- Additions, corrections, or improvements are always welcome. Anybody who is willing to contribute any information, please email me; if it is relevant, I will incorporate it. The monthly posting departs around the 28th of every month. --------------------------------------------------------------- This is the first of seven parts of a monthly posting to the Usenet newsgroup comp.ai.neural-nets (as well as comp.answers and news.answers, where it should be findable at any time). Its purpose is to provide basic information for individuals who are new to the field of neural networks or who are just beginning to read this group. It will help to avoid lengthy discussion of questions that often arise for beginners. SO, PLEASE, SEARCH THIS POSTING FIRST IF YOU HAVE A QUESTION and DON'T POST ANSWERS TO FAQs: POINT THE ASKER TO THIS POSTING The latest version of the FAQ is available as a hypertext document, readable by any WWW (World Wide Web) browser such as Netscape, under the URL: ftp://ftp.sas.com/pub/neural/FAQ.html. If you are reading the version of the FAQ posted in comp.ai.neural-nets, be sure to view it with a monospace font such as Courier. If you view it with a proportional font, tables and formulas will be mangled.
    [Show full text]
  • From Digital Computing to Brain-Like Neuromorphic Accelerator
    Mahyar SHAHSAVARI Lille University of Science and Technology Doctoral Thesis Unconventional Computing Using Memristive Nanodevices: From Digital Computing to Brain-like Neuromorphic Accelerator Supervisor: Pierre BOULET Thèse en vue de l’obtention du titre de Docteur en INFORMATIQUE DE L’UNIVERSITÉ DE LILLE École Doctorale des Sciences Pour l’Ingénieur de Lille - Nord De France 14-Dec-2016 Jury: Hélène Paugam-Moisy Professor of University of the French West Indies (Université des Antilles), France (Rapporteur) Michel Paindavoine Professor of University of Burgundy (Université de Bourgogne), France (Rapporteur) Virginie Hoel Professor of Lille University of Science and Technology, France(Président) Said Hamdioui Professor of Delft University of Technology, The Netherlands Pierre Boulet Professor of Lille University of Science and Technology, France Acknowledgment Firstly, I would like to express my sincere gratitude to my advisor Prof. Pierre Boulet for all kind of supports during my PhD. I never forget his supports specially during the last step of my PhD that I was very busy due to teaching duties. Pierre was really punctual and during three years of different meetings and discussions, he was always available on time and as a record he never canceled any meeting. I learned a lot form you Pierre, specially the way of writing, communicating and presenting. you were an ideal supervisor for me. Secondly, I am grateful of my co-supervisor Dr Philippe Devienne. As I did not knew any French at the beginning of my study, it was not that easy to settle down and with Philippe supports the life was more comfortable and enjoyable for me and my family here in Lille.
    [Show full text]
  • Forecasting with Artificial Neural Networks
    Forecasting with Artificial Neural Networks EVIC 2005 Tutorial Santiago de Chile, 15 December 2005 Æ slides on www.neural-forecasting.com Sven F. Crone Centre for Forecasting Department of Management Science Lancaster University Management School email: [email protected] EVIC’05 © Sven F. Crone - www.bis-lab.com Lancaster University Management School? EVIC’05 © Sven F. Crone - www.bis-lab.com What you can expect from this session … Simple back propagation algorithm [Rumelhart et al. 1982] ∂C(t pj ,o pj ) E p = C(t pj , o pj ) o pj = f j (net pj ) Δ p w ji ∝ − ∂w ji ∂C(t ,o ) ∂C(t ,o ) ∂net pj pj = pj pj pj ∂w ji ∂net pj ∂w ji ∂C(t ,o ) Æ „How to …“ on Neural δ = − pj pj pj ∂net pj Network Forecasting ∂C(t ,o ) ∂C(t ,o ) ∂o δ = − pj pj = pj pj pj pj with limited maths! ∂net pj ∂opj ∂net pj ∂o pt ' = f j (net pj ) ∂net pj ∂C(t pj ,opj ) ' δ pj = f j (net pj ) Æ CD-Start-Up Kit for ∂o pj ∂ w o ∂C(t ,o ) ∂net ∂C(t ,o ) ∑ ki pi Neural Net Forecasting pj pj pk = pj pj i ∑ ∂net ∂o ∑ ∂net ∂o k pk pj k pk pj Æ 20+ software simulators ∂C(t pj ,opj ) = ∑ wkj = − ∑δ pj wkj k ∂net pk k Æ datasets ' δ pj = f j (net pj )∑δ pj wkj Æ literature & faq k ⎧∂C(t pj ,opj ) ' ⎪ f j (net pj ) if unit j is in the output layer ⎪ ∂opj Æ slides, data & additional info on δ pj = ⎨ ⎪ ' f j (net pj )∑δ pk wpjk if unit j is in a hidden layer www.neural-forecasting.com ⎩⎪ k EVIC’05 © Sven F.
    [Show full text]
  • Uhm Ms 3812 R.Pdf
    UNIVERSITY OF HAWAI'I LIBRARY ADVANCED MARINE VEIDCLE PRODUCTS DATABASE -A PRELIMINARY DESIGN TOOL A THESIS SUBMITTED TO THE GRADUATE DMSION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN OCEAN ENGINEERING AUGUST 2003 By Kristen A.L.G. Woo Thesis Committee: Kwok Fai Cheung, ChaiIperson Hans-Jurgen Krock John C. Wiltshire ACKNOWLEDGEMENT I would like to thank my advisor Prof. Kwok Fai Cheung and the other committee members Prof. Hans-Jiirgen Krock and Dr. John Wiltshire for the time and effort they spent with me on this project. I would also like to thank the MHPCC staff, in particular, Mr. Scott Splean for their advice and comments on the advanced-marine-vehicle products database. Thanks are also due to Drs. Woei-Min Lin and JUll Li of SAIC for their advice on the neural network and preliminary ship design tools. I would also like to thank Mr. Yann Douyere for his help with MatLab. The work described in this thesis is a subset of the project "Environment for Design of Advanced Marine Vehicles and Operations Research" supported by the Office of Naval Research, Grant No. NOOOI4-02-1-0903. iii ABSTRACT The term advanced marine vehicle encompasses a broad category of ship designs typically referring to multihull ships such as catamarans, trimarans and SWATH (small waterplane area twin hull) ships, but also includes hovercrafts, SES (surface effect ships), hydrofoils, and advanced monohulls. This study develops an early stage design tool for advanced marine vehicles that provides principal particulars and additional parameters such as fuel capacity and propulsive power based on input ship requirements.
    [Show full text]
  • Unconventional Computing Using Memristive Nanodevices: from Digital Computing to Brain-Like Neuromorphic Accelerator
    Mahyar SHAHSAVARI Lille University of Science and Technology Doctoral Thesis Unconventional Computing Using Memristive Nanodevices: From Digital Computing to Brain-like Neuromorphic Accelerator Supervisor: Pierre BOULET Thèse en vue de l’obtention du titre de Docteur en INFORMATIQUE DE L’UNIVERSITÉ DE LILLE École Doctorale des Sciences Pour l’Ingénieur de Lille - Nord De France 14-Dec-2016 Jury: Hélène Paugam-Moisy Professor of University of the French West Indies (Université des Antilles), France (Rapporteur) Michel Paindavoine Professor of University of Burgundy (Université de Bourgogne), France (Rapporteur) Virginie Hoel Professor of Lille University of Science and Technology, France(Président) Said Hamdioui Professor of Delft University of Technology, The Netherlands Pierre Boulet Professor of Lille University of Science and Technology, France Acknowledgment Firstly, I would like to express my sincere gratitude to my advisor Prof. Pierre Boulet for all kind of supports during my PhD. I never forget his supports specially during the last step of my PhD that I was very busy due to teaching duties. Pierre was really punctual and during three years of different meetings and discussions, he was always available on time and as a record he never canceled any meeting. I learned a lot form you Pierre, specially the way of writing, communicating and presenting. you were an ideal supervisor for me. Secondly, I am grateful of my co-supervisor Dr Philippe Devienne. As I did not knew any French at the beginning of my study, it was not that easy to settle down and with Philippe supports the life was more comfortable and enjoyable for me and my family here in Lille.
    [Show full text]
  • Neural Network FAQ, Part 1 of 7: Introduction
    Neural Network FAQ, part 1 of 7: Introduction Archive-name: ai-faq/neural-nets/part1 Last-modified: 2002-05-17 URL: ftp://ftp.sas.com/pub/neural/FAQ.html Maintainer: [email protected] (Warren S. Sarle) Copyright 1997, 1998, 1999, 2000, 2001, 2002 by Warren S. Sarle, Cary, NC, USA. --------------------------------------------------------------- Additions, corrections, or improvements are always welcome. Anybody who is willing to contribute any information, please email me; if it is relevant, I will incorporate it. The monthly posting departs around the 28th of every month. --------------------------------------------------------------- This is the first of seven parts of a monthly posting to the Usenet newsgroup comp.ai.neural-nets (as well as comp.answers and news.answers, where it should be findable at any time). Its purpose is to provide basic information for individuals who are new to the field of neural networks or who are just beginning to read this group. It will help to avoid lengthy discussion of questions that often arise for beginners. SO, PLEASE, SEARCH THIS POSTING FIRST IF YOU HAVE A QUESTION and DON'T POST ANSWERS TO FAQs: POINT THE ASKER TO THIS POSTING The latest version of the FAQ is available as a hypertext document, readable by any WWW (World Wide Web) browser such as Netscape, under the URL: ftp://ftp.sas.com/pub/neural/FAQ.html. If you are reading the version of the FAQ posted in comp.ai.neural-nets, be sure to view it with a monospace font such as Courier. If you view it with a proportional font, tables and formulas will be mangled.
    [Show full text]
  • Neural Networks
    SLAC-TN-03-028 Neural Networks Patrick Smith Office of Science, Student UndergraduateLaboratory Internship (SULI) Stanford University Stanford Linear Accelerator Center Menlo Park, California August 14,2003 Preparedin partial fulfillment of the requirementsof the Office of Science,Department of Energy’s ScienceUndergraduate Laboratory Internship under the direction of Tony Johnson. Participant: Signature ResearchAdvisor: Signature Work supported in part by the Department of Energy contract DE-AC03-76SF00515. INTRODUCTION Physicistsuse large detectorsto measureparticles createdin high-energy collisions at particle accelerators.These detectors typically producesignals indicating either where ionization occurs along the path of the particle, or where energyis depositedby the.particle.The data producedby thesesignals is fed into pattern recognition programsto try to identify what particles were produced,and to measurethe energy and direction of theseparticles. Ideally, there are many techniquesused in this pattern recognition software. One technique,neural networks, is particularly suitable for identifying what type of particle causedby a set of energy deposits. Neural networks can derive meaningfrom complicatedor imprecisedata, extract patterns,and detect trendsthat are too complex to be noticed by either humansor other computer related processes. To assistin the advancementof this technology,Physicists use a tool kit to experimentwith severalneural network techniques.The goal of this researchis interface a neural network tool kit into JavaAnalysis Studio (JAS3), an applicationthat allows data to be analyzedfrom any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desiredoutput while using JAS3 to analyzethe results or output. Before an implementationof a neural network can take place, a firm understandingof what a neural network is and how it works is beneficial.
    [Show full text]
  • European Journal of Computer Science and Information
    European Journal of Computer Science and Information Technology Vol.9, No.2, pp.21-28, 2021 Print ISSN: 2054-0957 (Print), Online ISSN: 2054-0965 (Online) COMPARING THE TECHNOLOGIES USED FOR THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS Elda Xhumari PhD Candidate, University of Tirana, Faculty of Natural Sciences, Department of Informatics ABSTRACT: In the past few years, artificial neural networks (ANNs) have become a practice wherever it is necessary to solve problems of forecasting, classification, or control. ANNs are intuitively attractive because they are based on a primitive biological model of nervous systems. In the future, the development of such neurobiological models may lead to the creation of truly thinking computers. The areas of application of neural networks are very diverse - these are text and speech recognition, semantic search, expert systems, and decision support systems, prediction of stock prices, security systems, text analysis, etc. Based on the wide application of artificial neural networks, the application of numerous and diverse technologies can be inferred. In this research paper, a comparative approach towards the above-mentioned technologies will be undertaken in order to identify the optimal technology for each problem area in accordance with their respective advantages and disadvantages. KEYWORDS: artificial neural networks, applications, modules INTRODUCTION Artificial Neural Network (ANN) is a computational method that integrates the concepts of the human biological brain to computers for machine learning. The main purpose is to enable computers to adapt and learn the exact behaviour of human beings. As such, machine learning facilitates the continued processing of information that leads to the capacity to solve complex problems and equations that are beyond human ability (Goncalves et al., 2013).
    [Show full text]