Molecular Regulation of High Muscle Mass in Developing Blonde D'aquitaine Cattle Fetuses

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Regulation of High Muscle Mass in Developing Blonde D'aquitaine Cattle Fetuses Molecular regulation of high muscle mass in developing Blonde d’Aquitaine cattle fetuses Isabelle Cassar-Malek, Céline Boby, Brigitte Picard, Antonio Reverter-Gomez, Nicholas Hudson To cite this version: Isabelle Cassar-Malek, Céline Boby, Brigitte Picard, Antonio Reverter-Gomez, Nicholas Hudson. Molecular regulation of high muscle mass in developing Blonde d’Aquitaine cattle fetuses. Biology Open, Royal Society, 2017, 6 (10), pp.bio.024950. 10.1242/bio.024950. hal-01607200 HAL Id: hal-01607200 https://hal.archives-ouvertes.fr/hal-01607200 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License © 2017. Published by The Company of Biologists Ltd | Biology Open (2017) 6, 1483-1492 doi:10.1242/bio.024950 RESEARCH ARTICLE Molecular regulation of high muscle mass in developing Blonde d’Aquitaine cattle foetuses Isabelle Cassar-Malek1,Céline Boby1, Brigitte Picard1, Antonio Reverter2 and Nicholas J. Hudson3,* ABSTRACT scientists have numerous breeds at their disposal that, through The Blonde d’Aquitaine (BA) is a French cattle breed with enhanced generations of selective breeding, possess strong phenotypes muscularity, partly attributable to a MSTN mutation. The BA expressed against a relatively stable background genome. The m. Semitendinosus has a faster muscle fibre isoform phenotype mechanistic basis of feed efficiency is not known, but variation in comprising a higher proportion of fast type IIX fibres compared to age- feed intake, digestion, metabolism, activity and thermogenesis have matched Charolais (CH). To better understand the molecular network all been implicated (Herd and Arthur, 2009). Focussing on skeletal of modifications in BA compared to CH muscle, we assayed the muscle tissue, mammals possess a range of fibre types with different transcriptomes of the m. Semitendinosus at 110, 180, 210 and functional properties. Interestingly, we already know that highly 260 days postconception (dpc). We used a combination of differential feed-efficient breeds of all the major production species, such as expression (DE) and regulatory impact factors (RIF) to compare and Piedmontese cattle (Lehnert et al., 2007), Belgian Blue cattle contrast muscle gene expression between the breeds. Prominently (Bouley et al., 2005; Deveaux et al., 2001; Hanset et al., 1987), developmentally regulated genes in both breeds reflected the Large White pigs (Lefaucheur and Ecolan, 2005; Lefaucheur et al., replacement of embryonic myosin isoforms (MYL4, MYH3)withadult 2004, 2011), German Landrace pigs (Rehfeldt et al., 2008) and isoforms (MYH1) and the upregulation of mitochondrial metabolism Callipyge sheep (Jackson et al., 1997a,b,c), collectively possess (CKMT2, AGXT2L1) in preparation for birth. However, the transition to exactly the same shift towards a whiter type IIB/IIX phenotype a fast, glycolytic muscle phenotype in the MSTN mutant BA is compared to their wild counterparts and less efficient breeds. detectable through downregulation of various slow twitch subunits Broiler chicken muscle can be seen as the most extreme example of (TNNC1, MYH7, TPM3, CSRP3) beyond 210 dpc, and a small but this phenotype (Kiessling, 1977). consistent genome-wide reduction in mRNA encoding the A bioenergetic feature of type IIB/X fibres is a lower mitoproteome. Across the breeds, NRIP2 is the regulatory gene mitochondrial content than type I and IIA. This implies that the possessing a network change most similar to that of MSTN. glycolytic fibre shift documented above will result in muscle tissue mitochondrial content decreasing. Direct measures of mitochondrial KEY WORDS: Skeletal muscle, Myostatin, Mitochondria, Genomics, content have not been routinely taken. However, Vincent et al. Myogenesis (2015) recently discovered that when divergently selecting on residual feed intake, the more efficient pigs possessed a lower BACKGROUND muscle oxidative metabolism and mitochondrial content. Similarly, Feed is the single largest cost in many intensive livestock farming in Yorkshire boars, low muscle mitochondrial content has recently enterprises including beef feedlotting (Robinson and Oddy, 2004). been associated with higher feed efficiency (Fu et al., 2017). In Consequently, the food production industry is interested in addition, double-muscled cattle or cattle selected for high growth enhancing the feed conversion efficiency of its major production potential and feed efficiency also possess less oxidative muscles species. Accelerating improvements in these areas beyond what can (Sudre et al., 2005; Picard et al., 2006), as do Charolais (CH) be achieved by traditional artificial selection on phenotype first divergent for muscle mass (Sudre et al., 2005). A reduction in requires a base level of understanding. What physiological and oxidative capacity has previously been argued to improve metabolic developmental processes are taking place, and what are their efficiency on the grounds that it is inefficient to possess too much fuel functional limits? Fortunately, domesticated species provide burning capacity (Hudson, 2009). The engineering argument runs as opportunity to uncover the molecular mechanisms underpinning follows: it is not economical to pay for the construction (biogenesis), phenotypes of interest (Andersson and Georges, 2004). Agricultural maintenance (trans-membrane proton gradient) and load (space that could be occupied by other cellular structures) of energetically expensive mitochondrial capacity that is not needed. Further, Bottje 1UMR1213 Herbivores, Institut National de la Recherche Agronomique, VetAgro and Carstens (2009) have reviewed the impact of isolated Sup, 63122 Saint Genes̀ Champanelle, Clermont-Ferrand F-63122, France. mitochondrial performance and its impact on poultry and livestock 2Agriculture, Commonwealth Science and Industrial Research Organisation, Queensland Bioscience Precinct, St. Lucia, Brisbane 4075, Australia. 3School of feed, efficiency documenting associations in several species and Agriculture and Food Sciences, University of Queensland, Brisbane 4075, circumstances. These lines of evidence support a role for Australia. mitochondrial function in contributing to variation in feed efficiency. *Author for correspondence ([email protected]) However, the genetic bases of the ‘whitening’ of livestock muscle and other biological aspects of efficiency remain a mystery. Other N.J.H., 0000-0002-3549-9396 than some progress in identifying causal mutations such as the This is an Open Access article distributed under the terms of the Creative Commons Attribution various myostatin (MSTN) mutants, the detailed rewiring of License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. gene regulatory networks that manifest these anatomical and physiological changes through muscle development are largely Received 19 February 2017; Accepted 21 August 2017 unknown. Here, we attempt to shed more light on this question by Biology Open 1483 Downloaded from http://bio.biologists.org/ by guest on June 21, 2018 RESEARCH ARTICLE Biology Open (2017) 6, 1483-1492 doi:10.1242/bio.024950 contrasting the genome-wide muscle transcriptomes of two breeds treatments, we were left with a refined list containing 19,100 probes of cattle. A MSTN mutation has been identified in the Blonde mapping to 10,138 genes. When comparing the breeds for patterns d’Aquitaine (BA) breed (Bouyer et al., 2014) that culminates in of high developmental regulation (including but not limited to greater muscle mass and feed efficiency than the comparison CH, stepwise increases and decreases across development), a number of but not all individuals carry the mutation. In line with the other genes were identified. This was achieved by computing the standard examples given above, BA also has a more glycolytic, less oxidative deviation of expression values across the four time points on a muscle metabolism and a higher proportion of fast glycolytic IIX breed-specific basis. High standard deviations reflect high fibres (Listrat et al., 2001; Picard and Cassar-Malek, 2009). We developmental regulation. The replacement of embryonic myosin analysed m. Semitendinosus samples at three prenatal time points heavy chain isoforms (MYL4, MYH3) with adult isoforms (MYH1) coincident with secondary myogenesis (110 days postconception was observed. Further, we detected an upregulation of creatine (dpc), onset of functional differentiation (180 dpc), completion of kinase (CKMT2), a marker of mitochondrial metabolism, in functional differentiation (210 dpc), in addition to a later time point preparation for birth (Table 1). We also detected strong prior to birth when mature muscle has been established (260 dpc). developmental regulation of an unannotated Open Reading Frame Through the application of several methods including a differential (ORF), C13H20ORF194. AGXT2L1 also has high developmental
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice
    Loyola University Chicago Loyola eCommons Biology: Faculty Publications and Other Works Faculty Publications 2013 Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice Mihaela Palicev Gunter P. Wagner James P. Noonan Benedikt Hallgrimsson James M. Cheverud Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs Part of the Biology Commons Recommended Citation Palicev, M, GP Wagner, JP Noonan, B Hallgrimsson, and JM Cheverud. "Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice." Genome Biology and Evolution 5(10), 2013. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Palicev et al., 2013. GBE Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice Mihaela Pavlicev1,2,*, Gu¨ nter P. Wagner3, James P. Noonan4, Benedikt Hallgrı´msson5,and James M. Cheverud6 1Konrad Lorenz Institute for Evolution and Cognition Research, Altenberg, Austria 2Department of Pediatrics, Cincinnati Children‘s Hospital Medical Center, Cincinnati, Ohio 3Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University 4Department of Genetics, Yale University School of Medicine 5Department of Cell Biology and Anatomy, The McCaig Institute for Bone and Joint Health and the Alberta Children’s Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Canada 6Department of Anatomy and Neurobiology, Washington University *Corresponding author: E-mail: [email protected].
    [Show full text]
  • The Molecular Karyotype of 25 Clinical-Grade Human Embryonic Stem Cell Lines Received: 07 August 2015 1 1 2 3,4 Accepted: 27 October 2015 Maurice A
    www.nature.com/scientificreports OPEN The Molecular Karyotype of 25 Clinical-Grade Human Embryonic Stem Cell Lines Received: 07 August 2015 1 1 2 3,4 Accepted: 27 October 2015 Maurice A. Canham , Amy Van Deusen , Daniel R. Brison , Paul A. De Sousa , 3 5 6 5 7 Published: 26 November 2015 Janet Downie , Liani Devito , Zoe A. Hewitt , Dusko Ilic , Susan J. Kimber , Harry D. Moore6, Helen Murray3 & Tilo Kunath1 The application of human embryonic stem cell (hESC) derivatives to regenerative medicine is now becoming a reality. Although the vast majority of hESC lines have been derived for research purposes only, about 50 lines have been established under Good Manufacturing Practice (GMP) conditions. Cell types differentiated from these designated lines may be used as a cell therapy to treat macular degeneration, Parkinson’s, Huntington’s, diabetes, osteoarthritis and other degenerative conditions. It is essential to know the genetic stability of the hESC lines before progressing to clinical trials. We evaluated the molecular karyotype of 25 clinical-grade hESC lines by whole-genome single nucleotide polymorphism (SNP) array analysis. A total of 15 unique copy number variations (CNVs) greater than 100 kb were detected, most of which were found to be naturally occurring in the human population and none were associated with culture adaptation. In addition, three copy-neutral loss of heterozygosity (CN-LOH) regions greater than 1 Mb were observed and all were relatively small and interstitial suggesting they did not arise in culture. The large number of available clinical-grade hESC lines with defined molecular karyotypes provides a substantial starting platform from which the development of pre-clinical and clinical trials in regenerative medicine can be realised.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Communication Pathways in Human Nonmuscle Myosin-2C 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Authors: 25 Krishna Chinthalapudia,B,C,1, Sarah M
    1 Mechanistic Insights into the Active Site and Allosteric 2 Communication Pathways in Human Nonmuscle Myosin-2C 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Authors: 25 Krishna Chinthalapudia,b,c,1, Sarah M. Heisslera,d,1, Matthias Prellera,e, James R. Sellersd,2, and 26 Dietmar J. Mansteina,b,2 27 28 Author Affiliations 29 aInstitute for Biophysical Chemistry, OE4350 Hannover Medical School, 30625 Hannover, 30 Germany. 31 bDivision for Structural Biochemistry, OE8830, Hannover Medical School, 30625 Hannover, 32 Germany. 33 cCell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The 34 Scripps Research Institute, Jupiter, Florida 33458, USA. 35 dLaboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 36 20892, USA. 37 eCentre for Structural Systems Biology (CSSB), German Electron Synchrotron (DESY), 22607 38 Hamburg, Germany. 39 1K.C. and S.M.H. contributed equally to this work 40 2To whom correspondence may be addressed: E-mail: [email protected] or 41 [email protected] 42 43 1 44 Abstract 45 Despite a generic, highly conserved motor domain, ATP turnover kinetics and their activation by 46 F-actin vary greatly between myosin-2 isoforms. Here, we present a 2.25 Å crystal pre- 47 powerstroke state (ADPVO4) structure of the human nonmuscle myosin-2C motor domain, one 48 of the slowest myosins characterized. In combination with integrated mutagenesis, ensemble- 49 solution kinetics, and molecular dynamics simulation approaches, the structure reveals an 50 allosteric communication pathway that connects the distal end of the motor domain with the 51 active site.
    [Show full text]
  • UCP1-Independent Thermogenesis in Brown/Beige Adipocytes: Classical Creatine Kinase/Phosphocreatine Shuttle Instead of “Futile Creatine Cycling”
    UCP1-independent thermogenesis in brown/beige adipocytes: classical creatine kinase/phosphocreatine shuttle instead of “futile creatine cycling”. Theo Wallimann1*), Malgorzata Tokarska-Schlattner2) Laurence Kay2) and Uwe Schlattner2,3*) 1) Biology Dept. ETH-Zurich, Switzerland, emeritus, E-mail address: [email protected] 2) University Grenoble Alpes and Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics & SFR Environmental and Systems Biology, Grenoble, France, E-mail address: [email protected] 3) Institut Universitaire de France (IUF), Paris, France *) joint corresponding authors Abstract Various studies have identified creatine kinase (CK) and creatine (Cr) as important players for thermogenesis. More recently, they have been specifically linked to UCP1-independent thermogenesis in beige/brown adipocytes, and a “Cr-driven futile cycle” within mitochondria was proposed as the mechanistic basis. Here, we provide a critical appraisal of such a mechanism, which would require a rather undefined phosphocreatine phosphatase. As alternative explanation, we suggest instead that the well-known functions of the CK system, that is ATP buffering and shuttling of high-energy phosphocreatine (PCr) from sites of ATP generation to sites of ATP utilization, are also working in brown/beige adipocytes. There, the CK/PCr system would be shunted between ATP generation, at the mitochondria and/or glycolysis, and ATP hydrolysis at the ER/SR. This would largely facilitate high-throughput calcium pumping by the ATP-dependent Ca2+ pump (SERCA) as described also in skeletal and cardiac muscle. This very CK/PCr system would then support adipocyte SERCA2b function and, in tandem with adipocyte ryanodine receptor (RyR2) and/or inositol 1,4,5- 2+ triphosphate receptor (IP3-R3), facilitate thermogenic futile Ca cycling that has been described to operate in UCP1-independent, but ATP-dependent non-shivering thermogenesis.
    [Show full text]
  • Supplementary Table 1 the Identified Bis-Probe Captured Enzymes After Liquid Chromatography-Tandem Mass Spectrometry Analysis of Adscs Treated with BME
    Supplementary Table 1 The identified Bis-probe captured enzymes after liquid chromatography-tandem mass spectrometry analysis of ADSCs treated with BME. Protein names Accession Gene names Mass Length Gene ontology (biological process) Gene ontology (molecular function) Number (Da) Dolichyl-diphosphooligosaccharide-- P04843 RPN1 68,569 607 RNA binding [GO:0003723] cellular protein modification process protein glycosyltransferase subunit 1 [GO:0006464] protein N-linked glycosylation [GO:0006487] protein N-linked glycosylation via asparagine [GO:0018279] Ras-related protein Rab-21 Q9UL25 RAB21 24,348 225 GDP binding [GO:0019003]; GTPase anterograde axonal transport KIAA0118 activity [GO:0003924]; GTP binding [GO:0008089] [GO:0005525] regulation of axon extension [GO:0030516] E3 ubiquitin/ISG15 ligase TRIM25 Q14258 TRIM25 EFP 70,973 630 interferon-gamma-mediated signaling cadherin binding [GO:0045296]; ligase RNF147 pathway [GO:0060333] activity [GO:0016874]; metal ion binding ZNF147 [GO:0046872]; RIG-I binding [GO:0039552]; RNA binding [GO:0003723]; ubiquitin protein ligase activity [GO:0061630] D-3-phosphoglycerate O43175 PHGDH 56,651 533 electron transfer activity [GO:0009055]; brain development [GO:0007420] dehydrogenase PGDH3 L-malate dehydrogenase activity glial cell development [GO:0021782] [GO:0030060]; NAD binding neural tube development [GO:0021915] [GO:0051287]; phosphoglycerate neuron projection development dehydrogenase activity [GO:0004617] [GO:0031175] Cdc42 effector protein 1 Q00587 CDC42EP1 40,295 391 positive regulation of
    [Show full text]
  • Next-Generation Sequencing Reveals DGUOK Mutations in Adult Patients with Mitochondrial DNA Multiple Deletions
    doi:10.1093/brain/aws258 Brain 2012: 135; 3404–3415 | 3404 BRAIN A JOURNAL OF NEUROLOGY Next-generation sequencing reveals DGUOK mutations in adult patients with mitochondrial DNA multiple deletions Dario Ronchi,1 Caterina Garone,2,3 Andreina Bordoni,1 Purificacion Gutierrez Rios,2 4,5,6,7 8 1 1 8 Sarah E. Calvo, Michela Ripolone, Michela Ranieri, Mafalda Rizzuti, Luisa Villa, Downloaded from Francesca Magri,1 Stefania Corti,1,9 Nereo Bresolin,1,9,10 Vamsi K. Mootha,4,5,6,7 Maurizio Moggio,8 Salvatore DiMauro,2 Giacomo P. Comi1,9 and Monica Sciacco8 1 Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, http://brain.oxfordjournals.org/ IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy 2 Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA 3 Human Genetics Joint PhD Programme, University of Turin, 10125 Turin, Italy and University of Bologna, 40125 Bologna, Italy 4 Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA 5 Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA 6 Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA 7 Broad Metabolism Initiative, Seven Cambridge Center, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA 8 Neuromuscular Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, 20122 Milan, Italy 9 Centre of Excellence on
    [Show full text]
  • CD29 Identifies IFN-Γ–Producing Human CD8+ T Cells With
    + CD29 identifies IFN-γ–producing human CD8 T cells with an increased cytotoxic potential Benoît P. Nicoleta,b, Aurélie Guislaina,b, Floris P. J. van Alphenc, Raquel Gomez-Eerlandd, Ton N. M. Schumacherd, Maartje van den Biggelaarc,e, and Monika C. Wolkersa,b,1 aDepartment of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; bLandsteiner Laboratory, Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; cDepartment of Research Facilities, Sanquin Research, 1066 CX Amsterdam, The Netherlands; dDivision of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and eDepartment of Molecular and Cellular Haemostasis, Sanquin Research, 1066 CX Amsterdam, The Netherlands Edited by Anjana Rao, La Jolla Institute for Allergy and Immunology, La Jolla, CA, and approved February 12, 2020 (received for review August 12, 2019) Cytotoxic CD8+ T cells can effectively kill target cells by producing therefore developed a protocol that allowed for efficient iso- cytokines, chemokines, and granzymes. Expression of these effector lation of RNA and protein from fluorescence-activated cell molecules is however highly divergent, and tools that identify and sorting (FACS)-sorted fixed T cells after intracellular cytokine + preselect CD8 T cells with a cytotoxic expression profile are lacking. staining. With this top-down approach, we performed an un- + Human CD8 T cells can be divided into IFN-γ– and IL-2–producing biased RNA-sequencing (RNA-seq) and mass spectrometry cells. Unbiased transcriptomics and proteomics analysis on cytokine- γ– – + + (MS) analyses on IFN- and IL-2 producing primary human producing fixed CD8 T cells revealed that IL-2 cells produce helper + + + CD8 Tcells.
    [Show full text]
  • Association of Polymorphisms in the Telomere-Related Gene ACYP2 with Lung Cancer Risk in the Chinese Han Population
    www.impactjournals.com/oncotarget/ Oncotarget, 2016, Vol. 7, (No. 52), pp: 87473-87478 Research Paper Association of polymorphisms in the telomere-related gene ACYP2 with lung cancer risk in the Chinese Han population Nanzheng Chen1,*, Xiaomei Yang2,*, Wen Guo3, Jiangtao You1, Qifei Wu1, Guangjian Zhang1, Haijun Li1, Donghong Geng4, Tianbo Jin5, Junke Fu1, Yong Zhang1 1Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China 2Hospital 521 of China’s Ordnance Industry Group, Xi’an 710065, Shaanxi, China 3Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia, China 4School of Continuing Education of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China 5School of Life Sciences, Northwest University, Xi’an 710069, Shaanxi, China *These authors have contributed equally to this work Correspondence to: Junke Fu, email: [email protected] Yong Zhang, email: [email protected] Keywords: association study, lung cancer, telomere-related gene, single nucleotide polymorphisms (SNPs) Received: August 26, 2016 Accepted: October 14, 2016 Published: December 10, 2016 ABSTRACT Single nucleotide polymorphisms (SNPs) in the telomere-associated gene ACYP2 are associated with increased lung cancer risk. We explored the correlation between ACYP2 SNPs and lung cancer susceptibility in the Chinese Han population. A total of 554 lung cancer patients and 603 healthy controls were included in this study. Thirteen SNPs in ACYP2 were selected. Odds ratios (ORs) and 95% confidence intervals
    [Show full text]
  • Abstracts of Posters Presented at the 2011 Annual Meeting of the International Anesthesia Research Society Vancouver, British Columbia, Canada May 21-24, 2011
    www.anesthesia-analgesia.org May 2011 • Volume 112 • Number 5 Final Supplement to Abstracts of Posters presented at the 2011 Annual Meeting of the International Anesthesia Research Society Vancouver, British Columbia, Canada May 21-24, 2011 This Supplement Will Appear Online Only 100 Pine Street, Suite 230 IARS San Francisco, CA 94111-5104 International Anesthesia Phone: 415-296-6900 • Fax: 415-296-6901 Research Society email: [email protected] • www.iars.org Publisher of ANESTHESIA & ANALGESIA IARSMISSION The International Anesthesia Research Society is a nonpolitical, not-for-profit medical society founded in 1922 to advance and support scientific research and education related to anesthesia, and to improve patient care through basic research. The IARS contributes nearly $1 million annually to fund anesthesia research; provides a forum for anesthesiology leaders to share information and ideas; maintains a worldwide membership of more than 15,000 physicians, physician residents, and others with doctoral degrees, as well as health professionals in anesthesia-related practice; sponsors the SmartTots initiative in partnership with the FDA; and publishes the monthly Anesthesia & Analgesia journal. IARSBOARDOFTRUSTEES JAMES G. RAMSAY DENISE J. WEDEL ALEX EVERS CHAIR JOURNAL LIAISON BOARD MEMBER Atlanta, Georgia Rochester, Minnesota St. Louis, Missouri ROBERT N. SLADEN EMERY N. BROWN KEITH A. JONES PAST CHAIR BOARD MEMBER BOARD MEMBER New York, New York Boston, Massachusetts Birmingham, Alabama DEBRA A. SCHWINN JOHN F. BUTTERWORTH, IV COLLEEN G. KOCH TREASURER BOARD MEMBER BOARD MEMBER Seattle, Washington Indianapolis, Indiana Cleveland, Ohio HUGO VAN AKEN DAVY C. H. CHENG MAKOTO OZAKI SECRETARY BOARD MEMBER BOARD MEMBER Mu¨ nster, Germany London, Ontario, Canada Shinjuku, Tokyo, Japan IARSSTAFF THOMAS A.
    [Show full text]
  • GSTK1 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science GSTK1 Rabbit pAb Catalog No.: A5226 1 Publications Basic Information Background Catalog No. This gene encodes a member of the kappa class of the glutathione transferase A5226 superfamily of enzymes that function in cellular detoxification. The encoded protein is localized to the peroxisome and catalyzes the conjugation of glutathione to a wide Observed MW range of hydrophobic substates facilitating the removal of these compounds from cells. 25KDa Alternative splicing results in multiple transcript variants. Calculated MW 20kDa/24kDa/25kDa/31kDa Category Primary antibody Applications WB, IHC, IF Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 373156 Q9Y2Q3 IHC 1:50 - 1:100 Immunogen 1:50 - 1:100 IF Recombinant fusion protein containing a sequence corresponding to amino acids 1-226 of human GSTK1 (NP_057001.1). Synonyms GSTK1;GST;GST 13-13;GST13;GST13-13;GSTK1-1;hGSTK1 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using GSTK1 antibody (A5226) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST. Detection: ECL Basic Kit (RM00020). Exposure time: 60s. Immunohistochemistry of paraffin- Immunohistochemistry of paraffin- Immunohistochemistry of paraffin- embedded human lung cancer using embedded human liver cancer using embedded human thyroid cancer using GSTK1 Rabbit pAb (A5226) at dilution of GSTK1 Rabbit pAb (A5226) at dilution of GSTK1 Rabbit pAb (A5226) at dilution of 1:25 (40x lens).
    [Show full text]