Lactobacillus Casei Group: Identification, Characterization and Genetic Evaluation of the Stress Response

Total Page:16

File Type:pdf, Size:1020Kb

Lactobacillus Casei Group: Identification, Characterization and Genetic Evaluation of the Stress Response Lactobacillus casei group: identification, characterization and genetic evaluation of the stress response A PhD dissertation presented by Federica Ginaldi to the University of Udine for the degree of PhD in the subject of Food Science (Cycle XXVIII) Department of Agricultural, Food, Environmental and Animal Sciences UNIVERSITY OF UDINE Italy March 2016 Coordinator: Prof. Mara Lucia Stecchini, Department of Food Science University of Udine, Italy Supervisors: Prof. Lucilla Iacunin, PhD Department of Food Science University of Udine, Italy Reviewers: Prof. Maret Du Toit, PhD Department of Viticulture and Oenology University of Stellenbosch, South Africa Dr. Anna Reale, PhD Institute of Food Sciences National Research Council, Avellino, Italy I declare that my PhD thesis has been amended to address all the Referee's comments. To my parents Table of contents Summary ........................................................................................ 7 1. Stress response in Lactobacillus casei group ............................. 9 1.1 Introduction ........................................................................... 9 1.2 Lactobacillus casei group ..................................................... 9 1.3 Identification of species belonging to L. casei group ......... 11 1.4 Technological and probiotic utilization of L. casei group strains ........................................................................................ 13 1.5 Probiotic effects of L. casei group strains .......................... 15 1.6 Stress response in L. casei group strains ............................ 16 Heat stress ............................................................................................... 17 Cold stress .............................................................................................. 18 Acid stress .............................................................................................. 19 Bile salt tolerance ................................................................................... 20 Osmotic stress ......................................................................................... 21 Oxidative stress ...................................................................................... 22 1.7 Potential application of the stress response in food and probiotic industry ...................................................................... 22 References ................................................................................. 24 2. Collection and identification of strains belonging to the Lactobacillus casei group ............................................................ 41 2.1 Aim of the study ................................................................. 41 2.2 Materials and methods ........................................................ 41 2.2.1 Strains and culture conditions .......................................... 41 2.2.2 DNA extraction from pure cultures ................................. 44 2.2.3 L. casei group-specific PCR ............................................ 44 2.2.4 Species-specific PCRs ..................................................... 44 2.2.5 tuf multiplex PCR ............................................................ 46 1 2.2.6 Development and optimisation of High-Resolution Melting (HRM) analysis ......................................................................... 46 2.3 Results and discussion ........................................................ 47 2.3.1 Preliminary identification by L. casei group-specific PCR ................................................................................................... 47 2.3.2 Species identification by species-specific PCRs and tuf multiplex PCR ........................................................................... 48 2.3.3 High-resolution melting (HRM) analysis ........................ 51 2.4 Conclusions ......................................................................... 57 References ................................................................................. 58 3. Genetic characterization of Lactobacillus casei group strains . 63 3.1 Aim of the study .................................................................. 63 3.2 Materials and methods ........................................................ 63 3.2.1 Strains ............................................................................... 63 3.2.2 DNA extraction from pure colonies ................................. 63 3.2.3 REP-PCR analysis ........................................................... 63 3.2.4 RAPD-PCR analysis ........................................................ 64 3.2.5 Sau-PCR analysis ............................................................. 64 3.3 Results and discussion ........................................................ 65 3.3.1 Rep-PCR Analysis ........................................................... 65 Lactobacillus rhamnosus ....................................................................... 65 Lactobacillus casei and L. paracasei ..................................................... 67 3.3.2 RAPD-PCR Analysis ....................................................... 69 Lactobacillus rhamnosus ....................................................................... 69 Lactobacillus casei and L. paracasei ..................................................... 70 3.3.3 Sau-PCR Analysis ............................................................ 73 Lactobacillus rhamnosus ....................................................................... 73 Lactobacillus casei and L. paracasei ..................................................... 74 3.4 Conclusions ......................................................................... 77 2 References ................................................................................. 78 4. MLST and SAPD analysis to characterize the stress response in Lactobacillus casei group ............................................................ 81 4.1 Aim of the study ................................................................. 81 4.2 Materials and methods ........................................................ 81 4.2.1 Bacterial strains ................................................................ 81 4.2.2 DNA extraction ................................................................ 81 4.2.3 Selection of the genes for the MLST protocol ................ 83 4.2.4 Data analysis .................................................................... 85 4.2.5 Whole genome sequencing .............................................. 86 4.2.6 Specifically Amplified Polymorphic DNA (SAPD) PCR 86 4.2.7 Gel electrophoresis .......................................................... 87 4.2.8 Cluster analysis of SAPD-PCR patterns .......................... 87 4.3 Results ................................................................................. 87 4.3.1 UPGMA tree based on MLST data ................................. 91 4.3.2 Whole genome sequences comparison ............................ 95 4.3.3 UPGMA tree based on SAPD-PCR data ......................... 98 4.4 Discussion and Conclusions ............................................. 105 References ............................................................................... 108 5. Mucus binding properties of Lactobacillus casei group strains before and after oxidative stress ................................................. 113 5.1 Aim of the study ............................................................... 113 5.2 Material and methods........................................................ 113 5.2.1 Bacteria and growth conditions ..................................... 113 5.2.2 Mucin binding assay ...................................................... 115 5.2.3 Adhesion to Matrigel Matrix ......................................... 115 5.2.4 Mucin binding assay after in vitro digestion ................. 116 5.3 Results ............................................................................... 117 3 5.3.1 Bacterial adhesion to mucin ........................................... 117 5.3.2 Adhesion to Matrigel Matrix ......................................... 118 5.3.3 Mucin binding assay after in vitro digestion ................. 120 5.4 Discussion and Conclusions ............................................. 121 References ............................................................................... 123 6. Effect of different pH level at different EtOH concentration on the expression of stress response related gene of Lactobacillus paracasei B171 in wine .............................................................. 125 6.1 Aim of the study ................................................................ 125 6.2 Material and methods ........................................................ 125 6.2.1 Inoculation of must samples .......................................... 125 6.2.2 Microbial enumeration ................................................... 126 6.2.3 Determination of pH ...................................................... 127 6.2.4 Determination of lactic and malic acid by the use of enzymatic commercial kits ..................................................... 127 6.2.5 Determination of alcohol content .................................. 127 6.2.6 Determination of β-glucosidase activity with p-NPG ... 127 6.2.7 Determination of gene expression by RT-qPCR ........... 128 6.2.8 RNA extraction .............................................................. 128 6.2.9 Standardization
Recommended publications
  • Aseptic Addition Method for Lactobacillus Casei Assay of Folate Activity in Human Serum
    J Clin Pathol: first published as 10.1136/jcp.19.1.12 on 1 January 1966. Downloaded from J. clin. Path. (1966), 19, 12 Aseptic addition method for Lactobacillus casei assay of folate activity in human serum VICTOR HERBERT From the Department of Haematology, The Mount Sinai Hospital, New York, U.S.A. SYNOPSIS An 'aseptic addition' method is described for microbiological assay with Lactobacillis casei of folate activity in human serum. It has the following advantages over the previously reported 'standard' method. 1 The manipulations involved in the assay are halved, by deleting autoclaving of serum in buffers. 2 The use of 1 g. % ascorbate better preserves serum folates than the lower amounts of ascorbate which are the maximum quantities usable in the standard methods. 3 Only 03 ml. of serum is required (0 1 ml. for one sample; 02 ml. for its duplicate). Herbert, Wasserman, Frank, Pasher, and Baker in or after transfer of blood from syringes to acid-washed 1959 reported that folate deficiency could be screw-top tubes). The clots are 'rimmed' with glass rods measured in man using microbiological assay of or wooden applicator sticks, the tubes centrifuged for serum folate activity with Lactobacillus casei. Many five minutes at 3,000 r.p.m. and the supernatant serum aspirated with acid-washed or disposable pipettes andcopyright. other workers have confirmed this work (see review frozen at -20°C. until assay. On the day of assay, the by Herbert, 1965). Various minor modifications of sera are thawed. A 0-1 ml. and a 0-2 ml.
    [Show full text]
  • The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
    microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression.
    [Show full text]
  • The Effect of Selected Herbal Extracts on Lactic Acid Bacteria Activity
    applied sciences Article The Effect of Selected Herbal Extracts on Lactic Acid Bacteria Activity Małgorzata Ziarno 1,* , Mariola Kozłowska 2 , Iwona Scibisz´ 3 , Mariusz Kowalczyk 4 , Sylwia Pawelec 4 , Anna Stochmal 4 and Bartłomiej Szleszy ´nski 5 1 Division of Milk Technology, Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences–SGGW (WULS–SGGW), 02-787 Warsaw, Poland 2 Department of Chemistry, Institute of Food Science, Warsaw University of Life Sciences–SGGW (WULS–SGGW), 02-787 Warsaw, Poland; [email protected] 3 Division of Fruit, Vegetable and Cereal Technology, Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences–SGGW (WULS–SGGW), 02-787 Warsaw, Poland; [email protected] 4 Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; [email protected] (M.K.); [email protected] (S.P.); [email protected] (A.S.) 5 Institute of Horticultural Sciences, Warsaw University of Life Sciences–SGGW (WULS–SGGW), 02-787 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-225-937-666 Abstract: This study aimed to investigate the effect of plant extracts (valerian Valeriana officinalis L., sage Salvia officinalis L., chamomile Matricaria chamomilla L., cistus Cistus L., linden blossom Tilia L., ribwort plantain Plantago lanceolata L., marshmallow Althaea L.) on the activity and growth of lactic acid bacteria (LAB) during the fermentation and passage of milk through a digestive system model. Citation: Ziarno, M.; Kozłowska, M.; The tested extracts were also characterized in terms of their content of polyphenolic compounds and Scibisz,´ I.; Kowalczyk, M.; Pawelec, S.; antioxidant activity.
    [Show full text]
  • Chronic Administration of Probiotic L. Rhamnosus Increases Anxiety-Like Behavior in Group-Housed Male Long Evans Rats
    University of Dayton eCommons Honors Theses University Honors Program 4-2018 Chronic Administration of Probiotic L. rhamnosus Increases Anxiety-like Behavior in Group-housed Male Long Evans Rats Parker Maddison Griff University of Dayton Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses Part of the Biology Commons, and the Psychology Commons eCommons Citation Griff, Parker Maddison, "Chronic Administration of Probiotic L. rhamnosus Increases Anxiety-like Behavior in Group-housed Male Long Evans Rats" (2018). Honors Theses. 157. https://ecommons.udayton.edu/uhp_theses/157 This Honors Thesis is brought to you for free and open access by the University Honors Program at eCommons. It has been accepted for inclusion in Honors Theses by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. Chronic Administration of Probiotic L. rhamnosus Increases Anxiety-like Behavior in Group-housed Male Long Evans Rats Honors Thesis Parker Maddison Griff Department: Psychology and Biology Advisor: Tracy Butler, Ph.D. and Yvonne Sun, Ph.D. April 2018 Chronic Administration of Probiotic L. rhamnosus Increases Anxiety-like Behavior in Group-housed Male Long Evans Rats Honors Thesis Parker Maddison Griff Department: Psychology and Biology Advisor: Tracy Butler, Ph.D. and Yvonne Sun, Ph.D. April 2018 Abstract Early life stress is a risk factor for later development of alcohol use disorders and anxiety disorders in humans. Using rodent experimental models, we know that rats experiencing social isolation as early-life stress exhibit greater anxiety-like behavior and alcohol consumption than rats housed in groups. Examining potential preventive strategies, we investigated the effects of probiotics, which have previously been shown to decrease rodent anxiety-like behavior, on the relationship between early-life stress and anxiety-like behavior in rats.
    [Show full text]
  • Antifungal Activity of Lactobacillus Pentosus ŁOCK 0979 in the Presence of Polyols and Galactosyl-Polyols
    Probiotics & Antimicro. Prot. https://doi.org/10.1007/s12602-017-9344-0 Antifungal Activity of Lactobacillus pentosus ŁOCK 0979 in the Presence of Polyols and Galactosyl-Polyols Lidia Lipińska1 & Robert Klewicki2 & Michał Sójka2 & Radosław Bonikowski3 & Dorota Żyżelewicz2 & Krzysztof Kołodziejczyk2 & Elżbieta Klewicka 1 # The Author(s) 2017. This article is an open access publication Abstract The antifungal activity of Lactobacillus pentosus Keywords Antifungal activity . Galactosyl-polyols . ŁOCK 0979 depends both on the culture medium and on the Lactobacillus . Metabolites . Polyols . SEM fungal species. In the control medium, the strain exhibited limited antagonistic activity against indicator food-borne molds and yeasts. However, the supplementation of the bac- Introduction terial culture medium with polyols (erythritol, lactitol, maltitol, mannitol, sorbitol, xylitol) or their galactosyl deriva- Filamentous fungi and yeasts are present in almost all types of tives (gal-erythritol, gal-sorbitol, gal-xylitol) enhanced the an- ecosystems due to their high adaptation ability and low nutri- tifungal properties of Lactobacillus pentosus ŁOCK 0979. Its tional requirements. Filamentous fungi are widespread food metabolites were identified and quantified by enzymatic spoilage microorganisms responsible for significant economic methods, HPLC, UHPLC-MS coupled with QuEChERS, losses in the agri-food industry [6]; they are also a major and GC-MS. The presence of polyols and gal-polyols signif- health concern due to mycotoxin production. The most com- icantly affected the acid metabolite profile of the bacterial mon genera of spoilage fungi include Penicillium, Fusarium, culture supernatant. In addition, lactitol and mannitol were Aspergillus, Cladosporium,andRhizopus [21]. Commercial used by bacteria as alternative carbon sources. A number of foodstuffs are usually protected from such microorganisms by compounds with potential antifungal properties were identi- physical and chemical techniques.
    [Show full text]
  • The Impact of Oil Type and Lactic Acid Bacteria on Conjugated Linoleic Acid Production
    JOBIMB, 2016, Vol 4, No 2, 25-29 JOURNAL OF BIOCHEMISTRY, MICROBIOLOGY AND BIOTECHNOLOGY Website: http://journal.hibiscuspublisher.com/index.php/JOBIMB/index The Impact of Oil Type and Lactic Acid Bacteria on Conjugated Linoleic Acid Production Mahmoud A. Al-Saman 1*, Rafaat M. Elsanhoty 1 and Elhadary A. E. 2 1Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 22857/79, Egypt. 2Biochemistry Department, Faculty of Agriculture, Benha University, Egypt. *Corresponding author: Dr. Mahmoud Abd El-Hamid Al-Saman Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 22857/79, Egypt. Email: [email protected] [email protected] HISTORY ABSTRACT This work was conducted to investigate the effect of oil type and lactic acid bacteria on the Received: 27 th October 2016 conjugated linoleic acid (CLA) production in MRS medium. The ability of eight strains of Received in revised form: 2nd December 2016 Accepted: 17th December 2016 lactic acids bacteria; Lactobacillus acidophilus (P2, ATCC 20552), Lactobacillus brevis (P102), Lactobacillus casei (P9, DSMZ 20011), Lactobacillus plantarum (P1), Lactobacillus KEYWORDS pentosus (P4), Lactobacillus rhamnosus (P5, TISTR 541), Bifidobacterium longum (BL) and conjugated linoleic acid (CLA) Bifidobacterium lactis (P7, Bb-12) for the production of CLA in the MRS broth was lactic acid bacteria investigated. Two vegetable oils (sun flower oil & linseed oil) and cod liver oil were used as vegetable oils cod liver oil substrates in MRS media. The oils were added to MRS in concentration of 10 mg/ml and probiotic incubated for three days at 37°C.
    [Show full text]
  • Effect of Lactobacillus Casei Shirota Supplementation on Trimethylamine-N-Oxide Levels in Patients with Metabolic Syndrome: an Open-Label, Randomized Study
    Atherosclerosis 242 (2015) 141e144 Contents lists available at ScienceDirect Atherosclerosis journal homepage: www.elsevier.com/locate/atherosclerosis Effect of Lactobacillus casei Shirota supplementation on trimethylamine-N-oxide levels in patients with metabolic syndrome: An open-label, randomized study Norbert J. Tripolt a, Bettina Leber b, Alexander Triebl c, Harald Kofeler€ c, * Vanessa Stadlbauer b, , Harald Sourij a, d a Medical University of Graz, Department of Internal Medicine, Division of Endocrinology and Metabolism, Cardiovascular Diabetology Research Group, Graz, Austria b Medical University of Graz, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Graz, Austria c Medical University of Graz, Center for Medical Research, Core Facility for Mass Spectrometry, Graz, Austria d Centre for Biomarker Research in Medicine (CBmed), Graz, Austria article info abstract Article history: Background: Recent studies in animal models have shown a link between ingestion of dietary phos- Received 2 December 2014 phatidylcholine (PC), choline, L-carnitine and cardiovascular risk. Intestinal microbiota-dependent Received in revised form metabolism of PC and L-carnitine is involved in formation of trimethylamine (TMA), which is further 14 April 2015 metabolized to the proatherogenic compound trimethylamine-N-oxide (TMAO). It has been suggested Accepted 13 May 2015 that changes in gut microbiota by supplementation of probiotic drinks might alter TMAO levels. Hence, Available online 8 July 2015 the aim of this analysis was to investigate the impact of Lactobacillus casei Shirota (LcS) on formation of TMAO in subjects with metabolic syndrome. Keywords: Trimethylamine-N-oxide (TMAO) Methods: In a single-center, prospective, randomized-controlled study 30 subjects with metabolic syn- Â 9 Lactobacillus casei Shirota (LcS) drome were randomized to receive either 3 times daily 6.5 10 CFU (colony-forming units) LcS (pro- Gut microbiota biotic group) or not (standard therapy group) for 12 weeks.
    [Show full text]
  • A Proteomic View of Probiotic Lactobacillus Rhamnosus GG
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Department of Veterinary Biosciences Faculty of Veterinary Medicine University of Helsinki Helsinki, Finland A proteomic view of probioƟ c Lactobacillus rhamnosus GG KerƩ u Koskenniemi ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Veterinary Medicine of the University of Helsinki, for public examinaƟ on in the Walter Auditorium, Agnes Sjöbergin katu 2, Helsinki, on January 13th 2012, at 12 o’clock noon. Helsinki 2012 Supervisor Docent Pekka Varmanen Division of Food Technology Department of Food and Environmental Sciences University of Helsinki Helsinki, Finland Reviewers Professor Sirpa Kärenlampi Department of Biosciences University of Eastern Finland Kuopio, Finland Docent Jaana Mättö Finnish Red Cross Blood Service Helsinki, Finland Opponent Professor Oscar Kuipers Department of Molecular Genetics Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Groningen, the Netherlands. Layout: Tinde Päivärinta Cover fi gure: A 2-D DIGE gel image (photo Kerttu Koskenniemi) ISBN 978-952-10-7403-5 (paperback) ISBN 978-952-10-7404-2 (PDF) ISSN 1799-7372 http://ethesis.helsinki.fi Unigrafi a Helsinki 2012 CONTENTS Abstract List of abbreviations List of original publications 1. Review of the literature ..........................................................................................1 1.1. Probiotic bacteria .....................................................................................................1
    [Show full text]
  • Promoting a Healthy Microbiome with Food and Probiotics
    PROMOTING A HEALTHY MICROBIOME WITH FOOD AND PROBIOTICS DEFINITIONS • Prebiotic: The food that probiotics need to sustain themselves (e.g. fructooligosaccharides) • Probiotic: A living organism that benefits the health of the host (e.g. bacteria and yeast) • Synbiotic: A supplement that contains both a prebiotic and a probiotic • Postbiotic: A metabolic byproduct of probiotics (e.g. n-butyrate from fermentation of fiber and bacteria) NUTRITION: THE ULTIMATE PREBIOTIC Although a person’s population of bacteria is inoculated at the time of birth, most of the microbiome is established in the human gut with the introduction of food. Breast milk includes milk oligosaccharides (MOS) that provide bacteria with nutrients to grow, particularly Bifidobacteria. Diets that contain the most fiber, fruit, and vegetables are known to engender the most diversity and richness of bacteria growth in the gut. Healthy bacteria produce short-chain fatty acids, such as n-butyrate, that support the health of the intestinal lining.[1] Foods rich in choline and carnitine (e.g. red meat and eggs) are metabolized by the intestinal microbiota to form the gas trimethylamine (TMA). TMA is converted by the liver to trimethylamine oxide (TMAO). This substance (an unhealthy postbiotic) has been strongly linked to the development of atherosclerosis and coronary artery disease.[2] Eating a diet low in red meat and animal fat and rich in fibrous plants has been found to support bacteria in the gut that can reduce how much energy the body stores; our gut’s microbiome can influence one’s risk of obesity.[3] When humans were hunters and gatherers, it was harder to kill wild game, so eating meat and animal fat was less common.
    [Show full text]
  • Methods of Extraction, Refining and Concentration of Fish Oil As a Source of Omega-3 Fatty Acids
    Corpoica Cienc Tecnol Agropecuaria, Mosquera (Colombia), 19(3):645-668 september - december / 2018 ISSN 0122-8706 ISSNe 2500-5308 645 Transformation and agro-industry Review article Methods of extraction, refining and concentration of fish oil as a source of omega-3 fatty acids Métodos de extracción, refinación y concentración de aceite de pescado como fuente de ácidos grasos omega 3 Jeimmy Rocío Bonilla-Méndez,1* José Luis Hoyos-Concha2 1 Researcher, Universidad del Cauca, Facultad de Ciencias Agrarias. Popayán, Colombia. Email: [email protected]. orcid.org/0000-0001-5362-5950 2 Lecturer, Universidad del Cauca, Facultad de Ciencias Agrarias. Popayán, Colombia. Email: [email protected]. orcid.org/0000-0001-9025-9734 Editor temático: Miguel Ángel Rincón Cervera (Instituto de Nutrición y Tecnología de los Alimentos [INTA]) Date of receipt: 05/07/2017 Date of approval: 15/03/2018 How to cite this article: Bonilla-Méndez, J. R., & Hoyos-Concha, J. L. (2018). Methods of extraction, refining and concentration of fish oil as a source of omega-3 fatty acids. Corpoica Ciencia y Tecnología Agropecuaria, 19(3), 645-668. DOI: https://doi.org/10.21930/rcta.vol19_num2_art:684 This license allows distributing, remixing, retouching, and creating from the work in a non-commercial manner, as long as credit is given and their new creations are licensed under the same conditions. * Corresponding author. Universidad del Cauca, Facultad de Ciencias Agrarias. Vereda Las Guacas, Popayán, Colombia. 2018 Corporación Colombiana de Investigación Agropecuaria Corpoica Cienc Tecnol Agropecuaria, Mosquera (Colombia), 19(3):645-668 september - december / 2018 ISSN 0122-8706 ISSNe 2500-5308 Abstract Fish oil is an industrial product of high nutritional methods, there are new technologies with potential value because of its Omega-3 polyunsaturated fatty to be applied on fish oil.
    [Show full text]
  • Evaluation of Microbial Diversity Present in Herbal Supplements As Revealed by PCR-Based 16S Sequence Analysis Stephen Stone University of Mississippi
    University of Mississippi eGrove Honors College (Sally McDonnell Barksdale Honors Theses Honors College) 2014 Evaluation of microbial diversity present in herbal supplements as revealed by PCR-based 16S sequence analysis Stephen Stone University of Mississippi. Sally McDonnell Barksdale Honors College Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis Part of the Biology Commons Recommended Citation Stone, Stephen, "Evaluation of microbial diversity present in herbal supplements as revealed by PCR-based 16S sequence analysis" (2014). Honors Theses. 873. https://egrove.olemiss.edu/hon_thesis/873 This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized administrator of eGrove. For more information, please contact [email protected]. EVALUATION OF MICROBIAL DIVERSITY PRESENT IN HERBAL SUPPLEMENTS AS REVEALED BY PCR-BASED 16S RRNA SEQUENCE ANALYSIS by Stephen Van Dorn Stone A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford May 29, 2014 Approved by Advisor: Dr. Colin Jackson Reader: Dr. Wendy Garrison Reader: Dr. John Samonds i © 2014 Stephen Van Dorn Stone ALL RIGHTS RESERVED ii ABSTRACT Stephen Stone: Evaluation of microbial diversity present in herbal supplements as revealed by PCR-based 16S rRNA sequence analysis Over the last few decades people have become more aware of their general wellness and have turned towards alternative measures to ensure good health. One of these alternative measures, the herbal supplement market, has risen significantly in recent years, even though there is no conclusive research that points to the effectiveness of herbal supplements.
    [Show full text]
  • Psychobiotics and the Gut–Brain Axis Open Access to Scientific and Medical Research DOI
    Journal name: Neuropsychiatric Disease and Treatment Article Designation: Review Year: 2015 Volume: 11 Neuropsychiatric Disease and Treatment Dovepress Running head verso: Zhou and Foster Running head recto: Psychobiotics and the gut–brain axis open access to scientific and medical research DOI: http://dx.doi.org/10.2147/NDT.S61997 Open Access Full Text Article REVIEW Psychobiotics and the gut–brain axis: in the pursuit of happiness Linghong Zhou1 Abstract: The human intestine houses an astounding number and species of microorganisms, Jane A Foster1,2 estimated at more than 1014 gut microbiota and composed of over a thousand species. An indi- vidual’s profile of microbiota is continually influenced by a variety of factors including but 1Department of Psychiatry and Behavioural Neurosciences, McMaster not limited to genetics, age, sex, diet, and lifestyle. Although each person’s microbial profile is University, Hamilton, ON, Canada; distinct, the relative abundance and distribution of bacterial species is similar among healthy 2Brain-Body Institute, St Joseph’s Healthcare, Hamilton, ON, Canada individuals, aiding in the maintenance of one’s overall health. Consequently, the ability of gut microbiota to bidirectionally communicate with the brain, known as the gut–brain axis, in the modulation of human health is at the forefront of current research. At a basic level, the gut microbiota interacts with the human host in a mutualistic relationship – the host intestine pro- vides the bacteria with an environment to grow and the bacterium aids in governing homeostasis within the host. Therefore, it is reasonable to think that the lack of healthy gut microbiota may also lead to a deterioration of these relationships and ultimately disease.
    [Show full text]