Artificial Neural Networks

Total Page:16

File Type:pdf, Size:1020Kb

Artificial Neural Networks ARTIFICIAL NEURAL NETWORKS: A REVIEW OF TRAINING TOOLS Darío Baptista, Fernando Morgado-Dias Madeira Interactive Technologies Institute and Centro de Competências de Ciências Exactas e da Engenharia, Universidade da Madeira Campus da Penteada, 9000-039 Funchal, Madeira, Portugal. Tel:+351 291-705150/1, Fax: +351 291-705199 Abstract: Artificial Neural Networks became a common solution for a wide variety of problems in many fields. The most frequent solution for its implementation consists of building and training the Artificial Neural Network within a computer. For implementing a network in an efficient way, the user can access a large choice of software solutions either commercial or prototypes. Choosing the most convenient solution for the application according to the network architecture, training algorithm, operating system and price can be a complex task. This paper helps the Artificial Neural Network user by providing a large list of solution available and explaining their characteristics and terms of use. The paper is confined to reporting the software products that have been developed for Artificial Neural Networks. The features considered important for this kind of software to have in order to accommodate its users effectively are specified. The development of software that implements Artificial Neural is a rapidly growing field driven by strong research interests as well as urgent practical, economical and social needs. Copyright CONTROLO2012 Keywords: Artificial Neural Networks, Training Tools, Training Algorithms, Software. 1. INTRODUCTION commercialization of new ANN tools. With the purpose to inform which tools are available at present Nowadays, in different areas, it is important to and make the choice of which tool to use, this paper analyse nonlinear data to do prediction, classification contains the description of software that has been or to build models. For this purpose, a nonlinear developed specifically for ANN, independently of model such as the Artificial Neural Network (ANN) the language used. It is important to refer that some can be used. An ANN is an interconnection of tools were created and used for academic studies and neurons to build a network, whose inspiration comes others are commercial and sophisticated tools, which from the natural neural networks that compose the help the mainstream business users take decisions brain. The processing capacity of the ANN is stored about their company. in the weights of the connections and they are The paper does not cover ANN such as spiking obtained, in the most common case of supervised neurons and other models that closely biologically training, by a learning process that uses examples or inspired. training patterns [1]. Each year more ANN tools are being used for 2. ARTIFICIAL NEURAL NETWORKS TOOLS data collecting, not only for academic studies, but also to manage decisions in some large and mid- Most of the ANN’s tools are documented through range companies because this data holds valuable scientific papers [2-12] or websites [13-58] with information, e.g., trends and patterns, which could be enough information for the user to make an informed used to improve business decisions and optimize decision of whether to test and use the proposed tool success. This need for an automated extraction of or to search for another one that fits its needs. useful knowledge from enormous quantity of data is widely recognized, which leads to creations and 1.1 System Requirement Table 1 List the operating system for each tool. The most common set of requirements defined by OS Mac Window Unix Linux Sun Others any tool is the operating system. To be used Tools OS X efficiently, each tool needs an appropriate Operating AiNet (3.1 to NT) System. Table 1 shows the recommended operating system for the proper functioning. It also shows that Annie (XP or later) the majority of the tools use Windows as the Aspirin/Migraines operating system. Outside the Microsoft universe, the Basis-of-AI-NN operating system most often used for the realization (3.1) of an ANN’s tool is the Mac OS. The operating EasyNN (all version) system requirements of some of the tools are often Encog accompanied by hardware and software minimum (all version) characteristics. These requirements correspond to the FANN (all version) elements that are necessary to be installed on the FastICA any OS (need Matlab platform - tool constituted by m files) computer to provide optimal functioning of tool. It is FuNeGen important to remind that these software pre-requisites (all version) Fuzzy ART/ Fuzzy are not included in the tool installation package and any OS (need Matlab platform - tool constituted by m files) ARTMAP need to be installed separately before installing the GENESIS 2.3 required tool. JATTON Table 2 shows the various aspects of software and (all version) hardware requirements necessary for each tool. It is Java NNS (NT or later) (OS 7) important to remind the user that exceeding by far these requirements does not guarantee to the user that Joone (all version) everything will run with absolute smoothness and Lens (all version) look its best. LM-MLP (95 or later) Table 2. List of software requirements Multiple HD Video Backpropagation Tools RAM Processor JRE Free Space Resolution Color NNFit AIX; IRIX (OS 4.1.4) AiNet 4MB 5MB NNSYSID any OS (need Matlab platform - tool constituted by m files) 1.5 or Encog NNT any OS (need Matlab platform - tool constituted by m files) later Intel and GENESIS 2.3 NetLab any OS (need Matlab platform - tool constituted by m files) AMD 64 bit 1.6 or JATTON NeuroModeler later (95 to XP) 1.3 or Java NNS Neural Network later Toolbox any OS (need Matlab platform - tool constituted by m files) Joone 256MB NeuroIntelligence LM-MLP 32MB Pentium I or II (98or later) Neuroph Nenet 16 bits NetLab 456KB NeuroSolutions Processor (XP or later) NeuroModeler 128MB Speed: 1GHz AIX ; Nest NeuroIntelligence 128MB 15MB 800x600 8 bits Pentium II (10.3) (Solaris) SGI; 1.6 or Neuroph NevProp later NeuroSolutions 100MB 1024x768 Pentium IV Nico Toolkit 1.4 or Nico Toolkit later Nuclass (NT or later) Nuclass 32MB 25MB Numap Numap 32MB 25MB (NT or later) Pythia 32 MB 1.39 MB Pentium PDP++ (known as SGI Emergent) (95 or later) SOM 64 MB 1 MB Processor Statistica 1GB 172.84MB Pythia Speed: 2GHz (95 or later) 1.5 or Weka Ultrix; later SNNS (OS 4;5) AIX; IRIX There is not any specification. SOM any OS (need Matlab platform - tool constituted by m files) SOM_PAK - LVQ_PAK 1.2. Network architectures for each neural tools. Statistica (NT or later) Table 3 and Table 4 show the networks architecture Torch (*) FreeBSD and the training algorithm for each tool. It can be seen that the networks more usual are Radial Basis Trajan Function, Multiplayer Perceptron and Self- Uts IRIX (OS 5.3) Organizing Map and the training algorithm more usual is the Backpropagation. WEKA (10.6) AIX;Ultrix; XNBC (95 to XP) Hpux (*) is not yet Windows compatible, coming soon; There is; There is not. Table 3. List the network architecture for each tool. Legend: Tools Arquitecture N1 – Arbitrarily connected neuron; AiNet N38 N2 – Adaline Linear Neuron; N19; N20; N22; N27; N32; N38; Annie N47 N3 – Autoassociative Memory; Aspirin/Migraines N13; N43 N4 – Adaptive Resonance Theory; Basis-of-AI-NN N4; N6; N9; N20; N22; N27; N29 N5 – Adaptive Resonance Theory Mapping N6 – Bidirectional Associative Memory; EasyNN N38 N7 – BayesNet/Bayesian Network; Encog N2; N4; N6; N9; N16; N19; N27; N31; N32; N38; N42; N47; N50 N8 – Bipolar network; FANN N20 N9 – Boltzmann Machine FastICA N30 N10 – Bridged Multiplayer Perceptron; N11 – Back-Propagation network; FuNeGen N12 N12 – Coactive Network – Fuzzy Interference Fuzzy ART/ Fuzzy ARTMAP N4; N5 System; GENESIS 2.3 N20; N26 N13 – Canonical Discriminants Analysis JATTON N11; N16; N32 N14 – Convolutional Network; Java NNS N20 N15 – Competitive neural network; N16 – Counter-Propagation neural network; Joone N20; N32; N39; N43; N52 N17 – Deep Boltzmann Machines/Mean-field; Lens N9; N20; N22; N29; N32 N18 – Dynamic network; LM-MLP N38 N19 – Elman Network; Multiple Backpropagation N20; N38 N20 – Feed-Forward neural network; NNFit N38 N21 – Functional Link Network; N22 – Recurrent network; NNSYSID N20; N38 N23 – Generalized regression neural network; NNT N1; N8; N10; N38 N24 – Hebbian Network; NetLab N20; N24; N35; N38; N47; N50 N25 – Hybrid Models NeuroModeler N2; N4; N6; N9; N16; N38; N42 N26 – Hodgkin & Huxley Neural Network; N27 – Hopfield Network; Neural Network Toolbox N2; N18; N19; N22; N27; N33; N38; N47; N50; N52 N28 – Integrate and fire NeuroIntelligence N11; N38 N29 – Interactive Activation Network; N2; N6; N15; N24; N27; N32; N34; N30– Independent component analysis; Neuroph N38; N47 N31 – Jordan Recurrent NeuroSolutions N12; N19; N20; N22; N23; N38; N39; N46; N47; N50; N51 N32 – Kohonen networks; Nest N4; N28 N33 – Learning Vector Quantization nets; NevProp N20; N38 N34 – Maxnet; N35 – Mixture Density Network; Nico Toolkit N18; N38; N47 N36 – Multidimensional Scaling; Nuclass N38; N45; N50 N37 – Mixture of Gaussians Networks; Numap N38; N45; N50 N38 – Multiplayer Perceptron; N9; N17; N20; N24; N27; N27; N39 – Modular neural Network; PDP++ (also known as Emergent) N36; N40; N43; N49; N50 N40 – Mixture of Experts; N11; N38 Pythia N41 – Neocognitron Neural Network; N3; N4; N6; N16; N19; N27; N33; SNNS N44; N50; N22; N52 N42 – Neuroevolution of Augmenting Topologies SOM N43; N50 N43 – Principal Component Analysis; N44 – Pruned Cascade-Correlation; SOM_PAK - LVQ_PAK N33; N50 N45 – Piecewise linear network Statistica N23; N38; N41; N46; N47; N50 N46 – Probabilistic Neural Network; Torch N14; N38; N40; N47; N52 N47 – Radial Basis Function; Trajan N23; N38; N46; N47; N50 N48 – Space Mapping Uts N37; N50 N49 – Stochastic Neural Network; N50 – Self-Organizing Map; WEKA N7; N38; N47 N51 – Support Vector Machine; XNBC N26; N28 N52– Time-Delay neural Network; Table 4.
Recommended publications
  • Neural Networks
    AIAI andand thethe NetNet •• Buyer’sBuyer’s GuideGuide 19.1 Where Intelligent Technology Meets the Real World www.pcai.com IntelligentIntelligent Applications Applications TThehe ModernModern RoboticRobotic Also:Also: “Movement”“Movement” Agents, Business Applications, TThehe StateState ofof AIAI Today:Today: TheThe Business Intelligence, WWeb:eb: AI’sAI’s NewNew PlaygroundPlayground Computational Intelligence, Data Analysis & Mining, Robotics:Robotics: RobotsRobots ThatThat Intelligent Applications, Intelligent Tools, MimicMimic AnimalsAnimals Intelligent Tutoring, Intelligent Web Searching, TThehe NationalNational ScienceScience Neural Networks, Foundation:Foundation: EncouragingEncouraging Robotics, tthehe ResearchersResearchers ofof Speech Recognition, TTomorrowomorrow Web Based Expert Systems, Plus:Plus: AIAI andand thethe Net,Net, Training, Bookzone,Bookzone, Buyer’sBuyer’s Guide,Guide, AI Conferences, ProductProduct UUpdatespdates and more! PC AI 2 19.1 Quantities Limited Buy PC AI Back Issues 1995 1999 A Great Resource 9 #1 Intelligent Tools 13 #1 Intelligent Tools & Languages 9 #2 Fuzzy Logic / Neural Networks (Knowledge Verification) for AI Research 9 #3 Object Oriented Development 13 #2 Rule and Object Oriented 9 #4 Knowledge-Based Systems Development (Data Mining) $8.00/Issue - US 9 #5 AI Languages 13 #3 Neural Nets & Fuzzy Logic (For Us and Canadian and 9 #6 Business Applications (Searching) Foreign Postage 13 #4 Knowledge-Based Systems contact PC AI or visit the 1996 (Fuzzy Logic) 10 #1 Intelligent Applications PC AI web site) 13 #5 Data Mining (Simulation and 10 #2 Object Oriented Development Modeling) Order online at 10 #3 Neural Networks / Fuzzy Logic 13 #6 Business Applications www.pcai.com 10 #4 Knowledge-Based Systems (Machine Learning) Total amount enclosed 10 #5 Genetic Algorithm & Modeling 10 #6 Business Applications 2000 $____________.
    [Show full text]
  • Identification of Activities of Daily Living Through Data Fusion on Motion and Magnetic Sensors Embedded on Mobile Devices
    Identification of Activities of Daily Living through Data Fusion on Motion and Magnetic Sensors embedded on Mobile Devices Ivan Miguel Pires1,2,3, Nuno M. Garcia1, Nuno Pombo1, Francisco Flórez-Revuelta4, Susanna Spinsante5 and Maria Canavarro Teixeira6,7 1Instituto de Telecomunicações, Universidade da Beira Interior, Covilhã, Portugal 2Altranportugal, Lisbon, Portugal 3ALLab - Assisted Living Computing and Telecommunications Laboratory, Computer Science Department, Universidade da Beira Interior, Covilhã, Portugal 4Department of Computer Technology, Universidad de Alicante, Spain 5Università Politecnica delle Marche, Ancona, Italy 6UTC de Recursos Naturais e Desenvolvimento Sustentável, Polytechnique Institute of Castelo Branco, Castelo Branco, Portugal 7CERNAS - Research Centre for Natural Resources, Environment and Society, Polytechnique Institute of Castelo Branco, Castelo Branco, Portugal [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract Several types of sensors have been available in off-the-shelf mobile devices, including motion, magnetic, vision, acoustic, and location sensors. This paper focuses on the fusion of the data acquired from motion and magnetic sensors, i.e., accelerometer, gyroscope and magnetometer sensors, for the recognition of Activities of Daily Living (ADL). Based on pattern recognition techniques, the system developed in this study includes data acquisition, data processing, data fusion, and classification methods like Artificial Neural Networks (ANN). Multiple settings of the ANN were implemented and evaluated in which the best accuracy obtained, with Deep Neural Networks (DNN), was 89.51%. This novel approach applies L2 regularization and normalization techniques on the sensors’ data proved it suitability and reliability for the ADL recognition. Keywords: Mobile devices sensors; sensor data fusion; artificial neural networks; identification of activities of daily living.
    [Show full text]
  • Programming Neural Networks with Encog3 in Java
    Programming Neural Networks with Encog3 in Java Programming Neural Networks with Encog3 in Java Jeff Heaton Heaton Research, Inc. St. Louis, MO, USA v Publisher: Heaton Research, Inc Programming Neural Networks with Encog 3 in Java First Printing October, 2011 Author: Jeff Heaton Editor: WordsRU.com Cover Art: Carrie Spear ISBN’s for all Editions: 978-1-60439-021-6, Softcover 978-1-60439-022-3, PDF 978-1-60439-023-0, LIT 978-1-60439-024-7, Nook 978-1-60439-025-4, Kindle Copyright ©2011 by Heaton Research Inc., 1734 Clarkson Rd. #107, Chester- field, MO 63017-4976. World rights reserved. The author(s) created reusable code in this publication expressly for reuse by readers. Heaton Research, Inc. grants readers permission to reuse the code found in this publication or down- loaded from our website so long as (author(s)) are attributed in any application containing the reusable code and the source code itself is never redistributed, posted online by electronic transmission, sold or commercially exploited as a stand-alone product. Aside from this specific exception concerning reusable code, no part of this publication may be stored in a retrieval system, trans- mitted, or reproduced in any way, including, but not limited to photo copy, photograph, magnetic, or other record, without prior agreement and written permission of the publisher. Heaton Research, Encog, the Encog Logo and the Heaton Research logo are all trademarks of Heaton Research, Inc., in the United States and/or other countries. TRADEMARKS: Heaton Research has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by following the capitalization style used by the manufacturer.
    [Show full text]
  • A Thesis Entitled a Supervised Machine Learning Approach Using
    A Thesis entitled A Supervised Machine Learning Approach Using Object-Oriented Programming Principles by Merl J. Creps Jr Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Masters of Science Degree in Computer Science and Engineering Dr. Jared Oluoch, Committee Chair Dr. Weiqing Sun, Committee Member Dr. Henry Ledgard, Committee Member Dr. Amanda C. Bryant-Friedrich, Dean College of Graduate Studies The University of Toledo May 2018 Copyright 2018, Merl J. Creps Jr This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of A Supervised Machine Learning Approach Using Object-Oriented Programming Principles by Merl J. Creps Jr Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Masters of Science Degree in Computer Science and Engineering The University of Toledo May 2018 Artificial Neural Networks (ANNs) can be defined as a collection of interconnected layers, neurons and weighted connections. Each layer is connected to the previous layer by weighted connections that couple each neuron in a layer to the next neuron in the adjacent layer. An ANN resembles a human brain with multiple interconnected synapses which allow for the signal to easily flow from one neuron to the next. There are two distinct constructs which an ANN can assume; they can be thought of as Supervised and Unsupervised networks. Supervised neural networks have known outcomes while Unsupervised neural networks have unknown outcomes. This thesis will primarily focus on Supervised neural networks. The contributions of this thesis are two-fold.
    [Show full text]
  • Optimization of Neural Network Architecture for Biomechanic Classification Tasks with Electromyogram Inputs
    International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 7, No. 5, September 2016 OPTIMIZATION OF NEURAL NETWORK ARCHITECTURE FOR BIOMECHANIC CLASSIFICATION TASKS WITH ELECTROMYOGRAM INPUTS Alayna Kennedy 1 and Rory Lewis 2 1 The Pennsylvania State University, University Park, PA, USA 2 Department of Computer Science, University of Colorado at Colorado Springs, USA ABSTRACT Electromyogram signals (EMGs) contain valuable information that can be used in man-machine interfacing between human users and myoelectric prosthetic devices. However, EMG signals are complicated and prove difficult to analyze due to physiological noise and other issues. Computational intelligence and machine learning techniques, such as artificial neural networks (ANNs), serve as powerful tools for analyzing EMG signals and creating optimal myoelectric control schemes for prostheses. This research examines the performance of four different neural network architectures (feedforward, recurrent, counter propagation, and self organizing map) that were tasked with classifying walking speed when given EMG inputs from 14 different leg muscles. Experiments conducted on the data set suggest that self organizing map neural networks are capable of classifying walking speed with greater than 99% accuracy. KEYWORDS Electromyogram, Prostheses, Neural Networks, Biomechanical Analysis, Machine Learning, Myoelectric Control Schemes, Self Organizing Maps, Pattern Recognition Algorithms 1. INTRODUCTION Assistive prosthetic devices commonly use a myoelectric control scheme, which adjusts the function of a prosthetic device given electromyogram (EMG) inputs, and which has been proven an effective method of man-machine interfacing between user and prosthetic [1]-[4]. However, despite the significant development of the prosthetic industry over the past decade, high-accuracy commercial prostheses remain too expensive for the average middle-class amputee to afford [5], [6].
    [Show full text]
  • Detecting Simulated Attacks in Computer Networks Using Resilient Propagation Artificial Neural Networks
    ISSN 2395-8618 Detecting Simulated Attacks in Computer Networks Using Resilient Propagation Artificial Neural Networks Mario A. Garcia and Tung Trinh Abstract—In a large network, it is extremely difficult for an (Unsupervised Neural Network can detect attacks without administrator or security personnel to detect which computers training.) There are several training algorithms to train neural are being attacked and from where intrusions come. Intrusion networks such as back propagation, the Manhattan update detection systems using neural networks have been deemed a rule, Quick propagation, or Resilient propagation. promising solution to detect such attacks. The reason is that This research describes a solution of applying resilient neural networks have some advantages such as learning from training and being able to categorize data. Many studies have propagation artificial neural networks to detect simulated been done on applying neural networks in intrusion detection attacks in computer networks. The resilient propagation is a systems. This work presents a study of applying resilient supervised training algorithm. The term “supervised” propagation neural networks to detect simulated attacks. The indicates that the neural networks are trained with expected approach includes two main components: the Data Pre- output. The resilient propagation algorithm is considered an processing module and the Neural Network. The Data Pre- efficient training algorithm because it does not require any processing module performs normalizing data function while the parameter setting before being used [14]. In other words, Neural Network processes and categorizes each connection to learning rates or update constants do not need to be computed. find out attacks. The results produced by this approach are The approach is tested on eight neural network configurations compared with present approaches.
    [Show full text]
  • The Nnlib2 Library and Nnlib2rcpp R Package for Implementing Neural Networks
    The nnlib2 library and nnlib2Rcpp R package for implementing neural networks Vasilis N Nikolaidis1 1 University of Peloponnese DOI: 10.21105/joss.02876 Software • Review Summary • Repository • Archive Artificial Neural Networks (ANN or NN) are computing models used in various data-driven applications. Such systems typically consist of a large number of processing elements (or Editor: Kakia Chatsiou nodes), usually organized in layers, which exchange data via weighted connections. An ever- increasing number of different neural network models have been proposed and used. Among Reviewers: the several factors differentiating each model are the network topology, the processing and • @schnorr training methods in nodes and connections, and the sequences utilized for transferring data • @MohmedSoudy to, within and from the model etc. The software presented here is a C++ library of classes and templates for implementing neural network components and models and an R package Submitted: 22 October 2020 that allows users to instantiate and use such components from the R programming language. Published: 23 May 2021 License Authors of papers retain copyright and release the work Statement of need under a Creative Commons Attribution 4.0 International A significant number of capable, flexible, high performance tools for NN are available today, License (CC BY 4.0). including frameworks such as Tensorflow (Abadi et al., 2016) and Torch (Collobert et al., 2011), and related high level APIs including Keras (Chollet & others, 2015) and PyTorch (Paszke et al., 2019). Ready-to-use NN models are also provided by various machine learning platforms such as H2O (H2O.ai, 2020) or libraries, SNNS (Zell et al., 1994) and FANN (Nissen, 2003).
    [Show full text]
  • Comparative Analysis of Simulators for Neural Networks Joone and Neuroph
    COMPUTER MODELLING & NEW TECHNOLOGIES 2016 20(1) 16-20 Zdravkova E, Nenkov N Comparative analysis of simulators for neural networks Joone and NeuroPh E Zdravkova, N Nenkov* Faculty of Mathematics and Informatics, University of Shumen “Episkop Konstantin Preslavsky” 115, Universitetska St., Shumen 9712, Bulgaria *Corresponding author’s e-mail: [email protected], [email protected] Received 1 March 2016, www.cmnt.lv Abstract Keywords: This paper describes a comparative analysis of two simulator neural networks - Joone and NeuroPh. Both neural network simulators are object-oriented and java - based. The analysis seeks to show how much these two simulators neural network simulator are similar and how different in their characteristics, what neural networks is suitable to be made through logical function exclusive OR them, what are their advantages and disadvantages, how they can be used interchangeably to give certain neural network architecture desired result. For the purpose of comparative analysis of both the simulator will be realized logic function, which is not among the standard, and relatively complex and is selected as a combination of several standard logical operations. 1 Introduction 2 Methodology Both the simulator selected for the study are Java - based To be tested and analyzed both the simulator will realize and object - oriented simulators. The used simulators are logical function, and which is relatively complex and is not Joone 4.5.2 and NeuroPh 2.92. Joone is object - oriented among the standard. The generated neural network calculate frameworks allows to build different types of neural the result of the following logical function: networks. It is built on combining elements which can also (((( A XOR B) AND C) OR D) ((((E XOR F) AND G) OR be expanded to build new training algorithms and archi- H)) I)) AND ((( J XOR K)(L XOR M)) OR (N O)) tecttures for neural networks.
    [Show full text]
  • Neural Network FAQ, Part 1 of 7
    Neural Network FAQ, part 1 of 7: Introduction Archive-name: ai-faq/neural-nets/part1 Last-modified: 2002-05-17 URL: ftp://ftp.sas.com/pub/neural/FAQ.html Maintainer: [email protected] (Warren S. Sarle) Copyright 1997, 1998, 1999, 2000, 2001, 2002 by Warren S. Sarle, Cary, NC, USA. --------------------------------------------------------------- Additions, corrections, or improvements are always welcome. Anybody who is willing to contribute any information, please email me; if it is relevant, I will incorporate it. The monthly posting departs around the 28th of every month. --------------------------------------------------------------- This is the first of seven parts of a monthly posting to the Usenet newsgroup comp.ai.neural-nets (as well as comp.answers and news.answers, where it should be findable at any time). Its purpose is to provide basic information for individuals who are new to the field of neural networks or who are just beginning to read this group. It will help to avoid lengthy discussion of questions that often arise for beginners. SO, PLEASE, SEARCH THIS POSTING FIRST IF YOU HAVE A QUESTION and DON'T POST ANSWERS TO FAQs: POINT THE ASKER TO THIS POSTING The latest version of the FAQ is available as a hypertext document, readable by any WWW (World Wide Web) browser such as Netscape, under the URL: ftp://ftp.sas.com/pub/neural/FAQ.html. If you are reading the version of the FAQ posted in comp.ai.neural-nets, be sure to view it with a monospace font such as Courier. If you view it with a proportional font, tables and formulas will be mangled.
    [Show full text]
  • Forecasting with Artificial Neural Networks
    Forecasting with Artificial Neural Networks EVIC 2005 Tutorial Santiago de Chile, 15 December 2005 Æ slides on www.neural-forecasting.com Sven F. Crone Centre for Forecasting Department of Management Science Lancaster University Management School email: [email protected] EVIC’05 © Sven F. Crone - www.bis-lab.com Lancaster University Management School? EVIC’05 © Sven F. Crone - www.bis-lab.com What you can expect from this session … Simple back propagation algorithm [Rumelhart et al. 1982] ∂C(t pj ,o pj ) E p = C(t pj , o pj ) o pj = f j (net pj ) Δ p w ji ∝ − ∂w ji ∂C(t ,o ) ∂C(t ,o ) ∂net pj pj = pj pj pj ∂w ji ∂net pj ∂w ji ∂C(t ,o ) Æ „How to …“ on Neural δ = − pj pj pj ∂net pj Network Forecasting ∂C(t ,o ) ∂C(t ,o ) ∂o δ = − pj pj = pj pj pj pj with limited maths! ∂net pj ∂opj ∂net pj ∂o pt ' = f j (net pj ) ∂net pj ∂C(t pj ,opj ) ' δ pj = f j (net pj ) Æ CD-Start-Up Kit for ∂o pj ∂ w o ∂C(t ,o ) ∂net ∂C(t ,o ) ∑ ki pi Neural Net Forecasting pj pj pk = pj pj i ∑ ∂net ∂o ∑ ∂net ∂o k pk pj k pk pj Æ 20+ software simulators ∂C(t pj ,opj ) = ∑ wkj = − ∑δ pj wkj k ∂net pk k Æ datasets ' δ pj = f j (net pj )∑δ pj wkj Æ literature & faq k ⎧∂C(t pj ,opj ) ' ⎪ f j (net pj ) if unit j is in the output layer ⎪ ∂opj Æ slides, data & additional info on δ pj = ⎨ ⎪ ' f j (net pj )∑δ pk wpjk if unit j is in a hidden layer www.neural-forecasting.com ⎩⎪ k EVIC’05 © Sven F.
    [Show full text]
  • Data Fusion on Motion and Magnetic Sensors Embedded on Mobile Devices for the Identification of Activities of Daily Living
    Data Fusion on Motion and Magnetic Sensors embedded on Mobile Devices for the Identification of Activities of Daily Living Ivan Miguel Pires1,2,3, Nuno M. Garcia1,3,4, Nuno Pombo1,3,4 , Francisco Flórez-Revuelta5 and Susanna Spinsante6 1Instituto de Telecomunicações, Universidade da Beira Interior, Covilhã, Portugal 2Altranportugal, Lisbon, Portugal 3ALLab - Assisted Living Computing and Telecommunications Laboratory, Computer Science Department, Universidade da Beira Interior, Covilhã, Portugal 4Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal 5Department of Computer Technology, Universidad de Alicante, Spain 6Università Politecnica delle Marche, Ancona, Italy i mpires @it.ubi.pt, ngarcia @di. ubi.pt, ngpombo@di. ubi.pt, francisco.florez @ua.es, s.spinsante @univpm.it Abstract Several types of sensors have been available in off-the-shelf mobile devices, including motion, magnetic, vision, acoustic, and location sensors. This paper focuses on the fusion of the data acquired from motion and magnetic sensors, i.e., accelerometer, gyroscope and magnetometer sensors, for the recognition of Activities of Daily Living (ADL) using pattern recognition techniques. The system developed in this study includes data acquisition, data processing, data fusion, and artificial intelligence methods. Artificial Neural Networks (ANN) are included in artificial intelligence methods, which are used in this study for the recognition of ADL. The purpose of this study is the creation of a new method using ANN for the identification of ADL, comparing three types of ANN, in order to achieve results with a reliable accuracy. The best accuracy was obtained with Deep Learning, which, after the application of the L2 regularization and normalization techniques on the sensors’ data, reports an accuracy of 89.51%.
    [Show full text]
  • Uhm Ms 3812 R.Pdf
    UNIVERSITY OF HAWAI'I LIBRARY ADVANCED MARINE VEIDCLE PRODUCTS DATABASE -A PRELIMINARY DESIGN TOOL A THESIS SUBMITTED TO THE GRADUATE DMSION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN OCEAN ENGINEERING AUGUST 2003 By Kristen A.L.G. Woo Thesis Committee: Kwok Fai Cheung, ChaiIperson Hans-Jurgen Krock John C. Wiltshire ACKNOWLEDGEMENT I would like to thank my advisor Prof. Kwok Fai Cheung and the other committee members Prof. Hans-Jiirgen Krock and Dr. John Wiltshire for the time and effort they spent with me on this project. I would also like to thank the MHPCC staff, in particular, Mr. Scott Splean for their advice and comments on the advanced-marine-vehicle products database. Thanks are also due to Drs. Woei-Min Lin and JUll Li of SAIC for their advice on the neural network and preliminary ship design tools. I would also like to thank Mr. Yann Douyere for his help with MatLab. The work described in this thesis is a subset of the project "Environment for Design of Advanced Marine Vehicles and Operations Research" supported by the Office of Naval Research, Grant No. NOOOI4-02-1-0903. iii ABSTRACT The term advanced marine vehicle encompasses a broad category of ship designs typically referring to multihull ships such as catamarans, trimarans and SWATH (small waterplane area twin hull) ships, but also includes hovercrafts, SES (surface effect ships), hydrofoils, and advanced monohulls. This study develops an early stage design tool for advanced marine vehicles that provides principal particulars and additional parameters such as fuel capacity and propulsive power based on input ship requirements.
    [Show full text]