Jebmh.Com Original Research Article
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anterior Abdominal Wall (Continue)
Anterior rami (T7 – L1) . T7-T11 called intercostal nerves. T12 called subcostal nerve. L1 through lumber plexus i.e. ilio inguinal & ilio hypogastric nerves T7……. Epigastrum T10……Umblicus L1…Above inguinal ligament & symphysis pubis. Arterial: Upper mid line: superior epigastric artery (internal thoracic artery). Lower mid line: inferior epigastric artery (external iliac artery). Flanks: supplied by branches from intercostal artery, lumbar artery & deep circumflex iliac artery. Venous: all venous blood collected into a plexus of veins that radiate from umbilicus toward: : Above : to lateral thoracic vein then to axillary vein. Below : to superficial epigastric & greater saphenous veins then to femoral vein. Lymphatic Of Anterior abdominal Wall: Above umbilicus : drain into anterior axillary lymph nodes. Below umbilicus: drain in to superficial inguinal nodes 1)External oblique muscle. 2) Internal oblique muscle. 3) Transversus abdominis 4)Rectus abdominis. 5) Pyramidalis. Origin: The outer surface of lower 8 ribs then directed forward & downward to its insertion. Upper four slip interdigitate with seratus anterior muscle. Lower four slip interdigitate with latissimus dorsi muscle . Insertions: As a flat aponeurosis into: * Xiphoid process. * Linea alba * Pubic crest. * Pubic tubercle. * Anterior half of iliac crest . Internal Oblique Muscle: Origin : * Lumber fascia * Anterior 2/3 of iliac crest. * Lateral 2/3 of inguinal ligament. Insertion: The fibers passes upward & foreword & inserted to lower 3 ribs & their costal cartilages, xiphoid process, linea alba & symphysis pubis. Conjoint Tendon: Form from lower tendon of internal oblique joined to similar tendon from transversus abdominis . Its is attached medially to linea alba ,pubic crest & pectineal line but has a lateral free border. The spermatic cord, as it passes below this muscle, it gains a muscular cover called " Cremaster muscle " which composed of muscle & fascia. -
The Pyramidalis–Anterior Pubic Ligament–Adductor Longus Complex (PLAC) and Its Role with Adductor Injuries: a New Anatomical Concept
The pyramidalis-anterior pubic ligament-adductor longus complex (PLAC) and its role with adductor injuries a new anatomical concept Schilders, Ernest; Bharam, Srino; Golan, Elan; Dimitrakopoulou, Alexandra; Mitchell, Adam; Spaepen, Mattias; Beggs, Clive; Cooke, Carlton; Holmich, Per Published in: Knee Surgery, Sports Traumatology, Arthroscopy DOI: 10.1007/s00167-017-4688-2 Publication date: 2017 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Schilders, E., Bharam, S., Golan, E., Dimitrakopoulou, A., Mitchell, A., Spaepen, M., Beggs, C., Cooke, C., & Holmich, P. (2017). The pyramidalis-anterior pubic ligament-adductor longus complex (PLAC) and its role with adductor injuries: a new anatomical concept. Knee Surgery, Sports Traumatology, Arthroscopy, 25(12), 3969- 3977. https://doi.org/10.1007/s00167-017-4688-2 Download date: 03. okt.. 2021 Knee Surg Sports Traumatol Arthrosc DOI 10.1007/s00167-017-4688-2 HIP The pyramidalis–anterior pubic ligament–adductor longus complex (PLAC) and its role with adductor injuries: a new anatomical concept Ernest Schilders1,2,3 · Srino Bharam3,4 · Elan Golan5 · Alexandra Dimitrakopoulou2,6 · Adam Mitchell7 · Mattias Spaepen8 · Clive Beggs2 · Carlton Cooke9 · Per Holmich10,11 Received: 29 April 2017 / Accepted: 16 August 2017 © The Author(s) 2017. This article is an open access publication Abstract Results The pyramidalis is the only abdominal muscle Purpose Adductor longus injuries are complex. The anterior to the pubic bone and was found bilaterally in all confict between views in the recent literature and various specimens. It arises from the pubic crest and anterior pubic nineteenth-century anatomy books regarding symphyseal ligament and attaches to the linea alba on the medial border. -
Anatomy of Abdominal Incisions
ANATOMY FOR THE MRCS but is time-consuming. A lower midline incision is needed for an Anatomy of abdominal emergency Caesarean section (where minutes may be crucial for baby and mother). The surgeon must also be sure of the pathol- incisions ogy before performing this approach. Close the Pfannenstiel and start again with a lower midline if the ‘pelvic mass’ proves to be Harold Ellis a carcinoma of the sigmoid colon! There are more than one dozen abdominal incisions quoted in surgical textbooks, but the ones in common use today (and which the candidate must know in detail) are discussed below. The midline incision (Figures 1–4) Opening the abdomen is the essential preliminary to the per- formance of a laparotomy. A correctly performed abdominal The midline abdominal incision has many advantages because it: exposure is based on sound anatomical knowledge, hence it is a • is very quick to perform common question in the Operative Surgery section of the MRCS • is relatively easy to close examination. • is virtually bloodless (no muscles are cut or nerves divided). • affords excellent access to the abdominal cavity and retroperi- toneal structures Incisions • can be extended from the xiphoid to the pubic symphysis. Essential features If closure is performed using the mass closure technique, pros- The surgeon needs ready and direct access to the organ requir- pective randomized clinical trials have shown no difference in ing investigation and treatment, so the incision must provide the incidence of wound dehiscence or incisional hernia com- sufficient room for the procedure to be performed. The incision pared with transverse or paramedian incisions.1 should (if possible): The upper midline incision is placed exactly in the midline • be capable of easy extension (to allow for any enlargement of and extends from the tip of the xiphoid to about 1 cm above the scope of the operation) the umbilicus. -
Anatomy and Physiology of the Abdominal Wall 0011 CHAPTER Internal Oblique Some Inferior fi Bers Form the Cremaster Muscle at the Level of the Inguinal Canal
Handbook of Complex Abdominal Wall Anatomy and physiology of the abdominal wall 0011 CHAPTER Álvaro Robín Valle de Lersundi, MD, PhD Arturo Cruz Cidoncha, MD, PhD 11.1..1. Anatomy of the abdominal wall 1.1.1. Introduction The abdominal wall is delimited by muscle structures than can be classifi ed in 5 ana- tomical areas: lateral, anterior, posterior, diaphragmatic and perineal (Table 1.1). We will describe the fi rst four due to their relevance in surgical repair of complex abdom- inal wall. These groups of muscles are enclosed by several bone structures: last ribs, chondrocostal joints, xyphoid, pelvis and costal apophysis of lumbar vertebrae. Layers of the anterior and lateral abdominal wall include skin, subcutaneous tissue, super- fi cial fascia, deep fascia, muscles, extraperitoneal fascia and peritoneum. Table 1.1. Muscular limits of the abdominal wall ∙ Quadratus lumborum POSTERIOR ∙ Psoas ∙ Iliac muscle ∙ External oblique LATERAL ∙ Internal oblique ∙ Transversus abdominis ∙ Rectus abdominis ANTERIOR ∙ Piramidalis CONTENTS SUPERIOR ∙ Diaphragm 1.1. Anatomy of the abdominal INFERIOR ∙ Perineal muscles wall 1.1.2. Muscles of the abdominal wall 1.2. Physiologyygy Muscles of the anterolateral wall Rectus abdominis The rectus abdominis (m. rectus abdominis) is a long and thick muscle that is extended from the anterolateral thorax to the pubis close to the midline (Figure 1.1). 1 Figure External oblique 1.1. Rectus abdominis The external oblique muscle (m. obliquus externus abdominis) is the most superfi cial and thickest of the three lateral abdominal wall muscles (Figure 1.2). Figure 1.2. External oblique muscle Handbook of Complex Abdominal Wall Handbook of Complex Cranially, the rectus abdominis muscles originates from 3 dig- itations that insert on the 5th-7th costal cartilages, the xyphoid process and costoxyphoid ligament. -
Anterior Abdominal Wall
Abdominal wall Borders of the Abdomen • Abdomen is the region of the trunk that lies between the diaphragm above and the inlet of the pelvis below • Borders Superior: Costal cartilages 7-12. Xiphoid process: • Inferior: Pubic bone and iliac crest: Level of L4. • Umbilicus: Level of IV disc L3-L4 Abdominal Quadrants Formed by two intersecting lines: Vertical & Horizontal Intersect at umbilicus. Quadrants: Upper left. Upper right. Lower left. Lower right Abdominal Regions Divided into 9 regions by two pairs of planes: 1- Vertical Planes: -Left and right lateral planes - Midclavicular planes -passes through the midpoint between the ant.sup.iliac spine and symphysis pupis 2- Horizontal Planes: -Subcostal plane - at level of L3 vertebra -Joins the lower end of costal cartilage on each side -Intertubercular plane: -- At the level of L5 vertebra - Through tubercles of iliac crests. Abdominal wall divided into:- Anterior abdominal wall Posterior abdominal wall What are the Layers of Anterior Skin Abdominal Wall Superficial Fascia - Above the umbilicus one layer - Below the umbilicus two layers . Camper's fascia - fatty superficial layer. Scarp's fascia - deep membranous layer. Deep fascia : . Thin layer of C.T covering the muscle may absent Muscular layer . External oblique muscle . Internal oblique muscle . Transverse abdominal muscle . Rectus abdominis Transversalis fascia Extraperitoneal fascia Parietal Peritoneum Superficial Fascia . Camper's fascia - fatty layer= dartos muscle in male . Scarpa's fascia - membranous layer. Attachment of scarpa’s fascia= membranous fascia INF: Fascia lata Sides: Pubic arch Post: Perineal body - Membranous layer in scrotum referred to as colle’s fascia - Rupture of penile urethra lead to extravasations of urine into(scrotum, perineum, penis &abdomen) Muscles . -
Low Back & Hip Unit 4
LOW BACK & HIP UNIT MODULE 4 1 __________________________________________________________________ Welcome to Beyond Trigger Points Seminars, Low Back and Hip Unit Module 4 on the Thoracolumbar Erector Paraspinals, Abdominals and Serratus Posterior Inferior. This is Cathy Cohen. By the end of this lesson, you will be able to identify the trigger points and the dysfunctions occurring in these very important structural muscles. Our other learning objective is to differentiate between a somatovisceral versus a viscerosomatic effect. First, let's be clear on how these muscles are named. Collectively the muscle group along the spine is referred to as the paravertebral muscles. Our book labels the superficial group as the erector spinae and the deep group as the paraspinal muscles. So again, the superficial group we'll refer to as the erector spinae and the deep group as the paraspinal muscles. When I was developing my true beginner’s status in this profession, I made a bet with a chiropractor. My perception of the relative thickness between the superficial and the deep paraspinal muscles differed from his knowing. During a camping trip in the Shenandoah Valley, Virginia, I thought I had the perfect opportunity to win my bet. A farmer had donated a pig to roast and my fellow campers agreed to let me butcher the pig’s tenderloin. Those are the muscles along the pig’s spine. Well, just as my chiropractor friend said, the long fibered superficial muscles are relatively thinner than the short fatter diagonal muscles of the deep group. I lost ten dollars that day. On page 24 of the student study guide, the actions to list for the deep thoracolumbar paraspinals are: 1. -
Surface Anatomy
BODY ORIENTATION OUTLINE 13.1 A Regional Approach to Surface Anatomy 398 13.2 Head Region 398 13.2a Cranium 399 13 13.2b Face 399 13.3 Neck Region 399 13.4 Trunk Region 401 13.4a Thorax 401 Surface 13.4b Abdominopelvic Region 403 13.4c Back 404 13.5 Shoulder and Upper Limb Region 405 13.5a Shoulder 405 Anatomy 13.5b Axilla 405 13.5c Arm 405 13.5d Forearm 406 13.5e Hand 406 13.6 Lower Limb Region 408 13.6a Gluteal Region 408 13.6b Thigh 408 13.6c Leg 409 13.6d Foot 411 MODULE 1: BODY ORIENTATION mck78097_ch13_397-414.indd 397 2/14/11 3:28 PM 398 Chapter Thirteen Surface Anatomy magine this scenario: An unconscious patient has been brought Health-care professionals rely on four techniques when I to the emergency room. Although the patient cannot tell the ER examining surface anatomy. Using visual inspection, they directly physician what is wrong or “where it hurts,” the doctor can assess observe the structure and markings of surface features. Through some of the injuries by observing surface anatomy, including: palpation (pal-pā sh ́ ŭ n) (feeling with firm pressure or perceiving by the sense of touch), they precisely locate and identify anatomic ■ Locating pulse points to determine the patient’s heart rate and features under the skin. Using percussion (per-kush ̆ ́ŭn), they tap pulse strength firmly on specific body sites to detect resonating vibrations. And ■ Palpating the bones under the skin to determine if a via auscultation (aws-ku ̆l-tā sh ́ un), ̆ they listen to sounds emitted fracture has occurred from organs. -
The Development of the Anterior Abdominal Wall in the Rat in the Light of a New Anatomical Description
J. Anat. (1982), 134, 2, pp. 237-242 237 With 8 figures Printed in Great Britain The development of the anterior abdominal wall in the rat in the light of a new anatomical description N. N. RIZK AND N. ADIEB Department ofAnatomy, Faculty ofMedicine, Cairo University (Accepted 9 March 1981) INTRODUCTION A new anatomical description of the anterior abdominal wall has been given recently (Rizk, 1976, 1980). It describes each abdominal aponeurosis as bilaminar and each wall of the rectus sheath as trilaminar. The fibres of all aponeurotic layers, in all mammals studied, cross the middle line to form digastric muscles with the corresponding aponeurotic layers of the opposite side. This description raises the question of the developmental origin of such a structure. A point of controversy to be settled is the mesodermal origin of the abdominal muscles. Some authors describe the thoracic myotomes as extending ventrally to form the ventrolateral muscles of the thorax and the abdomen (Bardeen & Lewis, 1901; Patten, 1964; Arey, 1965; Hamilton, Boyd & Mossmanw 1972). However, more recently Snell (1975) stated that the abdominal muscles differentiate locally from the mesenchyme of the somatopleure. The further course of development of the abdominal mesoderm is a point of agreement between some investigators (Hamilton et al. 1972; Snell, 1975), but the literature seems to be deficient in embryo- logical reports that could be related to the new anatomical description. The present work describes the development of the ventrolateral abdominal muscles of the albino rat in the light of this description. MATERIALS AND METHODS Sixty albino rat embryos, from twenty two different mothers, were studied starting from the 10th postcoitum (pc) day to the 30th day after birth. -
1 Anatomy of the Abdominal Wall 1
Chapter 1 Anatomy of the Abdominal Wall 1 Orhan E. Arslan 1.1 Introduction The abdominal wall encompasses an area of the body boundedsuperiorlybythexiphoidprocessandcostal arch, and inferiorly by the inguinal ligament, pubic bones and the iliac crest. Epigastrium Visualization, palpation, percussion, and ausculta- Right Left tion of the anterolateral abdominal wall may reveal ab- hypochondriac hypochondriac normalities associated with abdominal organs, such as Transpyloric T12 Plane the liver, spleen, stomach, abdominal aorta, pancreas L1 and appendix, as well as thoracic and pelvic organs. L2 Right L3 Left Visible or palpable deformities such as swelling and Subcostal Lumbar (Lateral) Lumbar (Lateral) scars, pain and tenderness may reflect disease process- Plane L4 L5 es in the abdominal cavity or elsewhere. Pleural irrita- Intertuber- Left tion as a result of pleurisy or dislocation of the ribs may cular Iliac (inguinal) Plane result in pain that radiates to the anterior abdomen. Hypogastrium Pain from a diseased abdominal organ may refer to the Right Umbilical Iliac (inguinal) Region anterolateral abdomen and other parts of the body, e.g., cholecystitis produces pain in the shoulder area as well as the right hypochondriac region. The abdominal wall Fig. 1.1. Various regions of the anterior abdominal wall should be suspected as the source of the pain in indi- viduals who exhibit chronic and unremitting pain with minimal or no relationship to gastrointestinal func- the lower border of the first lumbar vertebra. The sub- tion, but which shows variation with changes of pos- costal plane that passes across the costal margins and ture [1]. This is also true when the anterior abdominal the upper border of the third lumbar vertebra may be wall tenderness is unchanged or exacerbated upon con- used instead of the transpyloric plane. -
Tendinous Inscriptions of the Rectus Abdominis: a Comprehensive Review
Providence St. Joseph Health Providence St. Joseph Health Digital Commons Journal Articles and Abstracts 8-4-2018 Tendinous Inscriptions of the Rectus Abdominis: A Comprehensive Review. Rabjot Rai Lilian C Azih Joe Iwanaga Marios Loukas Martin Mortazavi See next page for additional authors Follow this and additional works at: https://digitalcommons.psjhealth.org/publications Part of the Neurology Commons, and the Pathology Commons Recommended Citation Rai, Rabjot; Azih, Lilian C; Iwanaga, Joe; Loukas, Marios; Mortazavi, Martin; Oskouian, Rod J; and Tubbs, R Shane, "Tendinous Inscriptions of the Rectus Abdominis: A Comprehensive Review." (2018). Journal Articles and Abstracts. 792. https://digitalcommons.psjhealth.org/publications/792 This Article is brought to you for free and open access by Providence St. Joseph Health Digital Commons. It has been accepted for inclusion in Journal Articles and Abstracts by an authorized administrator of Providence St. Joseph Health Digital Commons. For more information, please contact [email protected]. Authors Rabjot Rai, Lilian C Azih, Joe Iwanaga, Marios Loukas, Martin Mortazavi, Rod J Oskouian, and R Shane Tubbs This article is available at Providence St. Joseph Health Digital Commons: https://digitalcommons.psjhealth.org/publications/792 Open Access Review Article DOI: 10.7759/cureus.3100 Tendinous Inscriptions of the Rectus Abdominis: A Comprehensive Review Rabjot Rai 1 , Lilian C. Azih 2 , Joe Iwanaga 3 , Marios Loukas 4 , Martin Mortazavi 5 , Rod J. Oskouian 6 , R. Shane Tubbs 7 1. Department of Anatomy, St. George's University School of Medicine, St. George's, GRD 2. Hospital, Greater Los Angeles Hospital, Los Angeles, USA 3. Seattle Science Foundation, Seattle, USA 4. -
2. Abdominal Wall and Hernias
BWH 2015 GENERAL SURGERY RESIDENCY PROCEDURAL ANATOMY COURSE 2. ABDOMINAL WALL AND HERNIAS Contents LAB OBJECTIVES ............................................................................................................................................... 2 Knowledge objectives .................................................................................................................................. 2 Skills objectives ............................................................................................................................................ 2 Preparation for lab .......................................................................................................................................... 2 1.1 ORGANIZATION OF THE ABDOMINAL WALL ............................................................................................ 4 Organization of the trunk wall .................................................................................................................... 4 Superficial layers of the trunk wall ............................................................................................................. 5 Musculoskeletal layer of the anterolateral abdominal wall ...................................................................... 7 T3/Deep fascia surrounding the musculoskeletal layer of the abdominal wall ..................................... 11 Deeper layers of the trunk wall ............................................................................................................... -
The Pyramidalis–Anterior Pubic Ligament–Adductor Longus Complex (PLAC) and Its Role with Adductor Injuries: a New Anatomical Concept
The pyramidalis-anterior pubic ligament-adductor longus complex (PLAC) and its role with adductor injuries a new anatomical concept Schilders, Ernest; Bharam, Srino; Golan, Elan; Dimitrakopoulou, Alexandra; Mitchell, Adam; Spaepen, Mattias; Beggs, Clive; Cooke, Carlton; Holmich, Per Published in: Knee Surgery, Sports Traumatology, Arthroscopy DOI: 10.1007/s00167-017-4688-2 Publication date: 2017 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Schilders, E., Bharam, S., Golan, E., Dimitrakopoulou, A., Mitchell, A., Spaepen, M., ... Holmich, P. (2017). The pyramidalis-anterior pubic ligament-adductor longus complex (PLAC) and its role with adductor injuries: a new anatomical concept. Knee Surgery, Sports Traumatology, Arthroscopy, 25(12), 3969-3977. https://doi.org/10.1007/s00167-017-4688-2 Download date: 08. Apr. 2020 Knee Surg Sports Traumatol Arthrosc DOI 10.1007/s00167-017-4688-2 HIP The pyramidalis–anterior pubic ligament–adductor longus complex (PLAC) and its role with adductor injuries: a new anatomical concept Ernest Schilders1,2,3 · Srino Bharam3,4 · Elan Golan5 · Alexandra Dimitrakopoulou2,6 · Adam Mitchell7 · Mattias Spaepen8 · Clive Beggs2 · Carlton Cooke9 · Per Holmich10,11 Received: 29 April 2017 / Accepted: 16 August 2017 © The Author(s) 2017. This article is an open access publication Abstract Results The pyramidalis is the only abdominal muscle Purpose Adductor longus injuries are complex. The anterior to the pubic bone and was found bilaterally in all confict between views in the recent literature and various specimens. It arises from the pubic crest and anterior pubic nineteenth-century anatomy books regarding symphyseal ligament and attaches to the linea alba on the medial border.