Problems of Drug Dependence 1999: Proceedings of the 61St Annual Scientific Meeting the College on Problems

Total Page:16

File Type:pdf, Size:1020Kb

Problems of Drug Dependence 1999: Proceedings of the 61St Annual Scientific Meeting the College on Problems RESEARCH MONOGRAPH SERIES Problems of Drug Dependence 1999: Proceedings of the 61st Annual Scientific Meeting The College on Problems of Drug Dependence, Inc. U.S. Department of Health and Human 1Services80 • National Institutes of Health Problems of Drug Dependence, 1999: Proceedings of the 61st Annual Scientific Meeting, The College on Problems of Drug Dependence, Inc. Editor: Louis S. Harris, Ph.D. Virginia Commonwealth University NIDA Research Monograph 180 1999 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute on Drug Abuse 6001 Executive Boulevard Bethesda, MD 20892 ACKNOWLEDGEMENT The College on Problems of Drug Dependence, Inc., an independent, non-profit organization conducts drug testing and evaluations for academic institutions, government, and industry. This monograph is based on papers or presentations from the 61st Annual Scientific Meeting of the CPDD, held in Acapulco, Mexico, June 12-17, 1999. In the interest of rapid dissemination, it is published by the National Institute on Drug Abuse in its Research Monograph series as reviewed and submitted by the CPDD. Dr. Louis S. Harris, Department of Pharmacology and Toxicology, Virginia Commonwealth University was the editor of this monograph. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published materials as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other material in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors. Citation of the source is appreciated. Opinions expressed in this volume are those of the authors and do not necessarily reflect the opinions or official policy of the National Institute on Drug Abuse or any other part of the Department of Health and Human Services. The U.S. Government does not endorse or favor any specific commercial product or company. Trade, proprietary, or company names appearing in this publication are used only because they are considered essential in the context of the studies reported herein. NIH Publication No. 00-4737 Printed April 2000 NIDA Research Monographs are indexed in the Index Medicus. They are selectively included in the coverage of American Statistics Index, Biosciences Information Service, Chemical Abstracts, Current Contents, Psychological Abstracts, and Psychopharmacology Abstracts. For sale by the U.S. Government Printing Office Superintendent of Documents, Mail Stop: SSOP, Washington, DC 20402-9328 ISBN 0-16-050342-6 BOARD OF DIRECTORS Billy R. Martin, Ph.D., President John Hughes, M.D. Michael J. Kuhar, Ph.D., President-Elect Edythe D. London, Ph.D. Linda A. Dykstra, Ph.D., Past President Scott E. Lukas, Ph.D. Stephen G. Holtzman, Ph.D., Treasurer Frank Porreca, Ph.D. Huda Akil, Ph.D. Kenner C. Rice, Ph.D. Warren K. Bickel, Ph.D. Sidney H. Schnoll, M.D., Ph.D. Richard Bonnie, L.L.B. Charles R. Schuster, Ph.D. Kathleen T. Brady, M.D., Ph.D. George Woody, Ph.D. Harriet de Wit, Ph.D. William L. Woolverton, Ph.D. Avram Goldstein, M.D. Curtis Wright, Ph.D. Louis S. Harris, Ph.D. Alice M. Young, Ph.D. Dorothy Hatsukami, Ph.D. EXECUTIVE OFFICER Martin W. Adler, Ph.D. SCIENTIFIC PROGRAM COMMITTEE Thomas R. Kosten, Ph.D., Chair Scott Lukas, Ph.D., Co-Chair Martin W. Adler, Ph.D., ex offico Linda Cottler, Ph.D., M.P.H. Howard Deutsch, Ph.D. Toby Eisenstein, Ph.D. Ellen B. Geller, M.A. Kathryn Gill, Ph.D. Chris-Ellyn Johanson, Ph.D. Horace Loh, Ph.D. S. Steven Negus, Ph.D. iii The following organizations have generously supported the work of the College on Problems of Drug Dependence during the past year: Adolor Glaxo Institute de Recherche Pierre Fabre Pfizer The Purdue Frederick Company/Purdue Pharma Reckitt & Colman Saiten Labo Searle Smith Kline Upjohn iv TABLE OF CONTENTS PLENARY SESSION Nathan B. Eddy Award Introduction 1-2 M.W. Adler Nathan B. Eddy Award Lecture 3-22 M.J. Kreek SYMPOSIUM I 23-25 Recent Advances on Inhalant Abuse S.L. Cruz and R.L. Balster, Chairpersons SYMPOSIUM II The Intersection of Drug Treatment and the Criminal Justice System 26-27 M. Iguchi and H. Kleber, Chairpersons SYMPOSIUM VI New Approaches to Non-Addictive Analgesics 28-31 W.K. Schmidt and F. Porreca, Chairpersons SYMPOSIUM VII Taking it to the Streets: Contingency Management for Real-Life Drug Abuse Treatment 32-35 L. Amass and M. Y. Iguchi, Chairpersons SYMPOSIUM VIII Pharmacology and Clinical Potential of Delta Opioid Agonists 36-40 S.S. Negus and F. Porreca, Chairpersons SYMPOSIUM XI A Stone Unturned: The Promise of CABAergic Modulation in Cocaine Dependence Treatment 41-43 A.R. Childress and D.C.S. Roberts, Chairpersons SYMPOSIUM XII Basic and Clinical Pharmacology of Selective Cannabinoid Receptor (CB1 and CB2) Antagonists 44-46 S. Heishman and B.R. Martin, Chairpersons SYMPOSIUM XIII Allelic Polymorphism of Human Opioid Receptors: Functional Studies 47-50 K.S. LaForge and M.J. Kreek, Chairpersons SYMPOSIUM XIV Developmental Follow-up of Prenatal Drug Exposure in Pre-School and School-Aged Children 51-53 L.P. Finnegan and V.L. Smeriglio, Chairpersons v SYMPOSIUM XV Emerging Biological Targets for the Treatment of Nicotine Dependence 54-56 R.S. Mansbach and L.P. Dwoskin, Chairpersons SYMPOSIUM XVI From Caffeine to Opiates: Novel Interventions for Substance Use in Pregnancy 57-59 D. Svikis and L. Finnegan, Chairpersons ORAL COMMUNICATIONS I 60-63 Sex and the Single Drug ORAL COMMUNICATIONS II 63-66 The Brain in Pain ORAL COMMUNICATIONS III 67-70 Drug Abuse: The Next Generation ORAL COMMUNICATIONS IV 71-75 Form and Function ORAL COMMUNICATIONS V 75-79 There’s no Substitute for Treatment ORAL COMMUNICATIONS VI 79-83 Drug Abuse in Adolescents ORAL COMMUNICATIONS VII 83-85 HIV and Hepatitis ORAL COMMUNICATIONS VIII 86-89 Where There’s Smoke, There’s Science ORAL COMMUNICATIONS IX 89-93 Strike up the Glands ORAL COMMUNICATIONS X 93-97 Role of Sex on Treatment Outcome ORAL COMMUNICATIONS XI 98-100 Risk Factors for Substance Abuse ORAL COMMUNICATIONS XII 101-105 Into the Brains of Primates ORAL COMMUNICATIONS XIII 106-110 The Downers Update ORAL COMMUNICATIONS XIV 110-112 Multifaces of Naltrexone vi ORAL COMMUNICATIONS XV 112-116 Agonist Treatment for Cocaine Dependence ORAL COMMUNICATIONS XVI 116-117 Cellular and Molecular Drug Effects ORAL COMMUNICATIONS XVII 118-120 Double Trouble ORAL COMMUNICATIONS XVIII 121-124 Pot Pourri ORAL COMMUNICATIONS XIX 125-128 Neurobiology ORAL COMMUNICATIONS XX 128-132 Stimulants: The Agonist and Ecstasy POSTER SESSION I 133-185 Personality and Disorders Impulsivity, Anger, Domestic Violence Vulnerable Populations and Drug Abuse Pharmacokinetics Methadone, LAAM, Buprenorphine Cocaine: Pharmacotherapy Cocaine/Opioid Interactions Opioids: Behavior Benzodiazepines and Inhalants POSTER SESSION II 186-233 Adolescents Nicotine and Caffeine Immune System Neuroendocrines and Stress Cocaine: Genetics, Neurophysiology Cocaine: Psychosocial Treatment Employment Issues Opioid Withdrawal Pain and Analgesia POSTER SESSION III 234-279 Amphetamines Imaging Cocaine: Cardiovascular Effects Opioid Receptors Cocaine: Dopamine and Serotonin Comorbidity Gender Women Epidemiology vii POSTER SESSION IV 281-329 Cannabinoids and THC NMDA/Sigma Receptors, Ibogaine Seizure and Locomotor Activity Perinatal Exposure and Development Pregnancy Methods and Assessment Opioids: Psychosocial Treatment HIV/AIDS LATE ABSTRACTS 330-331 ANNUAL REPORTS Biological Evaluation of Compounds for Their Physical Dependence Potential and Abuse Liability. XXIII. Drug Evaluation Committee of the College on Problems of Drug Dependence (1999) 332-345 A. E. Jacobson Dependence Studies of New Compounds in the Rhesus Monkey, Rat, and Mouse (1999) 346-404 M.D. Aceto, E.R. Bowman, L.S. Harris, and E.L. May Evaluation of New Compounds for Opioid Activity (1999) 405-422 J.W. Woods, G.W. Winger, J.R. Traynor, M.-C. Ko, and F. Medzihradsky Progress Report from the Testing Program for Stimulant and Depressant Drugs (1999) 423-433 C.P. France, L.R. Gerak, J.W. Rowlett, W.L. Woolverton, G. Winger, and R.J. Briscoe AUTHOR INDEX 434-448 SUBJECT INDEX 449-476 viii INTRODUCTION OF THE NATHAN B. EDDY MEMORIAL AWARD M.W. Adler Temple University, Philadelphia, PA Two years ago, at the CPDD meeting in Nashville, I sat in the front row in the audience and listened as Dr. Bill Dewey said a whole bunch of great things about me when he introduced me as the winner of the Nathan B. Eddy Award. That was the proudest moment of my professional life, although it was sometimes difficult to believe that it was me that Bill was talking about. Well, now it’s my turn to say some wonderful things about the person about to be presented with the 1999 Eddy Award. As I’m sure you all know, the winner is Dr. Mary Jeanne Kreek. Mary Jeanne, I don’t want you to become overly troubled by this, but do you realize that you are the last person that will ever receive the Eddy Award in this century? Actually, I think that’s very appropriate because you are truly an outstanding and unique individual. For those who may not know you very well, I would like to provide a brief history of your professional life. Dr. Kreek graduated from Woodrow Wilson High School in Washington, D.C. and then attended Wellesley College where she received honors in chemistry and biology. She went to Columbia for her M.D. where she won an award for her research. Her internship and residency at Cornell University-New York Hospital Medical Center included internal medicine, gastroenterology, and neuroendocrinology. She also did a research rotation at the Rockefeller Institute in 1964 with Dr.
Recommended publications
  • Drug Development for the Irritable Bowel Syndrome: Current Challenges and Future Perspectives
    REVIEW ARTICLE published: 01 February 2013 doi: 10.3389/fphar.2013.00007 Drug development for the irritable bowel syndrome: current challenges and future perspectives Fabrizio De Ponti* Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy Edited by: Medications are frequently used for the treatment of patients with the irritable bowel syn- Angelo A. Izzo, University of Naples drome (IBS), although their actual benefit is often debated. In fact, the recent progress in Federico II, Italy our understanding of the pathophysiology of IBS, accompanied by a large number of preclin- Reviewed by: Elisabetta Barocelli, University of ical and clinical studies of new drugs, has not been matched by a significant improvement Parma, Italy of the armamentarium of medications available to treat IBS. The aim of this review is to Raffaele Capasso, University of outline the current challenges in drug development for IBS, taking advantage of what we Naples Federico II, Italy have learnt through the Rome process (Rome I, Rome II, and Rome III). The key questions *Correspondence: that will be addressed are: (a) do we still believe in the “magic bullet,” i.e., a very selective Fabrizio De Ponti, Pharmacology Unit, Department of Medical and Surgical drug displaying a single receptor mechanism capable of controlling IBS symptoms? (b) IBS Sciences, University of Bologna, Via is a “functional disorder” where complex neuroimmune and brain-gut interactions occur Irnerio, 48, 40126 Bologna, Italy. and minimal inflammation is often documented:
    [Show full text]
  • INVESTIGATION of NATURAL PRODUCT SCAFFOLDS for the DEVELOPMENT of OPIOID RECEPTOR LIGANDS by Katherine M
    INVESTIGATION OF NATURAL PRODUCT SCAFFOLDS FOR THE DEVELOPMENT OF OPIOID RECEPTOR LIGANDS By Katherine M. Prevatt-Smith Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. _________________________________ Chairperson: Dr. Thomas E. Prisinzano _________________________________ Dr. Brian S. J. Blagg _________________________________ Dr. Michael F. Rafferty _________________________________ Dr. Paul R. Hanson _________________________________ Dr. Susan M. Lunte Date Defended: July 18, 2012 The Dissertation Committee for Katherine M. Prevatt-Smith certifies that this is the approved version of the following dissertation: INVESTIGATION OF NATURAL PRODUCT SCAFFOLDS FOR THE DEVELOPMENT OF OPIOID RECEPTOR LIGANDS _________________________________ Chairperson: Dr. Thomas E. Prisinzano Date approved: July 18, 2012 ii ABSTRACT Kappa opioid (KOP) receptors have been suggested as an alternative target to the mu opioid (MOP) receptor for the treatment of pain because KOP activation is associated with fewer negative side-effects (respiratory depression, constipation, tolerance, and dependence). The KOP receptor has also been implicated in several abuse-related effects in the central nervous system (CNS). KOP ligands have been investigated as pharmacotherapies for drug abuse; KOP agonists have been shown to modulate dopamine concentrations in the CNS as well as attenuate the self-administration of cocaine in a variety of species, and KOP antagonists have potential in the treatment of relapse. One drawback of current opioid ligand investigation is that many compounds are based on the morphine scaffold and thus have similar properties, both positive and negative, to the parent molecule. Thus there is increasing need to discover new chemical scaffolds with opioid receptor activity.
    [Show full text]
  • Minnesota Statutes 1979 Supplement
    MINNESOTA STATUTES 1979 SUPPLEMENT 152.01 PROHIBITED DRUGS CHAPTER 152. PROHIBITED DRUGS Sec. 152.01 Definitions. 152.02 Schedules of controlled substances; admin­ istration of chapter. 152.01 Definitions. [For text of subds 1 to 8, see M.S.1978] Subd. 9. Marijuana. "Marijuana" means all parts of the plant of any species of the genus Cannabis, including all agronomical varieties, whether growing or not; the seeds thereof; the resin extracted from any part of such plant; and every compound, manufacture, salt, derivative, mixture, or preparation of such plant, its seeds or resin, but shall not include the mature stalks of such plant, fiber from such stalks, oil or cake made from the seeds of such plant, any other compound, manufacture, salt, derivative, mix­ ture, or preparation of such mature stalks, except the resin extracted therefrom, fiber, oil, or cake, or the sterilized seed of such plant which is incapable of germination. [For text of subds 10 to 17, see M.S.1978] [ 1979 c 157 s 1 ] 152.02 Schedules of controlled substances; administration of chapter. [For text of subd 1, see M.S.1978) Subd. 2. The following items are listed in Schedule I: (1) Any of the following substances, including their isomers, esters, ethers, salts, and salts of isomers, esters, and ethers, unless specifically excepted, whenever the exis­ tence of such isomers, esters, ethers and salts is possible within the specific chemical des­ ignation: Acetylmethadol; Allylprodine; Alphacetylmethadol; Alphameprodine; Alpham- ethadol; Benzethidine; Betacetylmethadol; Betameprodine; Betamethadol; Betaprodine; Clonitazene; Dextromoramide; Dextrorphan; Diampromide; Diethyliambutene; Dime- noxadol; Dimepheptanol; Dimethyliambutene; Dioxaphetyl butyrate; Dipipanone; Ethylmethylthiambutene; Etonitazene; Etoxeridine; Furethidine; Hydroxypethidine; Ke- tobemidone; Levomoramide; Levophenacylmorphan; Morpheridine; Noracymethadol; Norlevorphanol; Normethadone; Norpipanone; Phenadoxone; Phenampromide; Pheno- morphan; Phenoperidine; Piritramide; Proheptazine; Properidine; Racemoramide; Tri­ meperidine.
    [Show full text]
  • In Vivo and in Vitro Characterization of Naltrindole-Derived
    Journal of Psychopharmacology http://jop.sagepub.com/ In vivo and in vitro characterization of naltrindole-derived ligands at the κ-opioid receptor Joseph J Casal-Dominguez, Mary Clark, John R Traynor, Stephen M Husbands and Sarah J Bailey J Psychopharmacol 2013 27: 192 originally published online 31 October 2012 DOI: 10.1177/0269881112464828 The online version of this article can be found at: http://jop.sagepub.com/content/27/2/192 Published by: http://www.sagepublications.com On behalf of: British Association for Psychopharmacology Additional services and information for Journal of Psychopharmacology can be found at: Email Alerts: http://jop.sagepub.com/cgi/alerts Subscriptions: http://jop.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav >> Version of Record - Jan 23, 2013 OnlineFirst Version of Record - Oct 31, 2012 What is This? Downloaded from jop.sagepub.com at University of Bath on May 14, 2013 JOP27210.1177/0269881112464828Journal of PsychopharmacologyCasal-Dominguez et al. 4648282013 Original Paper In vivo and in vitro characterization of naltrindole-derived ligands at the κ-opioid receptor Journal of Psychopharmacology 27(2) 192 –202 © The Author(s) 2013 Reprints and permission: sagepub.co.uk/journalsPermissions.nav 1 2 2 DOI: 10.1177/0269881112464828 Joseph J Casal-Dominguez , Mary Clark , John R Traynor , jop.sagepub.com Stephen M Husbands1 and Sarah J Bailey1 Abstract Accumulating evidence supports a role for κ−opioid receptor antagonists in the treatment of mood disorders. Standard κ-antagonists have an unusual pharmacodynamic action, with a single injection blocking receptor signaling for several weeks. Here, we have characterized the κ-selective properties of two ligands, 5’-(2-aminomethyl) naltrindole (5’-AMN) and N-((Naltrindol-5-yl) methyl) pentanimidamide (5’-MABN), to identify whether modifications of the naltrindole side chain produces short-acting κ-antagonists.
    [Show full text]
  • Screening/Spot Test of Narcotics
    Indian Journal of Forensic and Community Medicine 2020;7(4):160–165 Content available at: https://www.ipinnovative.com/open-access-journals Indian Journal of Forensic and Community Medicine Journal homepage: https://www.ipinnovative.com/journals/IJFCM Review Article Screening/spot test of narcotics A K Jaiswal1,*, Kamna Sharma2, Rohit Kanojia3, Sally Lukose4 1Dept. of Forensic Medicine & Toxicology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India 2Galgotias University, Greater Noida, Uttar Pradesh, India 3Dept. of Chemistry, University of Delhi, New Delhi, India 4CTM-IRTE, Faridabad, Haryana, India ARTICLEINFO ABSTRACT Article history: Narcotics are the substances used to treat moderate to severe pain. They could be natural like opiates such Received 25-11-2020 as morphine, codeine etc., synthetic like fentanyl, methadone etc., and semi-synthetic like oxycodone, Accepted 02-12-2020 hydrocodone etc. These drugs act as pain relievers, induces the state of stupor or sleep, and increase Available online 08-01-2021 the physical dependence on them. In forensic autopsy case, the forensic pathologist may require a complete toxicological investigation for different poisons including stimulants. In India, Forensic Science Laboratories run by Government under the Home ministry usually carry out this. The samples must be Keywords: analysed by the forensic toxicologist/chemists/scientist. This article deals with the screening/spot test for Narcotics narcotics. It attempts to simplify the standard procedures in a step-wise manner, which can be of handy Screening reference for the forensic toxicologist. Spot test Drugs © This is an open access article distributed under the terms of the Creative Commons Attribution Opioids etc License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Peripheral Kappa Opioid Receptor Activation Drives Cold Hypersensitivity in Mice
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.04.325118; this version posted October 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Peripheral kappa opioid receptor activation drives cold hypersensitivity in mice Manish K. Madasu1,2,3, Loc V. Thang1,2,3, Priyanka Chilukuri1,3, Sree Palanisamy1,2, Joel S. Arackal1,2, Tayler D. Sheahan3,4, Audra M. Foshage3, Richard A. Houghten6, Jay P. McLaughlin5.6, Jordan G. McCall1,2,3, Ream Al-Hasani1,2,3 1Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA. 2Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA 3Department of Anesthesiology, Pain Center, Washington University. St. Louis, MO, USA. 4 Division of Biology and Biomedical Science, Washington University in St. Louis, MO, USA 5Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA 6Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA Corresponding Author: Dr. Ream Al-Hasani Center for Clinical Pharmacology St. Louis College of Pharmacy Washington University School of Medicine 660 South Euclid Campus Box 8054 St. Louis MO, 63110 [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.04.325118; this version posted October 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Preliminary Effects of Pagoclone, a Partial GABA Agonist, On
    ORIGINAL RESEARCH Preliminary effects of pagoclone, a partial GABAA agonist, on neuropsychological performance 1 Angela F Caveney Abstract: Pagoclone is a novel cyclopyrrolone that acts as a partial GABAA receptor agonist. Bruno Giordani1 Preclinical studies suggest that pagoclone may have clinical utility as an anxiolytic agent, as George M Haig2 well as a reduced incidence of side-effects. The present study was conducted to determine whether pagoclone would affect healthy individuals’ performances on neuropsychological 1Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; measures as a function of dose within the projected therapeutic range. Twelve healthy adult 2Neurosciences Development, Abbott subjects were randomly assigned to dosage groups in a 3-way crossover study. Participants Laboratories, Abbott Park, IL, USA were administered neuropsychological measures six hours following dosing on Day 1 and Day 6 of administration of the drug. Dose effects were noted on measures of alertness, learning, and memory and movement time. Signifi cant effects were also noted on measures of alertness, learning and memory, information processing and psychomotor speed. Overall, the results of this small, preliminary study do not support a fi nding of behavioral toxicity for these doses of pagoclone. Rather, a pattern was found of transient and mild negative effects on learning and memory scores at the highest dose administered, though these changes were small and no longer evident by the sixth day of use. Keywords: pagoclone, cyclopyrrolone, neuropsychological, memory, generalized anxiety disorder Introduction Behavioral toxicity refers to the extent to which a drug affects an individual’s ability to perform the psychomotor and cognitive tasks of everyday life (Ramaekers 1998).
    [Show full text]
  • INTERNATIONAL COLLABORATIVE EXERCISES (ICE) Summary Report
    INTERNATIONAL QUALITY ASSURANCE PROGRAMME (IQAP) INTERNATIONAL COLLABORATIVE EXERCISES (ICE) Summary Report SEIZED MATERIALS 2016/1 INTERNATIONAL QUALITY ASSURANCE PROGRAMME (IQAP) INTERNATIONAL COLLABORATIVE EXERCISES (ICE) Table of contents Sample 1 Analysis Page 6 Identified substances Page 6 Statement of findings Page 11 Identification methods Page 20 False positives Page 26 Z-Scores Page 27 Sample 2 Analysis Page 31 Identified substances Page 31 Statement of findings Page 36 Identification methods Page 46 False positives Page 52 Z-Scores Page 53 Sample 3 Analysis Page 56 Identified substances Page 56 Statement of findings Page 61 Identification methods Page 70 False positives Page 76 Z-Scores Page 77 Sample 4 Analysis Page 80 Identified substances Page 80 Statement of findings Page 82 Identification methods Page 88 False positives Page 94 Z-Scores Page 95 Test Samples Information Samples Comments on samples Sample 1 SM-1 was prepared from a seizure containing 50.5 % (w/w) Cocaine base. The test sample also contained caffeine and levamisole. Benzoylecgonine and cinnamoyl cocaine were also detected as minor components. Sample 2 SM-2 was prepared from a seizure containing 13.8 % (w/w) MDMA. The test sample also contained lactose. Sample 3 SM-3 was prepared from a seizure containing 5.5 % (w/w) Amfetamine base. The test sample also contained caffeine and creatine. Sample 4 SM-4 wss a blank test sample prepared from plant material and contained no substances from the ICE menu Samples Substances Concentrations Comments on substances Sample 1 Caffeine - Quantification not required Cocaine 50.5 % Sample 2 3,4-Methylenedioxymetamfetamine (MDMA) 13.8 % Lactose - Quantification not required Sample 3 Amfetamine 5.5 % Caffeine - Quantification not required Sample 4 [blank sample] 2 2016/1-SM Copyright (c) 2016 UNODC Introduction An important element of the UNODC International Quality Assurance Programme (IQAP) is the implementation of the International Collaborative Exercises (ICE).
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • Discriminative Stimulus Effects of Cyclorphan: Selective Antagonism with Naltrexone
    Psychopharmacology (1992) 106:189-194 Psychopharmacology Springer-Verlag 1992 Discriminative stimulus effects of cyclorphan: selective antagonism with naltrexone Albert J. Berta|mio and James H. Woods Departments of Psychology and Pharmacology, University of Michigan, Ann Arbor, MI 48109-0626, USA Received June 4, 1990 / Final version September 13, 1990 Abstract. The opioid antagonist, naltrexone, was used to to discriminate ethylketazocine (EKC) yielded high levels identify some of the receptor mechanisms responsible for of EKC-appropriate responding. Nevertheless, the levels the discriminative stimulus effects of cyclorphan in the that were attained with/-cyclorphan were not as high as pigeon. Subjects were trained to discriminate 10 mg/kg those that were readily obtainable with EKC itself, i.e., IM injections of either morphine or dextrorphan from there was a "ceiling" effect. Thus, that study suggested saline injections in a two key drug discrimination that /-cyclorphan shares some properties with opioid procedure in which responding was maintained by food agonists, but it also suggested that/ocyclorphan differs presentation. The dextrorphan-trained birds generalized from drugs in the opioid agonist class in some way. In to/-cyclorphan at 10 mg/kg; naltrexone did not alter the another phase of the previous study pigeons were chron- /-cyclorphan dose-response curve for this effect. In the ically treated with morphine and trained to discriminate morphine-trained group, l-cyclorphan produced only injections of naltrexone. The morphine-treated nal- partial generalization, and naltrexone greatly increased trexone-trained pigeons generalized fully to /-cyclor- the dose of/-cyclorphan necessary to produce this effect. phan, indicating that /-cyclorphan also shares some These results are consistent with the conclusion that in properties with drugs in the opioid antagonist class.
    [Show full text]
  • United States Patent (10) Patent No.: US 8,916,581 B2 Boyd Et Al
    USOO891 6581 B2 (12) United States Patent (10) Patent No.: US 8,916,581 B2 Boyd et al. (45) Date of Patent: *Dec. 23, 2014 (54) (S)-N-METHYLNALTREXONE 4,194,045 A 3, 1980 Adelstein 4,203,920 A 5, 1980 Diamond et al. (75) Inventors: Thomas A. Boyd, Grandview, NY (US); 4,241,066 A 12, 1980 Kobylecki et al. H OW d Wagoner,goner, Warwick,s NY (US);s 4,311,833.4,277,605 A T.1/1982 1981 NamikoshiBuyniski et etal. al. Suketu P. Sanghvi, Kendall Park, NJ 4.322,426 A 3/1982 Hermann et al. (US); Christopher Verbicky, 4.326,074 A 4, 1982 Diamond et al. Broadalbin, NY (US); Stephen 4.326,075 A 4, 1982 Diamond et al. “. s 4,377.568 A 3/1983 Chopra et al. Andruski, Clifton Park, NY (US) 4.385,078 A 5/1983 Onda et al. 4.427,676 A 1/1984 White et al. (73) Assignee: Progenics Pharmaceuticals, Inc., 4,430,327 A 2, 1984 Frederickson et al. Tarrytown, NY (US) 4,452,775 A 6/1984 Kent 4,457,907 A 7/1984 Porteret al. (*) Notice: Subject to any disclaimer, the term of this 4,462.839 A 7/1984 McGinley et al. patent is extended or adjusted under 35 4,518.4334,466,968 A 5/19858, 1984 McGinleyBernstein et al. U.S.C. 154(b) by 344 days. 4,533,739 A 8/1985 Pitzele et al. This patent is Subject to a terminal dis- 4,606,9094,556,552 A 12/19858/1986 PorterBechgaard et al.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun
    USOO9687445B2 (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun. 27, 2017 (54) ORAL FILM CONTAINING OPIATE (56) References Cited ENTERC-RELEASE BEADS U.S. PATENT DOCUMENTS (75) Inventor: Michael Hsin Chwen Li, Warren, NJ 7,871,645 B2 1/2011 Hall et al. (US) 2010/0285.130 A1* 11/2010 Sanghvi ........................ 424/484 2011 0033541 A1 2/2011 Myers et al. 2011/0195989 A1* 8, 2011 Rudnic et al. ................ 514,282 (73) Assignee: LTS Lohmann Therapie-Systeme AG, Andernach (DE) FOREIGN PATENT DOCUMENTS CN 101703,777 A 2, 2001 (*) Notice: Subject to any disclaimer, the term of this DE 10 2006 O27 796 A1 12/2007 patent is extended or adjusted under 35 WO WOOO,32255 A1 6, 2000 U.S.C. 154(b) by 338 days. WO WO O1/378O8 A1 5, 2001 WO WO 2007 144080 A2 12/2007 (21) Appl. No.: 13/445,716 (Continued) OTHER PUBLICATIONS (22) Filed: Apr. 12, 2012 Pharmaceutics, edited by Cui Fude, the fifth edition, People's Medical Publishing House, Feb. 29, 2004, pp. 156-157. (65) Prior Publication Data Primary Examiner — Bethany Barham US 2013/0273.162 A1 Oct. 17, 2013 Assistant Examiner — Barbara Frazier (74) Attorney, Agent, or Firm — ProPat, L.L.C. (51) Int. Cl. (57) ABSTRACT A6 IK 9/00 (2006.01) A control release and abuse-resistant opiate drug delivery A6 IK 47/38 (2006.01) oral wafer or edible oral film dosage to treat pain and A6 IK 47/32 (2006.01) substance abuse is provided.
    [Show full text]