Neural Network Tools: an Overview from Work on "Automatic Classification of Alzheimer’S Disease from Structural MRI" Report for Master’S Thesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spectrally-Based Audio Distances Are Bad at Pitch
I’m Sorry for Your Loss: Spectrally-Based Audio Distances Are Bad at Pitch Joseph Turian Max Henry [email protected] [email protected] Abstract Growing research demonstrates that synthetic failure modes imply poor generaliza- tion. We compare commonly used audio-to-audio losses on a synthetic benchmark, measuring the pitch distance between two stationary sinusoids. The results are sur- prising: many have poor sense of pitch direction. These shortcomings are exposed using simple rank assumptions. Our task is trivial for humans but difficult for these audio distances, suggesting significant progress can be made in self-supervised audio learning by improving current losses. 1 Introduction Rather than a physical quantity contained in the signal, pitch is a percept that is strongly correlated with the fundamental frequency of a sound. While physically elusive, pitch is a natural dimension to consider when comparing sounds. Children as young as 8 months old are sensitive to melodic contour [65], implying that an early and innate sense of relative pitch is important to parsing our auditory experience. This basic ability is distinct from the acute pitch sensitivity of professional musicians, which improves as a function of musical training [36]. Pitch is important to both music and speech signals. Typically, speech pitch is more narrowly circumscribed than music, having a range of 70–1000Hz, compared to music which spans roughly the range of a grand piano, 30–4000Hz [31]. Pitch in speech signals also fluctuates more rapidly [6]. In tonal languages, pitch has a direct influence on the meaning of words [8, 73, 76]. For non-tone languages such as English, pitch is used to infer (supra-segmental) prosodic and speaker-dependent features [19, 21, 76]. -
Arxiv:2008.01352V3 [Cs.LG] 23 Mar 2021 Spatiotemporal Disentanglement in the PDE Formalism
Published as a conference paper at ICLR 2021 PDE-DRIVEN SPATIOTEMPORAL DISENTANGLEMENT Jérémie Donà,y∗ Jean-Yves Franceschi,y∗ Sylvain Lampriery & Patrick Gallinariyz ySorbonne Université, CNRS, LIP6, F-75005 Paris, France zCriteo AI Lab, Paris, France [email protected] ABSTRACT A recent line of work in the machine learning community addresses the problem of predicting high-dimensional spatiotemporal phenomena by leveraging specific tools from the differential equations theory. Following this direction, we propose in this article a novel and general paradigm for this task based on a resolution method for partial differential equations: the separation of variables. This inspiration allows us to introduce a dynamical interpretation of spatiotemporal disentanglement. It induces a principled model based on learning disentangled spatial and temporal representations of a phenomenon to accurately predict future observations. We experimentally demonstrate the performance and broad applicability of our method against prior state-of-the-art models on physical and synthetic video datasets. 1 INTRODUCTION The interest of the machine learning community in physical phenomena has substantially grown for the last few years (Shi et al., 2015; Long et al., 2018; Greydanus et al., 2019). In particular, an increasing amount of works studies the challenging problem of modeling the evolution of dynamical systems, with applications in sensible domains like climate or health science, making the understanding of physical phenomena a key challenge in machine learning. To this end, the community has successfully leveraged the formalism of dynamical systems and their associated differential formulation as powerful tools to specifically design efficient prediction models. In this work, we aim at studying this prediction problem with a principled and general approach, through the prism of Partial Differential Equations (PDEs), with a focus on learning spatiotemporal disentangled representations. -
Large Margin Deep Networks for Classification
Large Margin Deep Networks for Classification Gamaleldin F. Elsayed ∗ Dilip Krishnan Hossein Mobahi Kevin Regan Google Research Google Research Google Research Google Research Samy Bengio Google Research {gamaleldin, dilipkay, hmobahi, kevinregan, bengio}@google.com Abstract We present a formulation of deep learning that aims at producing a large margin classifier. The notion of margin, minimum distance to a decision boundary, has served as the foundation of several theoretically profound and empirically suc- cessful results for both classification and regression tasks. However, most large margin algorithms are applicable only to shallow models with a preset feature representation; and conventional margin methods for neural networks only enforce margin at the output layer. Such methods are therefore not well suited for deep networks. In this work, we propose a novel loss function to impose a margin on any chosen set of layers of a deep network (including input and hidden layers). Our formulation allows choosing any lp norm (p ≥ 1) on the metric measuring the margin. We demonstrate that the decision boundary obtained by our loss has nice properties compared to standard classification loss functions. Specifically, we show improved empirical results on the MNIST, CIFAR-10 and ImageNet datasets on multiple tasks: generalization from small training sets, corrupted labels, and robustness against adversarial perturbations. The resulting loss is general and complementary to existing data augmentation (such as random/adversarial input transform) and regularization techniques such as weight decay, dropout, and batch norm. 2 1 Introduction The large margin principle has played a key role in the course of machine learning history, producing remarkable theoretical and empirical results for classification (Vapnik, 1995) and regression problems (Drucker et al., 1997). -
Reverse Image Search for Scientific Data Within and Beyond the Visible
Journal, Vol. XXI, No. 1, 1-5, 2013 Additional note Reverse Image Search for Scientific Data within and beyond the Visible Spectrum Flavio H. D. Araujo1,2,3,4,a, Romuere R. V. Silva1,2,3,4,a, Fatima N. S. Medeiros3,Dilworth D. Parkinson2, Alexander Hexemer2, Claudia M. Carneiro5, Daniela M. Ushizima1,2,* Abstract The explosion in the rate, quality and diversity of image acquisition instruments has propelled the development of expert systems to organize and query image collections more efficiently. Recommendation systems that handle scientific images are rare, particularly if records lack metadata. This paper introduces new strategies to enable fast searches and image ranking from large pictorial datasets with or without labels. The main contribution is the development of pyCBIR, a deep neural network software to search scientific images by content. This tool exploits convolutional layers with locality sensitivity hashing for querying images across domains through a user-friendly interface. Our results report image searches over databases ranging from thousands to millions of samples. We test pyCBIR search capabilities using three convNets against four scientific datasets, including samples from cell microscopy, microtomography, atomic diffraction patterns, and materials photographs to demonstrate 95% accurate recommendations in most cases. Furthermore, all scientific data collections are released. Keywords Reverse image search — Content-based image retrieval — Scientific image recommendation — Convolutional neural network 1University of California, Berkeley, CA, USA 2Lawrence Berkeley National Laboratory, Berkeley, CA, USA 3Federal University of Ceara,´ Fortaleza, CE, Brazil 4Federal University of Piau´ı, Picos, PI, Brazil 5Federal University of Ouro Preto, Ouro Preto, MG, Brazil *Corresponding author: [email protected] aContributed equally to this work. -
Generative Adversarial Transformers
Generative Adversarial Transformers Drew A. Hudsonx 1 C. Lawrence Zitnick 2 Abstract We introduce the GANsformer, a novel and effi- cient type of transformer, and explore it for the task of visual generative modeling. The network employs a bipartite structure that enables long- range interactions across the image, while main- taining computation of linear efficiency, that can readily scale to high-resolution synthesis. It itera- tively propagates information from a set of latent variables to the evolving visual features and vice versa, to support the refinement of each in light of the other and encourage the emergence of compo- sitional representations of objects and scenes. In contrast to the classic transformer architecture, it utilizes multiplicative integration that allows flexi- Figure 1. Sample images generated by the GANsformer, along ble region-based modulation, and can thus be seen with a visualization of the model attention maps. as a generalization of the successful StyleGAN network. We demonstrate the model’s strength and prior knowledge inform the interpretation of the par- and robustness through a careful evaluation over ticular (Gregory, 1970). While their respective roles and a range of datasets, from simulated multi-object dynamics are being actively studied, researchers agree that it environments to rich real-world indoor and out- is the interplay between these two complementary processes door scenes, showing it achieves state-of-the- that enables the formation of our rich internal representa- art results in terms of image quality and diver- tions, allowing us to perceive the world in its fullest and sity, while enjoying fast learning and better data- create vivid imageries in our mind’s eye (Intaite˙ et al., 2013). -
Neural Network FAQ, Part 1 of 7
Neural Network FAQ, part 1 of 7: Introduction Archive-name: ai-faq/neural-nets/part1 Last-modified: 2002-05-17 URL: ftp://ftp.sas.com/pub/neural/FAQ.html Maintainer: [email protected] (Warren S. Sarle) Copyright 1997, 1998, 1999, 2000, 2001, 2002 by Warren S. Sarle, Cary, NC, USA. --------------------------------------------------------------- Additions, corrections, or improvements are always welcome. Anybody who is willing to contribute any information, please email me; if it is relevant, I will incorporate it. The monthly posting departs around the 28th of every month. --------------------------------------------------------------- This is the first of seven parts of a monthly posting to the Usenet newsgroup comp.ai.neural-nets (as well as comp.answers and news.answers, where it should be findable at any time). Its purpose is to provide basic information for individuals who are new to the field of neural networks or who are just beginning to read this group. It will help to avoid lengthy discussion of questions that often arise for beginners. SO, PLEASE, SEARCH THIS POSTING FIRST IF YOU HAVE A QUESTION and DON'T POST ANSWERS TO FAQs: POINT THE ASKER TO THIS POSTING The latest version of the FAQ is available as a hypertext document, readable by any WWW (World Wide Web) browser such as Netscape, under the URL: ftp://ftp.sas.com/pub/neural/FAQ.html. If you are reading the version of the FAQ posted in comp.ai.neural-nets, be sure to view it with a monospace font such as Courier. If you view it with a proportional font, tables and formulas will be mangled. -
Adversarial Examples in the Physical World
Workshop track - ICLR 2017 ADVERSARIAL EXAMPLES IN THE PHYSICAL WORLD Alexey Kurakin Ian J. Goodfellow Samy Bengio Google Brain OpenAI Google Brain [email protected] [email protected] [email protected] ABSTRACT Most existing machine learning classifiers are highly vulnerable to adversarial examples. An adversarial example is a sample of input data which has been mod- ified very slightly in a way that is intended to cause a machine learning classifier to misclassify it. In many cases, these modifications can be so subtle that a human observer does not even notice the modification at all, yet the classifier still makes a mistake. Adversarial examples pose security concerns because they could be used to perform an attack on machine learning systems, even if the adversary has no access to the underlying model. Up to now, all previous work has assumed a threat model in which the adversary can feed data directly into the machine learn- ing classifier. This is not always the case for systems operating in the physical world, for example those which are using signals from cameras and other sensors as input. This paper shows that even in such physical world scenarios, machine learning systems are vulnerable to adversarial examples. We demonstrate this by feeding adversarial images obtained from a cell-phone camera to an ImageNet In- ception classifier and measuring the classification accuracy of the system. We find that a large fraction of adversarial examples are classified incorrectly even when perceived through the camera. 1 INTRODUCTION (a) Image from dataset (b) Clean image (c) Adv. image, = 4 (d) Adv. -
From Digital Computing to Brain-Like Neuromorphic Accelerator
Mahyar SHAHSAVARI Lille University of Science and Technology Doctoral Thesis Unconventional Computing Using Memristive Nanodevices: From Digital Computing to Brain-like Neuromorphic Accelerator Supervisor: Pierre BOULET Thèse en vue de l’obtention du titre de Docteur en INFORMATIQUE DE L’UNIVERSITÉ DE LILLE École Doctorale des Sciences Pour l’Ingénieur de Lille - Nord De France 14-Dec-2016 Jury: Hélène Paugam-Moisy Professor of University of the French West Indies (Université des Antilles), France (Rapporteur) Michel Paindavoine Professor of University of Burgundy (Université de Bourgogne), France (Rapporteur) Virginie Hoel Professor of Lille University of Science and Technology, France(Président) Said Hamdioui Professor of Delft University of Technology, The Netherlands Pierre Boulet Professor of Lille University of Science and Technology, France Acknowledgment Firstly, I would like to express my sincere gratitude to my advisor Prof. Pierre Boulet for all kind of supports during my PhD. I never forget his supports specially during the last step of my PhD that I was very busy due to teaching duties. Pierre was really punctual and during three years of different meetings and discussions, he was always available on time and as a record he never canceled any meeting. I learned a lot form you Pierre, specially the way of writing, communicating and presenting. you were an ideal supervisor for me. Secondly, I am grateful of my co-supervisor Dr Philippe Devienne. As I did not knew any French at the beginning of my study, it was not that easy to settle down and with Philippe supports the life was more comfortable and enjoyable for me and my family here in Lille. -
Unconventional Computing Using Memristive Nanodevices: from Digital Computing to Brain-Like Neuromorphic Accelerator
Mahyar SHAHSAVARI Lille University of Science and Technology Doctoral Thesis Unconventional Computing Using Memristive Nanodevices: From Digital Computing to Brain-like Neuromorphic Accelerator Supervisor: Pierre BOULET Thèse en vue de l’obtention du titre de Docteur en INFORMATIQUE DE L’UNIVERSITÉ DE LILLE École Doctorale des Sciences Pour l’Ingénieur de Lille - Nord De France 14-Dec-2016 Jury: Hélène Paugam-Moisy Professor of University of the French West Indies (Université des Antilles), France (Rapporteur) Michel Paindavoine Professor of University of Burgundy (Université de Bourgogne), France (Rapporteur) Virginie Hoel Professor of Lille University of Science and Technology, France(Président) Said Hamdioui Professor of Delft University of Technology, The Netherlands Pierre Boulet Professor of Lille University of Science and Technology, France Acknowledgment Firstly, I would like to express my sincere gratitude to my advisor Prof. Pierre Boulet for all kind of supports during my PhD. I never forget his supports specially during the last step of my PhD that I was very busy due to teaching duties. Pierre was really punctual and during three years of different meetings and discussions, he was always available on time and as a record he never canceled any meeting. I learned a lot form you Pierre, specially the way of writing, communicating and presenting. you were an ideal supervisor for me. Secondly, I am grateful of my co-supervisor Dr Philippe Devienne. As I did not knew any French at the beginning of my study, it was not that easy to settle down and with Philippe supports the life was more comfortable and enjoyable for me and my family here in Lille. -
Arxiv:1611.08903V1 [Cs.LG] 27 Nov 2016 20 Percent Increases in Cash Collections [20]
Should I use TensorFlow? An evaluation of TensorFlow and its potential to replace pure Python implementations in Machine Learning Martin Schrimpf1;2;3 1 Augsburg University 2 Technische Universit¨atM¨unchen 3 Ludwig-Maximilians-Universit¨atM¨unchen Seminar \Human-Machine Interaction and Machine Learning" Supervisor: Elisabeth Andr´e Advisor: Dominik Schiller Abstract. Google's Machine Learning framework TensorFlow was open- sourced in November 2015 [1] and has since built a growing community around it. TensorFlow is supposed to be flexible for research purposes while also allowing its models to be deployed productively [7]. This work is aimed towards people with experience in Machine Learning consider- ing whether they should use TensorFlow in their environment. Several aspects of the framework important for such a decision are examined, such as the heterogenity, extensibility and its computation graph. A pure Python implementation of linear classification is compared with an im- plementation utilizing TensorFlow. I also contrast TensorFlow to other popular frameworks with respect to modeling capability, deployment and performance and give a brief description of the current adaption of the framework. 1 Introduction The rapidly growing field of Machine Learning has been gaining more and more attention, both in academia and in businesses that have realized the added value. For instance, according to a McKinsey report, more than a dozen European banks switched from statistical-modeling approaches to Machine Learning tech- niques and, in some cases, increased their sales of new products by 10 percent and arXiv:1611.08903v1 [cs.LG] 27 Nov 2016 20 percent increases in cash collections [20]. Intelligent machines are used in a variety of domains, including writing news articles [5], finding promising recruits given their CV [9] and many more. -
Neural Network FAQ, Part 1 of 7: Introduction
Neural Network FAQ, part 1 of 7: Introduction Archive-name: ai-faq/neural-nets/part1 Last-modified: 2002-05-17 URL: ftp://ftp.sas.com/pub/neural/FAQ.html Maintainer: [email protected] (Warren S. Sarle) Copyright 1997, 1998, 1999, 2000, 2001, 2002 by Warren S. Sarle, Cary, NC, USA. --------------------------------------------------------------- Additions, corrections, or improvements are always welcome. Anybody who is willing to contribute any information, please email me; if it is relevant, I will incorporate it. The monthly posting departs around the 28th of every month. --------------------------------------------------------------- This is the first of seven parts of a monthly posting to the Usenet newsgroup comp.ai.neural-nets (as well as comp.answers and news.answers, where it should be findable at any time). Its purpose is to provide basic information for individuals who are new to the field of neural networks or who are just beginning to read this group. It will help to avoid lengthy discussion of questions that often arise for beginners. SO, PLEASE, SEARCH THIS POSTING FIRST IF YOU HAVE A QUESTION and DON'T POST ANSWERS TO FAQs: POINT THE ASKER TO THIS POSTING The latest version of the FAQ is available as a hypertext document, readable by any WWW (World Wide Web) browser such as Netscape, under the URL: ftp://ftp.sas.com/pub/neural/FAQ.html. If you are reading the version of the FAQ posted in comp.ai.neural-nets, be sure to view it with a monospace font such as Courier. If you view it with a proportional font, tables and formulas will be mangled. -
Submission Data for 2020-2021 CORE Conference Ranking Process International Conference on Learning Representations
Submission Data for 2020-2021 CORE conference Ranking process International Conference on Learning Representations Alexander Rush, Hugo LaRochelle Conference Details Conference Title: International Conference on Learning Representations Acronym : ICLR Requested Rank Rank: A* Primarily CS Is this conference primarily a CS venue: True Location Not commonly held within a single country, set of countries, or region. DBLP Link DBLP url: https://dblp.uni-trier.de/db/conf/iclr/index.html FoR Codes For1: 4611 For2: SELECT For3: SELECT Recent Years Proceedings Publishing Style Proceedings Publishing: self-contained Link to most recent proceedings: https://openreview.net/group?id=ICLR.cc/2020/Conference Further details: We don’t have a publisher. Instead we host our publications on OpenReview Most Recent Years Most Recent Year Year: 2019 URL: https://iclr.cc/Conferences/2019 Location: New Orleans, Louisiana, USA Papers submitted: 1591 Papers published: 500 Acceptance rate: 31 Source for numbers: https://github.com/lixin4ever/Conference-Acceptance-Rate General Chairs 1 Name: Tara Sainath Affiliation: Google Gender: F H Index: 50 GScholar url: https://scholar.google.com/citations?hl=en&user=aMeteU4AAAAJ DBLP url: https://dblp.org/pid/28/7825.html Program Chairs Name: Alexander Rush Affiliation: Cornell University Gender: M H Index: 34 GScholar url: https://scholar.google.com/citations?user=LIjnUGgAAAAJ&hl=en&oi=ao DBLP url: https://dblp.org/pid/67/9012.html Name: Sergey Levine Affiliation: University of California Berkeley, Google Gender: M H Index: 84