Low Back & Hip Unit 4

Total Page:16

File Type:pdf, Size:1020Kb

Low Back & Hip Unit 4 LOW BACK & HIP UNIT MODULE 4 1 __________________________________________________________________ Welcome to Beyond Trigger Points Seminars, Low Back and Hip Unit Module 4 on the Thoracolumbar Erector Paraspinals, Abdominals and Serratus Posterior Inferior. This is Cathy Cohen. By the end of this lesson, you will be able to identify the trigger points and the dysfunctions occurring in these very important structural muscles. Our other learning objective is to differentiate between a somatovisceral versus a viscerosomatic effect. First, let's be clear on how these muscles are named. Collectively the muscle group along the spine is referred to as the paravertebral muscles. Our book labels the superficial group as the erector spinae and the deep group as the paraspinal muscles. So again, the superficial group we'll refer to as the erector spinae and the deep group as the paraspinal muscles. When I was developing my true beginner’s status in this profession, I made a bet with a chiropractor. My perception of the relative thickness between the superficial and the deep paraspinal muscles differed from his knowing. During a camping trip in the Shenandoah Valley, Virginia, I thought I had the perfect opportunity to win my bet. A farmer had donated a pig to roast and my fellow campers agreed to let me butcher the pig’s tenderloin. Those are the muscles along the pig’s spine. Well, just as my chiropractor friend said, the long fibered superficial muscles are relatively thinner than the short fatter diagonal muscles of the deep group. I lost ten dollars that day. On page 24 of the student study guide, the actions to list for the deep thoracolumbar paraspinals are: 1. Fine adjustments between the vertebral bodies. 2. Rotation These muscles span either one or two vertebral segments. The superficial thoracolumbar erector spinae group has four actions: 1. Extension 2. Side bending 3. Rotation 4. Check reins flexion to 45 degrees. BEYOND TRIGGER POINTS SEMINARS WWW.BEYONDTRIGGERPOINTS.COM Putting Your Hands To Better Use © 2009 Cathy Cohen, LMT LOW BACK & HIP UNIT MODULE 4 2 __________________________________________________________________ Another way to say that is, they control the speed of forward flexion up to 45 degrees forward. So when the torso is pitched forward between 45 degrees and upright these muscles are working hard. In one study of 283 patients presenting to a chronic pain treatment program with benign low back pain, 96% of them had trigger points. On page 26 you are looking at those trigger points possibly responsible for a large percentage of the low back pain you see in your office. You’ll only know if you look for them. The trigger points in these muscles refer pain primarily to the back and sometimes into the buttocks. Going back to page 25, begin drawing the trigger points commonly located in these muscles. As you are drawing, keep in mind, trigger points can develop at different layers and at varying depths within the layers. When I’m working in this region, I’m asking myself what layer my pressure is contacting. By remembering the pain patterns, I can determine which group of muscles I’m on when I find a trigger point. If you can commit one pain pattern to memory now, I suggest memorizing the iliocostalis thoracis at the T6 level shown on picture A. This is a very common pain pattern, often described as a stabbing pain along the paravertebral border of the shoulder blade with a spillover into the chest. Sometimes your client won't even tell you about the pain complaint to the anterior side of their body unless you query them on it. They don't think it is related. The sensation feels like it’s moving through them from back to front. To find this point, strum the longitudinal running fibers of the iliocostalis thoracis with a cross fiber friction stroke. You’ll locate this trigger point a few inches above the inferior angle of the scapula. On picture B, the referral pattern of the trigger point off T 11 segment feels as if it’s moving in two opposite directions. Don't forget to draw the pain pattern into the abdomen area as well. The iliocostalis lumborum and the longissimus thoracis in pictures C and D both refer pain distally into the buttocks. The distance the pain refers from where your elbow is pressing will amaze your clients. Moving on to the picture of the multifidi and rotatores on page 28, you see how the basic pain patterns for the deep muscles are like little sunshine rays around the trigger point. The pain from these points can BEYOND TRIGGER POINTS SEMINARS WWW.BEYONDTRIGGERPOINTS.COM Putting Your Hands To Better Use © 2009 Cathy Cohen, LMT LOW BACK & HIP UNIT MODULE 4 3 __________________________________________________________________ be felt to the bone. Draw the points you see but remember a trigger point could form at any segmental level. Because these are short muscles spanning between the vertebral bodies, trigger points could form anywhere along the centrally located motor endplate in each of the individual muscle fibers. During the hands-on workshop we learn a sequence to systematically release the points up the spine. I think you'll like it. You might even benefit from having work done on yourself as well. The whole weekend is spent creating length along the spine, lifting the front body and loosening the back region. I'm always very excited to teach the low back and hip unit because I know you can help so many people with this powerful knowledge of knowing how to assess, where to press and what to teach your clients. Have you ever wondered how a chiropractor or a doctor of osteopathy determines articular dysfunction without an X-ray? The two indicators of articular dysfunction are number one, and we are in the middle of page 27 of the study guide: tenderness over the spinous processes. So, when we're trying to determine which vertebral body is rotated, gently palpate over the spinous processes and if there's tenderness, that's a cardinal sign of subluxation and articular dysfunction. Number two is tenderness of the paravertebral muscles. If there’s increased tension on one side of the spine, it follows that the imbalance in the musculature would create a rotation in the vertebral bodies. I’m not prejudice, but bones are dumb and muscles are smart. A bone can’t just get up and walk out of alignment. So a chiropractor is basically using the same palpation methods we are when determining which vertebral segment to adjust. Dr. Lewitt, a researcher and practitioner, recognizes articular dysfunction as being closely related to increased tension caused by trigger points. Specifically he found a close association between trigger points and articular dysfunctions in the following four muscles: the iliopsoas, the thoracolumbar portion of the erector spinae, the quadratus lumborum and less frequently, the rectus abdominis. I know many of you work with chiropractors or have clients who are being treated with osseous manipulation. Think about if you're regularly treating these four muscles. Again, research shows BEYOND TRIGGER POINTS SEMINARS WWW.BEYONDTRIGGERPOINTS.COM Putting Your Hands To Better Use © 2009 Cathy Cohen, LMT LOW BACK & HIP UNIT MODULE 4 4 __________________________________________________________________ a close association with articular dysfunction and increased tension due to trigger points in the iliopsoas, erector spinae, quadratus lumborum and rectus abdominis. Other differential diagnoses a physician may have ruled-out when a person presents with erector spinae trigger points are; and you will be so happy to see I've already typed the answers: fibromyalgia. I hope you listened to the introductory lecture at www.askcathyco- hen.com. The overlapping and perhaps artificial distinction between the pain caused from fibromyalgia and myofascial pain syndromes was presented. The next differential is: Radiculopathy caused from: • Ruptured disc • Spinal foramen encroachment • Tumor I had a gentleman who had a tumor in his spinal cord. The neurosur- geon actually missed it and referred him to me for muscle work. When I pressed around the tumor area there was such a strong discharge of energy that my hands were literally pushed away from the area. I had such a strong sense that something was wrong and it wasn't a muscu- lar problem. So after the first treatment I got on the horn and called my former boss, a neurologist friend who saw him within two weeks and correctly diagnosed the tumor in his spinal cord. I continued to see him for the palliative relief he received from massage. Before he died, you might appreciate this, he brought me two basil plants. He grew organic herbs along with being a health teacher at the local high school, a driver’s ed. instructor and the football coach. Shortly before his passing, he made a special trip out to my country office to bring me these plants. All winter, while every plant around it froze and died, this plant stayed green and lived another season. I don’t know how but I wanted to share that story with you. As healers, we occasionally ex- perience the mystery of the life death cycle, and if we are open to re- ceive it, receive a healing ourselves. Osteoarthritis is another disorder with similar pain patterns. Fat lob- ules, surface tears of a disc and spinal ligament strain are also listed as differential diagnoses in the text and the study guide along with renal disease and gallstones if it’s right sided. Again, we review differential diagnoses in this program, not because we diagnosis, but because it’s BEYOND TRIGGER POINTS SEMINARS WWW.BEYONDTRIGGERPOINTS.COM Putting Your Hands To Better Use © 2009 Cathy Cohen, LMT LOW BACK & HIP UNIT MODULE 4 5 __________________________________________________________________ useful to know the diagnosis your clients may have been given for what might really be a myofascial pain syndrome.
Recommended publications
  • Anterior Abdominal Wall (Continue)
    Anterior rami (T7 – L1) . T7-T11 called intercostal nerves. T12 called subcostal nerve. L1 through lumber plexus i.e. ilio inguinal & ilio hypogastric nerves T7……. Epigastrum T10……Umblicus L1…Above inguinal ligament & symphysis pubis. Arterial: Upper mid line: superior epigastric artery (internal thoracic artery). Lower mid line: inferior epigastric artery (external iliac artery). Flanks: supplied by branches from intercostal artery, lumbar artery & deep circumflex iliac artery. Venous: all venous blood collected into a plexus of veins that radiate from umbilicus toward: : Above : to lateral thoracic vein then to axillary vein. Below : to superficial epigastric & greater saphenous veins then to femoral vein. Lymphatic Of Anterior abdominal Wall: Above umbilicus : drain into anterior axillary lymph nodes. Below umbilicus: drain in to superficial inguinal nodes 1)External oblique muscle. 2) Internal oblique muscle. 3) Transversus abdominis 4)Rectus abdominis. 5) Pyramidalis. Origin: The outer surface of lower 8 ribs then directed forward & downward to its insertion. Upper four slip interdigitate with seratus anterior muscle. Lower four slip interdigitate with latissimus dorsi muscle . Insertions: As a flat aponeurosis into: * Xiphoid process. * Linea alba * Pubic crest. * Pubic tubercle. * Anterior half of iliac crest . Internal Oblique Muscle: Origin : * Lumber fascia * Anterior 2/3 of iliac crest. * Lateral 2/3 of inguinal ligament. Insertion: The fibers passes upward & foreword & inserted to lower 3 ribs & their costal cartilages, xiphoid process, linea alba & symphysis pubis. Conjoint Tendon: Form from lower tendon of internal oblique joined to similar tendon from transversus abdominis . Its is attached medially to linea alba ,pubic crest & pectineal line but has a lateral free border. The spermatic cord, as it passes below this muscle, it gains a muscular cover called " Cremaster muscle " which composed of muscle & fascia.
    [Show full text]
  • The Pyramidalis–Anterior Pubic Ligament–Adductor Longus Complex (PLAC) and Its Role with Adductor Injuries: a New Anatomical Concept
    The pyramidalis-anterior pubic ligament-adductor longus complex (PLAC) and its role with adductor injuries a new anatomical concept Schilders, Ernest; Bharam, Srino; Golan, Elan; Dimitrakopoulou, Alexandra; Mitchell, Adam; Spaepen, Mattias; Beggs, Clive; Cooke, Carlton; Holmich, Per Published in: Knee Surgery, Sports Traumatology, Arthroscopy DOI: 10.1007/s00167-017-4688-2 Publication date: 2017 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Schilders, E., Bharam, S., Golan, E., Dimitrakopoulou, A., Mitchell, A., Spaepen, M., Beggs, C., Cooke, C., & Holmich, P. (2017). The pyramidalis-anterior pubic ligament-adductor longus complex (PLAC) and its role with adductor injuries: a new anatomical concept. Knee Surgery, Sports Traumatology, Arthroscopy, 25(12), 3969- 3977. https://doi.org/10.1007/s00167-017-4688-2 Download date: 03. okt.. 2021 Knee Surg Sports Traumatol Arthrosc DOI 10.1007/s00167-017-4688-2 HIP The pyramidalis–anterior pubic ligament–adductor longus complex (PLAC) and its role with adductor injuries: a new anatomical concept Ernest Schilders1,2,3 · Srino Bharam3,4 · Elan Golan5 · Alexandra Dimitrakopoulou2,6 · Adam Mitchell7 · Mattias Spaepen8 · Clive Beggs2 · Carlton Cooke9 · Per Holmich10,11 Received: 29 April 2017 / Accepted: 16 August 2017 © The Author(s) 2017. This article is an open access publication Abstract Results The pyramidalis is the only abdominal muscle Purpose Adductor longus injuries are complex. The anterior to the pubic bone and was found bilaterally in all confict between views in the recent literature and various specimens. It arises from the pubic crest and anterior pubic nineteenth-century anatomy books regarding symphyseal ligament and attaches to the linea alba on the medial border.
    [Show full text]
  • Anatomy of Abdominal Incisions
    ANATOMY FOR THE MRCS but is time-consuming. A lower midline incision is needed for an Anatomy of abdominal emergency Caesarean section (where minutes may be crucial for baby and mother). The surgeon must also be sure of the pathol- incisions ogy before performing this approach. Close the Pfannenstiel and start again with a lower midline if the ‘pelvic mass’ proves to be Harold Ellis a carcinoma of the sigmoid colon! There are more than one dozen abdominal incisions quoted in surgical textbooks, but the ones in common use today (and which the candidate must know in detail) are discussed below. The midline incision (Figures 1–4) Opening the abdomen is the essential preliminary to the per- formance of a laparotomy. A correctly performed abdominal The midline abdominal incision has many advantages because it: exposure is based on sound anatomical knowledge, hence it is a • is very quick to perform common question in the Operative Surgery section of the MRCS • is relatively easy to close examination. • is virtually bloodless (no muscles are cut or nerves divided). • affords excellent access to the abdominal cavity and retroperi- toneal structures Incisions • can be extended from the xiphoid to the pubic symphysis. Essential features If closure is performed using the mass closure technique, pros- The surgeon needs ready and direct access to the organ requir- pective randomized clinical trials have shown no difference in ing investigation and treatment, so the incision must provide the incidence of wound dehiscence or incisional hernia com- sufficient room for the procedure to be performed. The incision pared with transverse or paramedian incisions.1 should (if possible): The upper midline incision is placed exactly in the midline • be capable of easy extension (to allow for any enlargement of and extends from the tip of the xiphoid to about 1 cm above the scope of the operation) the umbilicus.
    [Show full text]
  • Anatomy and Physiology of the Abdominal Wall 0011 CHAPTER Internal Oblique Some Inferior fi Bers Form the Cremaster Muscle at the Level of the Inguinal Canal
    Handbook of Complex Abdominal Wall Anatomy and physiology of the abdominal wall 0011 CHAPTER Álvaro Robín Valle de Lersundi, MD, PhD Arturo Cruz Cidoncha, MD, PhD 11.1..1. Anatomy of the abdominal wall 1.1.1. Introduction The abdominal wall is delimited by muscle structures than can be classifi ed in 5 ana- tomical areas: lateral, anterior, posterior, diaphragmatic and perineal (Table 1.1). We will describe the fi rst four due to their relevance in surgical repair of complex abdom- inal wall. These groups of muscles are enclosed by several bone structures: last ribs, chondrocostal joints, xyphoid, pelvis and costal apophysis of lumbar vertebrae. Layers of the anterior and lateral abdominal wall include skin, subcutaneous tissue, super- fi cial fascia, deep fascia, muscles, extraperitoneal fascia and peritoneum. Table 1.1. Muscular limits of the abdominal wall ∙ Quadratus lumborum POSTERIOR ∙ Psoas ∙ Iliac muscle ∙ External oblique LATERAL ∙ Internal oblique ∙ Transversus abdominis ∙ Rectus abdominis ANTERIOR ∙ Piramidalis CONTENTS SUPERIOR ∙ Diaphragm 1.1. Anatomy of the abdominal INFERIOR ∙ Perineal muscles wall 1.1.2. Muscles of the abdominal wall 1.2. Physiologyygy Muscles of the anterolateral wall Rectus abdominis The rectus abdominis (m. rectus abdominis) is a long and thick muscle that is extended from the anterolateral thorax to the pubis close to the midline (Figure 1.1). 1 Figure External oblique 1.1. Rectus abdominis The external oblique muscle (m. obliquus externus abdominis) is the most superfi cial and thickest of the three lateral abdominal wall muscles (Figure 1.2). Figure 1.2. External oblique muscle Handbook of Complex Abdominal Wall Handbook of Complex Cranially, the rectus abdominis muscles originates from 3 dig- itations that insert on the 5th-7th costal cartilages, the xyphoid process and costoxyphoid ligament.
    [Show full text]
  • Anterior Abdominal Wall
    Abdominal wall Borders of the Abdomen • Abdomen is the region of the trunk that lies between the diaphragm above and the inlet of the pelvis below • Borders Superior: Costal cartilages 7-12. Xiphoid process: • Inferior: Pubic bone and iliac crest: Level of L4. • Umbilicus: Level of IV disc L3-L4 Abdominal Quadrants Formed by two intersecting lines: Vertical & Horizontal Intersect at umbilicus. Quadrants: Upper left. Upper right. Lower left. Lower right Abdominal Regions Divided into 9 regions by two pairs of planes: 1- Vertical Planes: -Left and right lateral planes - Midclavicular planes -passes through the midpoint between the ant.sup.iliac spine and symphysis pupis 2- Horizontal Planes: -Subcostal plane - at level of L3 vertebra -Joins the lower end of costal cartilage on each side -Intertubercular plane: -- At the level of L5 vertebra - Through tubercles of iliac crests. Abdominal wall divided into:- Anterior abdominal wall Posterior abdominal wall What are the Layers of Anterior Skin Abdominal Wall Superficial Fascia - Above the umbilicus one layer - Below the umbilicus two layers . Camper's fascia - fatty superficial layer. Scarp's fascia - deep membranous layer. Deep fascia : . Thin layer of C.T covering the muscle may absent Muscular layer . External oblique muscle . Internal oblique muscle . Transverse abdominal muscle . Rectus abdominis Transversalis fascia Extraperitoneal fascia Parietal Peritoneum Superficial Fascia . Camper's fascia - fatty layer= dartos muscle in male . Scarpa's fascia - membranous layer. Attachment of scarpa’s fascia= membranous fascia INF: Fascia lata Sides: Pubic arch Post: Perineal body - Membranous layer in scrotum referred to as colle’s fascia - Rupture of penile urethra lead to extravasations of urine into(scrotum, perineum, penis &abdomen) Muscles .
    [Show full text]
  • 1 Anatomy of the Abdominal Wall 1
    Chapter 1 Anatomy of the Abdominal Wall 1 Orhan E. Arslan 1.1 Introduction The abdominal wall encompasses an area of the body boundedsuperiorlybythexiphoidprocessandcostal arch, and inferiorly by the inguinal ligament, pubic bones and the iliac crest. Epigastrium Visualization, palpation, percussion, and ausculta- Right Left tion of the anterolateral abdominal wall may reveal ab- hypochondriac hypochondriac normalities associated with abdominal organs, such as Transpyloric T12 Plane the liver, spleen, stomach, abdominal aorta, pancreas L1 and appendix, as well as thoracic and pelvic organs. L2 Right L3 Left Visible or palpable deformities such as swelling and Subcostal Lumbar (Lateral) Lumbar (Lateral) scars, pain and tenderness may reflect disease process- Plane L4 L5 es in the abdominal cavity or elsewhere. Pleural irrita- Intertuber- Left tion as a result of pleurisy or dislocation of the ribs may cular Iliac (inguinal) Plane result in pain that radiates to the anterior abdomen. Hypogastrium Pain from a diseased abdominal organ may refer to the Right Umbilical Iliac (inguinal) Region anterolateral abdomen and other parts of the body, e.g., cholecystitis produces pain in the shoulder area as well as the right hypochondriac region. The abdominal wall Fig. 1.1. Various regions of the anterior abdominal wall should be suspected as the source of the pain in indi- viduals who exhibit chronic and unremitting pain with minimal or no relationship to gastrointestinal func- the lower border of the first lumbar vertebra. The sub- tion, but which shows variation with changes of pos- costal plane that passes across the costal margins and ture [1]. This is also true when the anterior abdominal the upper border of the third lumbar vertebra may be wall tenderness is unchanged or exacerbated upon con- used instead of the transpyloric plane.
    [Show full text]
  • 2. Abdominal Wall and Hernias
    BWH 2015 GENERAL SURGERY RESIDENCY PROCEDURAL ANATOMY COURSE 2. ABDOMINAL WALL AND HERNIAS Contents LAB OBJECTIVES ............................................................................................................................................... 2 Knowledge objectives .................................................................................................................................. 2 Skills objectives ............................................................................................................................................ 2 Preparation for lab .......................................................................................................................................... 2 1.1 ORGANIZATION OF THE ABDOMINAL WALL ............................................................................................ 4 Organization of the trunk wall .................................................................................................................... 4 Superficial layers of the trunk wall ............................................................................................................. 5 Musculoskeletal layer of the anterolateral abdominal wall ...................................................................... 7 T3/Deep fascia surrounding the musculoskeletal layer of the abdominal wall ..................................... 11 Deeper layers of the trunk wall ...............................................................................................................
    [Show full text]
  • The Pyramidalis–Anterior Pubic Ligament–Adductor Longus Complex (PLAC) and Its Role with Adductor Injuries: a New Anatomical Concept
    The pyramidalis-anterior pubic ligament-adductor longus complex (PLAC) and its role with adductor injuries a new anatomical concept Schilders, Ernest; Bharam, Srino; Golan, Elan; Dimitrakopoulou, Alexandra; Mitchell, Adam; Spaepen, Mattias; Beggs, Clive; Cooke, Carlton; Holmich, Per Published in: Knee Surgery, Sports Traumatology, Arthroscopy DOI: 10.1007/s00167-017-4688-2 Publication date: 2017 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Schilders, E., Bharam, S., Golan, E., Dimitrakopoulou, A., Mitchell, A., Spaepen, M., ... Holmich, P. (2017). The pyramidalis-anterior pubic ligament-adductor longus complex (PLAC) and its role with adductor injuries: a new anatomical concept. Knee Surgery, Sports Traumatology, Arthroscopy, 25(12), 3969-3977. https://doi.org/10.1007/s00167-017-4688-2 Download date: 08. Apr. 2020 Knee Surg Sports Traumatol Arthrosc DOI 10.1007/s00167-017-4688-2 HIP The pyramidalis–anterior pubic ligament–adductor longus complex (PLAC) and its role with adductor injuries: a new anatomical concept Ernest Schilders1,2,3 · Srino Bharam3,4 · Elan Golan5 · Alexandra Dimitrakopoulou2,6 · Adam Mitchell7 · Mattias Spaepen8 · Clive Beggs2 · Carlton Cooke9 · Per Holmich10,11 Received: 29 April 2017 / Accepted: 16 August 2017 © The Author(s) 2017. This article is an open access publication Abstract Results The pyramidalis is the only abdominal muscle Purpose Adductor longus injuries are complex. The anterior to the pubic bone and was found bilaterally in all confict between views in the recent literature and various specimens. It arises from the pubic crest and anterior pubic nineteenth-century anatomy books regarding symphyseal ligament and attaches to the linea alba on the medial border.
    [Show full text]
  • Multimodal Imaging Assessment and Histologic Correlation of the Female Rat Pelvic floor Muscles’ Anatomy Vipul R
    Journal of Anatomy J. Anat. (2019) 234, pp543--550 doi: 10.1111/joa.12943 Multimodal imaging assessment and histologic correlation of the female rat pelvic floor muscles’ anatomy Vipul R. Sheth,1 Pamela Duran,2 Jonathan Wong,1,3 Sameer Shah,4 Jiang Du,1 Karen L. Christman,2 Eric Y. Chang1,3 and Marianna Alperin5 1Department of Radiology, University of California San Diego, La Jolla, CA, USA 2Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA 3Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA 4Department of Orthopedic Surgery, University of California San Diego, La Jolla, CA, USA 5Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA Abstract Pelvic floor disorders negatively impact millions of women worldwide. Although there is a strong epidemiological association with childbirth, the mechanisms leading to the dysfunction of the integral constituents of the female pelvic floor, including pelvic floor skeletal muscles, are not well understood. This is in part due to the constraints associated with directly probing these muscles, which are located deep in the pelvis. Thus, experimental models and non-invasive techniques are essential for advancing knowledge of various phenotypes of pelvic floor muscle injury and pathogenesis of muscle dysfunction, as well as developing minimally invasive approaches for the delivery of novel therapeutics. The most widely used animal model for pelvic floor disorders is the rat. However, the radiological anatomy of rat pelvic floor muscles has not been described.
    [Show full text]
  • Introduction to Abdoman
    Introduction to abdomen Cylindrical chamber extending from A diaphragm to the base of the pelvis, comprising of abdomen proper & the lesser pelvis -+------- Lower limb • Abdomen proper & lesser pelvis communicate with each other at the plane of inlet into lesser pelvis (upper border of pubic symphysis,pubic crests, arcuate line of innominate bones,sacral promontary) pelvis Pelvic inlet Inguinal ligament • Contents of Abdomen proper:- Most of the digestive tube, Liver, pancreas, spleen, kidneys, ureters (in part), supra renal gland & various blood &lymph vessels lymph nodes &nerves • Contents of lesser pelvis:- Terminal parts of ureters, urinary bladders, the sigmoid colon, rectum some coils of ileum, internal genitalia, blood & lymph vesels, lymph nodes & nerves Functions • Houses & protects major viscera Rib cage Assists in breathing of Relaxation of diaphragm diaphragm Relaxation of abdominal muscles Contraction of abdominal muscles Expiration Inspiration Changes in the intra abdominal pressure Laryngeai cav'ity c·1os 1erd Cr0ntrac ion of abdominal wal I ncrease in intra- abdominal pressure _..l,....._ Mictu ·ition Child birth Defecation Component parts ony Frame,vork of Abdomen • Wall- Skeletal elements Muscles • Muscles:- Superficial fascia • Anteriorly a Fatty layer Membranous layer (Camper's) (Scarpa's) segmented Transversalis fascia muscle Rectus [=E<trapedtoceru..; abdominis Parietal peritoneum Visceral peritoneum • Anterolateraly External oblique, internal oblique & trasversus abdominis ~.34 Transverse section showing the layers of the abdominal wa ll. Po~ t ei·i 01· .--\. lJcl 0111in a] \,-a]] • Posteriorly- Quadratus lumborum, psoas major & iliacus Abdominal regions Subcostal plane Midclavicular planes ,7 I I Left lowe ( I. _ quadr;mt Transumbilical plane Median plane Transtubercular plane Regions on anterior abdominal wall vertic~I plane Left ve rtical p,lane ' Hypochondriac Hypochondriac L / ' / ' ,/ '' / ' ✓ ' Subcostal plane ,-.;;'-~_,,:;.....,,,___ --i--------------~+-----'_ ......;;_..,,___.
    [Show full text]
  • Absence of Pyramidalis Muscle on Both the Sides in the Rectus Sheath Which Covers the Rectus Abdominal Muscle at the Anterior Abdominal Wall
    Journal of Medical Pharmaceutical www.jmpas.com And Allied Sciences ISSN NO. 2320 - 7418 CASE STUDY Correspondence Dr. Swarup P. Kulkarni Associate Professor, Dept. of Anatomy, Dr.J.J.Magdum ABSENCE OF PYRAMIDALIS Ayurved Medical College, Jaysingpur, Maharashtra, India MUSCLE – A CASE STUDY Keywords Pyramidalis, rectus sheath, 1 2 Dr. Swarup P. Kulkarni *, Dr. Vedashree A. Kalavade rudimentary muscle, 3 4 Dr. Priyanka S. Hanmane , Dr. Abhijit B. Kumbhar variable muscle. 1- Associate Professor, Dept. of Anatomy, Dr.J.J.Magdum Received 21, February 2017 Ayurved Medical College, Jaysingpur, Maharashtra, India Reviewed 28, February 2017 Accepted 10, March 2017 ABSTRACT Pyramidalis muscle is often considered as rudimentary muscle in the human body. It is the muscle present in the rectus sheath at the anterior abdominal wall. During the dissection of male cadaver, there was absence of pyramidalis muscle on both the sides in the rectus sheath which covers the rectus abdominal muscle at the anterior abdominal wall. The arrangement of the other muscles in the anterior abdominal wall was normal. The pyramidalis is having less functional significance. There may not be any functional deformity of the rectus sheath or other related structures. Pyramidalis performs the function of tensing the linea alba. This muscle is variable muscle due to its percentage of absence in the human beings. Its presence in the body is also having some variations. Especially surgeons should be aware of different variations of this muscle. 655 Journal of Medical Pharmaceutical and Allied Sciences (March_2017); 655-660 INTRODUCTION unequal size. It may also extend higher than the usual level.
    [Show full text]
  • A Pyramidalis Muscle’S Anatomical Analysis
    ORIGINAL ARTICLE Morphometry and Frequency of the Pyramidalis Muscle in Adult Humans: A Pyramidalis Muscle’s Anatomical Analysis Fla´ vio Carneiro Hojaij0000-0002-8550-8051 ,* Rudolph Octaviano Kogima0000-0002-8550-8051 , Raquel Ajub Moyses0000-0002-8550-8051 , Fla´ via Emi Akamatsu0000-0002-8550-8051 , Alfredo Luiz Jacomo0000-0002-8550-8051 Departamento de Cirurgia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR. Hojaij FC, Kogima RO, Moyses RA, Akamatsu FE, Jacomo AL. Morphometry and Frequency of the Pyramidalis Muscle in Adult Humans: A Pyramidalis Muscle’s Anatomical Analysis. Clinics. 2020;75:e1623 *Corresponding author. E-mail: [email protected] OBJECTIVES: To verify the pyramidalis muscle’s frequency (bilaterality, unilaterality, or absence) and morpho- metry (length of the medial border and width of its origin/base) in a sample of the Brazilian population and the anthropometric influence. METHODS: Dissection of 30 cadavers, up to 24h post-mortem. RESULTS: The pyramidalis muscle was present bilaterally and unilaterally in 83.33% and 3.33% of the cadavers, respectively, and absent in 13.33%. The muscles on the right and left sides were symmetrical in length but not in width; the pyramidalis muscles of men were longer, while those of the women were wider. We also found that there was greater variation in the dimensions (length and width) of the men’s muscles. Finally, in this sample of the Brazilian population, the pyramidalis muscle’s unilaterality was more prevalent than in other populations, and its complete absence was less prevalent. CONCLUSIONS: There were no cases of muscle duplication in one or both sides, as described in some studies.
    [Show full text]