Cumacea (Crustacea; Peracarida) of the Antarctic Shelf – Diversity, Biogeography, and Phylogeny

Total Page:16

File Type:pdf, Size:1020Kb

Cumacea (Crustacea; Peracarida) of the Antarctic Shelf – Diversity, Biogeography, and Phylogeny Cumacea (Crustacea; Peracarida) of the Antarctic shelf – diversity, biogeography, and phylogeny Peter Rehm Ph. D Thesis submitted to the faculty 2 (Biology Chemistry) of the University of Bremen, Germany Bremen, October 2007 1. Examiner Prof. Dr. Wolf E. Arntz Alfred Wegener Institute University of Bremen 2. Examiner Dr. Sven Thatje National Oceanography Centre University of Southampton CONTENTS Summary Zusammenfassung 1 INTRODUCTION 1 1.1 Antarctic peracarid crustaceans...................................................................................... 1 Systematics and morphology............................................................................................ 1 Ecological importance and evolution.............................................................................. 2 1.2 Antarctic Cumacea............................................................................................................ 3 1.3 Hypotheses and aims of the study .................................................................................... 5 Cumacean phylogeny....................................................................................................... 5 Diversity of the Ross Sea...................................................................................................... 5 Diversity and speciation of Antarctic Cumacea ............................................................ 5 Aims of the study ................................................................................................................. 6 2 MATERIALS AND METHODS 7 2.1 Study areas........................................................................................................................... 7 2.2 Sampling methods .............................................................................................................. 9 2.3 Morphological studies......................................................................................................... 9 2.4 Molecular genetic methods ............................................................................................ 10 Tissue dissection and DNA extraction............................................................................. 10 Polymerase chain reaction (PCR)................................................................................... 10 Primer design...................................................................................................................... 11 Gel electrophoresis ........................................................................................................... 12 DNA purification ................................................................................................................ 12 DNA sequencing ............................................................................................................... 13 2.5 Statistical analysis .............................................................................................................. 14 Faunal communities.......................................................................................................... 14 Morphological data.......................................................................................................... 14 2.6 Phylogenetic analysis........................................................................................................ 14 Correction of DNA sequence.......................................................................................... 14 The Basic Local Alignment Search Tool (BLAST)............................................................. 14 Aligning sequences........................................................................................................... 15 Tree construction ............................................................................................................... 15 3 SYNOPSIS 18 3.1 Cumacean phylogeny..................................................................................................... 18 3.2 Peracarid crustaceans of the Ross Sea.......................................................................... 20 3.3 Origin of Antarctic Peracarida ........................................................................................ 22 History and present state of the Antarctic benthic community.................................. 22 Shallow water – deep-see relationship of Antarctic Peracarida ................................ 24 Faunal linkage to the Subantarctic Magellan Region ................................................. 25 3.4 Peracarid diversity............................................................................................................. 26 3.5 Speciation in the context of Antarctic evolution .......................................................... 27 3.6 Speciation patterns in Antarctic Cumacea .................................................................. 29 3.7 Future perspectives........................................................................................................... 32 PUBLICATIONS 33 Publication I ............................................................................................................................... 35 Publication II............................................................................................................................... 44 Publication III.............................................................................................................................. 55 Publication IV............................................................................................................................. 60 Publication V.............................................................................................................................. 70 Publication VI............................................................................................................................. 79 ACKNOWLEDGEMENTS 88 REFERENCES 90 SUMMARY SUMMARY The crustacean order Cumacea belongs to the Peracarida and comprises an evolutionary old group with conservative morphology. Predominantly bound to soft bottom habitats in benthic marine environments they show a cosmopolitan distribution. As other Peracarida they display brood protection; juvenile stages are carried in the marsupium. It is supposed that the marsupium plays a major role in the success of this abundant and specious group of Crustacea. The Peracarida are a dominant group in Southern Ocean benthic communities. Quantitative investigations of the Ross Sea shelf fauna demonstrated that the Peracarida contribute 63% to abundance and 50% to biomass. Amphipods dominated clearly, while different sample sites yielded high dominances by Cumacea, Isopoda, and Tanaidacea. The recorded number of peracarid species from the Ross Sea is lower than in other high-Antarctic regions. The present study could show, that cumacean diversity with respect to species richness resembles that of the Weddell Sea or the East Antarctic. Species number has now increased from 13 to 34 for the Ross Sea, which highlights the requirement for choosing the appropriate sampling gear, and continued ‘classical’ taxonomical as well as biogeographical work. With the present study equal distribution of cumacean species with an affinity to the Magellan region in all high- Antarctic regions could be demonstrated. A new species Leucon rossi (see front page) and the subspecies Diastylis enigmatica rossensis was described from the Ross Sea. Further species from the Ross Sea showed slight morphological differences to literature. In the context of the discussion about cryptic speciation these differences might indicate that diversity of Antarctic cumaceans is likely much higher as currently known. In the present study genetic differences in the 16S rRNA gene of populations of Leucon antarcticus from the Ross Sea and the Weddell Sea make clear that these have genetically separated for an extended period of time. According to the analysis of 16S rRNA data, populations of the species Leucon intermedius from the Ross Sea and the Weddell Sea belong to the same species. Genetic diversity of the cytochrome oxidase I (COI) gene of two caridean decapods supports the concept of circumantarctic species distribution in marine broadcasters. A broadcasting mode in reproduction seems to favour high gene flow and homogeneous populations around Antarctica. Contrarily, brooders with limited capability to disperse over long distances are more likely exposed to geographic isolation on the Antarctic continental shelf, i.e. in glacial periods, which favours cryptic speciation patterns and high diversity in these taxa. The phylogenetic history of cumaceans is obscure as there is almost no fossil record and derived and primitive characters, which vary within and between families, distinguish families. Though assumptions about the succession of cumacean families exist, details are still ambiguous. The present molecular study of mitochondrial 16S rDNA SUMMARY confirmed the Cumacea as a monophylum with respect to Tanaidacea and Isopoda with the monophyletic Diastylidae as a basal family. The hypothesis of a derived group of Cumacea bearing a fused pleotelson was confirmed as well. Furthermore this study demonstrated that within the family Leuconidae the genus Leucon is paraphyletic, whereas the subgenus Crymoleucon resolved monophyletic. ZUSAMMENFASSUNG ZUSAMMENFASSUNG Die Cumacea gehören zu den Peracariden und sind eine Ordnung der Crustacea. Diese evolutiv alte Gruppe zeichnet sich
Recommended publications
  • Anchialine Cave Biology in the Era of Speleogenomics Jorge L
    International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats.
    [Show full text]
  • Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary
    July 15, 2013 Final Report Project SR12-002: Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary Gary L. Taghon, Rutgers University, Project Manager [email protected] Judith P. Grassle, Rutgers University, Co-Manager [email protected] Charlotte M. Fuller, Rutgers University, Co-Manager [email protected] Rosemarie F. Petrecca, Rutgers University, Co-Manager and Quality Assurance Officer [email protected] Patricia Ramey, Senckenberg Research Institute and Natural History Museum, Frankfurt Germany, Co-Manager [email protected] Thomas Belton, NJDEP Project Manager and NJDEP Research Coordinator [email protected] Marc Ferko, NJDEP Quality Assurance Officer [email protected] Bob Schuster, NJDEP Bureau of Marine Water Monitoring [email protected] Introduction The Barnegat Bay ecosystem is potentially under stress from human impacts, which have increased over the past several decades. Benthic macroinvertebrates are commonly included in studies to monitor the effects of human and natural stresses on marine and estuarine ecosystems. There are several reasons for this. Macroinvertebrates (here defined as animals retained on a 0.5-mm mesh sieve) are abundant in most coastal and estuarine sediments, typically on the order of 103 to 104 per meter squared. Benthic communities are typically composed of many taxa from different phyla, and quantitative measures of community diversity (e.g., Rosenberg et al. 2004) and the relative abundance of animals with different feeding behaviors (e.g., Weisberg et al. 1997, Pelletier et al. 2010), can be used to evaluate ecosystem health. Because most benthic invertebrates are sedentary as adults, they function as integrators, over periods of months to years, of the properties of their environment.
    [Show full text]
  • Download Full Article in PDF Format
    DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR : Bruno David Président du Muséum national d’Histoire naturelle RÉDACTRICE EN CHEF / EDITOR-IN-CHIEF : Laure Desutter-Grandcolas ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Anne Mabille ([email protected]) MISE EN PAGE / PAGE LAYOUT : Anne Mabille COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : James Carpenter (AMNH, New York, États-Unis) Maria Marta Cigliano (Museo de La Plata, La Plata, Argentine) Henrik Enghoff (NHMD, Copenhague, Danemark) Rafael Marquez (CSIC, Madrid, Espagne) Peter Ng (University of Singapore) Jean-Yves Rasplus (INRA, Montferrier-sur-Lez, France) Jean-François Silvain (IRD, Gif-sur-Yvette, France) Wanda M. Weiner (Polish Academy of Sciences, Cracovie, Pologne) John Wenzel (The Ohio State University, Columbus, États-Unis) COUVERTURE / COVER : Akrophryxus milvus n. gen., n. sp., holotype female, MNHN-IU-2014-20314, attached to Ethusa machaera Castro, 2005, macropod images. Zoosystema est indexé dans / Zoosystema is indexed in: – Science Citation Index Expanded (SciSearch®) – ISI Alerting Services® – Current Contents® / Agriculture, Biology, and Environmental Sciences® – Scopus® Zoosystema est distribué en version électronique par / Zoosystema is distributed electronically by: – BioOne® (http://www.bioone.org) Les articles ainsi que les nouveautés nomenclaturales publiés dans Zoosystema sont référencés par / Articles and nomenclatural novelties published in Zoosystema are referenced by: – ZooBank® (http://zoobank.org) Zoosystema est une revue en flux continu publiée par les Publications scientifiques du Muséum, Paris / Zoosystema is a fast track journal published by the Museum Science Press, Paris Les Publications scientifiques du Muséum publient aussi / The Museum Science Press also publish: Adansonia, Geodiversitas, Anthropozoologica, European Journal of Taxonomy, Naturae, Cryptogamie sous-sections Algologie, Bryologie, Mycologie. Diffusion – Publications scientifiques Muséum national d’Histoire naturelle CP 41 – 57 rue Cuvier F-75231 Paris cedex 05 (France) Tél.
    [Show full text]
  • Cumacea (Crustacea) from Shallow Waters of Bermuda
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2001 Band/Volume: 103B Autor(en)/Author(s): Petrescu I., Sterrer W. Artikel/Article: Cumacea (Crustacea) from shallow waters of Bermuda. 89-128 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 103 B 89- 128 Wien, Dezember 2001 Cumacea (Crustacea) from shallow waters of Bermuda I. Petrescu* & W. Sterrer** Abstract Seven species of Cumacea, two new {Cumella somersi sp.n. and Schizotrema wittmanni sp.n.) were identified in samples from shallow waters and sea caves of Bermuda. This is the first record of the genus Schizotrema in the Atlantic Ocean, and the first record of Cumella serrata CALM AN, 1911 and Schizotrema agglutinanta (BÂCESCU, 1971) for Bermuda. The paper includes revisions of all species reported from Bermuda. Keywords: Cumacea, Bermuda, new taxa, revisions. Zusammenfassung Von sieben Cumaceen-Arten aus Seichtwasser- und Meereshöhlenproben von Bermuda sind zwei neu für die Wissenschaft: Cumella somersi sp.n. und Schizotrema wittmanni sp.n. Das Genus Schizotrema wird zum erstenmal aus dem Atlantik vermeldet, und die Arten Cumella serrata CALMAN, 1911 and Schizotrema agglutinanta (BÂCESCU, 1971) zum erstenmal von Bermuda. Alle bisher in Bermuda gefundenen Arten wer- den kritisch revidiert. Introduction Situated at 32°18'N, 64°46'W in the northwestern Atlantic Ocean, the archipelago of Bermuda is made up of approximately 150 islands and islets, with a total land mass of only 50 km2. Despite its high latitude, the oceanic island of Bermuda boasts the north- ernmost coral reef system in the world, largely thanks to the warm Gulf Stream which passes halfway between the island and North America.
    [Show full text]
  • Facts and Arguments for Darwin
    22102077550 Med K3642 #• Digitized by the Internet Archive in 2017 with funding from Wellcome Library https://archive.org/details/b29338426 FACTS AND ARGUMENTS FOR DARWIN. BY FRITZ MÜLLER. WITH ADDITIONS BY THE AUTHOR TRANSLATED FROM THE GERMAN By W. S. DALLAS, F.L.S., ASSISTANT SECRETARY TO THE GEOLOGICAL SOCIETY OF LONDON. WITH ILLUSTRATIONS. LONDON: JOHN MURRAY, ALBEMARLE STREET. 1869. EI'/fL.U TT Cblj T« til ! 1a^: MB. DARWIN’S WORKS. A NATURALIST’S VOYAGE ROUND THE WORLD ; being a Journal of Researches into the Natural History and Geology of Couktries Visited. Post 8vo. 9s. THE ORIGIN of SPECIES, by MEANS of NATURAL SELECTION"; or, The Preservation of Favoured Races in the Struggle for Life. Woodcuts. Post 8vo. 15s. THE VARIOUS CONTRIVANCES by wbicb BRITISH and FOREIGN ORCHIDS are FERTILIZED by INSECTS, and on the GOOD EFFECTS of INTERCROSSING. Woodcuts. Post 8vo. 9s. THE VARIATION OF ANIMALS AND PLANTS UNDER DOMESTICATION. Illustrations. 2 vols., 8vo. 28s. TRANSLATOR’S PREFACE. My principal reason for undertaking the translation of Dr. Fritz Muller’s admirable work on the Crustacea, entitled ‘Für Darwin,’ was that it was still, although published as long ago as 1864, and highly esteemed by the author’s scientific countrymen, absolutely unknown to a great number of English naturalists, including some who have occupied themselves more or less specially with the subjects of which it treats. It possesses a value quite independent of its reference to Darwinism, due to the number of highly interesting and important facts in the natural history and par¬ ticularly the developmental history of the Crustacea, which its distinguished author, himself an unwearied and original investigator of these matters, has brought together in it.
    [Show full text]
  • REVISÃO TAXONÔMICA DA FAMÍLIA SEROLIDAE Dana, 1853 (CRUSTACEA: ISOPODA) NO OCEANO ATLÂNTICO (45°N – 60°S)
    UNIVERSIDADE DE SÃO PAULO MUSEU DE ZOOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMÁTICA, TAXONOMIA ANIMAL E BIODIVERSIDADE INGRID ÁVILA DA COSTA REVISÃO TAXONÔMICA DA FAMÍLIA SEROLIDAE Dana, 1853 (CRUSTACEA: ISOPODA) NO OCEANO ATLÂNTICO (45°N – 60°S) São Paulo 2017 UNIVERSIDADE DE SÃO PAULO MUSEU DE ZOOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMÁTICA, TAXONOMIA ANIMAL E BIODIVERSIDADE INGRID ÁVILA DA COSTA REVISÃO TAXONÔMICA DA FAMÍLIA SEROLIDAE Dana, 1853 (CRUSTACEA: ISOPODA) NO OCEANO ATLÂNTICO (45°N – 60°S) Tese apresentada ao Programa de Pós-Graduação em Sistemática, Taxonomia Animal e Biodiversidade do Museu de Zoologia da Universidade de São Paulo. Versão corrigida Orientador: Prof. Dr. Marcos Domingos Siqueira Tavares São Paulo 2017 Não autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico. I do not authorize the reproduction and dissemination of this work in part or entirely by any means electronic or conventional. i FICHA CATALOGRÁFICA Costa, Ingrid Ávila da Revisão taxonômica da família Serolidae Dana, 1853 (Crustacea: Isopoda) no Oceano Atlântico (45ºN – 60ºS). Ingrid Ávila da Costa; orientador Marcos Domingos Siqueira Tavares. – São Paulo, SP: 2017. 36 fls. Tese (Doutorado) – Programa de Pós-graduação em Sistemática, Taxonomia Animal e Biodiversidade, Museu de Zoologia, Universidade de São Paulo. Versão corrigida 1. Serolidae Dana, 1853 - taxonomia. 2. Isopoda – Oceano Atlântico. I. Tavares, Marcos Domingos Siqueira (Orient.). II. Título. Banca examinadora Prof. Dr.______________________ Instituição: ___________________ Julgamento: ___________________ Assinatura: ___________________ Prof. Dr.______________________ Instituição: ___________________ Julgamento: ___________________ Assinatura: ___________________ Prof. Dr.______________________ Instituição: ___________________ Julgamento: ___________________ Assinatura: ___________________ Prof. Dr.______________________ Instituição: ___________________ Julgamento: ___________________ Assinatura: ___________________ Profa.
    [Show full text]
  • From Ghost and Mud Shrimp
    Zootaxa 4365 (3): 251–301 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4365.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C5AC71E8-2F60-448E-B50D-22B61AC11E6A Parasites (Isopoda: Epicaridea and Nematoda) from ghost and mud shrimp (Decapoda: Axiidea and Gebiidea) with descriptions of a new genus and a new species of bopyrid isopod and clarification of Pseudione Kossmann, 1881 CHRISTOPHER B. BOYKO1,4, JASON D. WILLIAMS2 & JEFFREY D. SHIELDS3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St., New York, New York 10024, U.S.A. E-mail: [email protected] 2Department of Biology, Hofstra University, Hempstead, New York 11549, U.S.A. E-mail: [email protected] 3Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, U.S.A. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 252 Introduction . 252 Methods and materials . 253 Taxonomy . 253 Isopoda Latreille, 1817 . 253 Bopyroidea Rafinesque, 1815 . 253 Ionidae H. Milne Edwards, 1840. 253 Ione Latreille, 1818 . 253 Ione cornuta Bate, 1864 . 254 Ione thompsoni Richardson, 1904. 255 Ione thoracica (Montagu, 1808) . 256 Bopyridae Rafinesque, 1815 . 260 Pseudioninae Codreanu, 1967 . 260 Acrobelione Bourdon, 1981. 260 Acrobelione halimedae n. sp. 260 Key to females of species of Acrobelione Bourdon, 1981 . 262 Gyge Cornalia & Panceri, 1861. 262 Gyge branchialis Cornalia & Panceri, 1861 . 262 Gyge ovalis (Shiino, 1939) . 264 Ionella Bonnier, 1900 .
    [Show full text]
  • Title CUMACEAN CRUSTACEA from AKKESHI BAY, HOKKAIDO Author(S) Gamo, Sigeo Citation PUBLICATIONS of the SETO MARINE BIOLOGICAL LA
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository CUMACEAN CRUSTACEA FROM AKKESHI BAY, Title HOKKAIDO Author(s) Gamo, Sigeo PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1965), 13(3): 187-219 Issue Date 1965-10-30 URL http://hdl.handle.net/2433/175407 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University 1 CUMACEAN CRUSTACEA FROM AKKESHI BAY, HOKKAID0 ) SIGEO GAMO Faculty of Liberal Arts and Education, Yokohama National University, Kamakura, Kanagawa-Ken With 12 Text-figures Our knowledge of the Cumacea of Hokkaido and its adjacent waters is due to the contributions of DERZHA VIN (1923, 1926), U:ENo (1933, 1936), ZIMMER (1929, 1939, 1940, 1943) and LOMAKINA (1955 a-b; 1958 a-b). + Tomata Sempoji krn Fig. 1. Map of Akkeshi Bay. Solid circles with numbers indicate the stations where the cumaceans were collected by the Ekman-Berge bottom-sampling grab, 19-21 show the places where the subsurface towing of plankton-net was made at night. "~---------- ---- ---"---~- 1) Contributions from the Akkeshi Marine Biological Station, No. 126. Publ. Seto Mar. Biol. Lab., XIII (3), 187-219, 1965. (Article 10) f-l ~ Table 1. Occurrence of cumaceans in Akkeshi Bay. Station number 1_1_ _:__3___ 4 ___ 5 ___ 6 ___7 ___8_1_9_ 10 11-12~_::_~~~~ 18 19120121 Depth (m) 2 1 3 8 2 0.3 9 11 11 14 8-12 6 13 14 15 0.3 0.3 night ______B_o_t_t-om_c_h-aracter ~~~~~sis~~~~ sM s andMI s ~s~ss ~~~~~~ Srecies of cumaceans Bodotriidae I I I I I I I I I I I I I I I I .
    [Show full text]
  • Crustacea, Malacostraca)*
    SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young.
    [Show full text]
  • Relationships Between Organic Carbon and Fodichnia Morphology
    Relationships between Organic Carbon and Fodichnia Morphology TYLER E. HAUCK Department of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton, Alberta, Canada, T6G 2E3, Email: [email protected] SHAHIN E. DASHTGARD Department of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton, Alberta, Canada, T6G 2E3 MURRAY K. GINGRAS Department of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton, Alberta, Canada, T6G 2E3 RRH: RESOURCE DISTRIBUTION CONTROLS ON FODICHNIA MORPHOLOGY LRH: HAUCK ET AL. Keywords: Organic carbon, Chiridotea caeca, Pascichnia, Intertidal, Neoichnology, Bioturbation 1 ABSTRACT Grazing trackways of the Valviferan isopod Chiridotea caeca are examined to establish relationships between trackway complexity and morphology, and the distribution of food (organic carbon). These isopods burrow up to 1 cm beneath the surface within ripple troughs and plane-bedded sand of the upper intertidal zone. The burrows are grouped into three forms based on trackway complexity and the degree of looping and trackway crossover in planview. Sediment samples taken directly from the furrows of the trails are used to establish the total organic-carbon content associated with each type of burrow morphology. There is an increase in organic-carbon content from burrows of low complexity (linear), to burrows of high complexity (convolute with many crossovers), suggesting that benthic food content directly influences the behavior of C. caeca, which is manifest in the trackway morphology. Detailed study of trackway architecture further reveals a relationship between C. caeca and food content leading to the recognition of three grazing styles, which are directly associated with the plan-view morphology of the trackway.
    [Show full text]
  • The Effects of Some Domestic Pollutants on the Cumacean (Crustacea) Community Structure at the Coastal Waters of the Dardanelles, Turkey
    Arthropods, 2014, 3(1): 27-42 Article The effects of some domestic pollutants on the cumacean (Crustacea) community structure at the coastal waters of the Dardanelles, Turkey A.Suat Ateş1, Tuncer Katağan2, Murat Sezgin3, Hasan G. Özdilek4, Selçuk Berber1, Musa Bulut1 1Çanakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology, TR- 17100 Çanakkale, Turkey 2Ege University, Fisheries Faculty, TR- 35100 Bornova-İzmir, Turkey 3Sinop University, Fisheries Faculty, TR- 57000 Sinop, Turkey 4Çanakkale Onsekiz Mart University, Faculty of Engineering and Architecture, TR- 17100 Çanakkale, Turkey E-mail: [email protected] Received 2 September 2013; Accepted 8 October 2013; Published online 1 March 2014 Abstract This study was carried out to determine the effects of sewage pollution on the cumacean assemblages found in the coastal waters of the Dardanelles. The samples were collected by a SCUBA diver between July 2008 and April 2009 and a total of 102 specimens belong to 5 cumacea species, Bodotria arenosa mediterranea, Cumopsis goodsir, Cumella limicola, Iphinoe maeotica and Pseudocuma longicorne was recorded. The dominant species, Iphinoe maeotica has the highest dominance value (36.66%). Multiregression approach resulted in statistically insignificant relationship between physical, chemical and biochemical variables of water and sediment and Bodotria arenosa mediterranea, Cumopsis goodsir, Cumella limicola, and Iphinoe maeotica. Based on multiple regression test, a significant relationship with R2 = 92.2%, F= 7.876 and p= 0.000 was found between six water and sediment quality constituents and numbers of Pseudocuma longicornis at the stations studied of the Dardanelles. On the other hand, water temperature (β= -0.114; t= -2.811, p= 0.016); sediment organic matter (β= -0.011; t= -2.406; p= 0.033) and water phosphorus (PO4) (β= 0.323; t= 3.444; p= 0.005) were found to be the most important water and sediment parameters that affect Pseudocuma longicornis.
    [Show full text]
  • (Crustacea, Malacostraca, Peracarida) from North America
    Contributions to Zoology, 72 (I) 1-16 (2003) SPB Academic Publishing hv, The Hague Paleozoic cumaceans (Crustacea, Malacostraca, Peracarida) from North America ² Frederick+R. Schram Cees+H.J. Hof Mapes³ & Snowdon² ¹, Royal+H. Polly 1 Institute for Biodiversity and Ecosystem Dynamics, University ofAmsterdam, Post Box 94766, 1090 GT 2 Amsterdam, Netherlands, [email protected]; Dept. ofEarth Sciences, University of Bristol, Bristol 3 BS8 IRJ, UK; Dept. of Geological Sciences, Ohio University, Athens, Ohio 45701, USA, e-mail: mapes@oak. cats, ohiou.edu Keywords:: Cumacea, North America, Paleozoic, Peracarida Abstract forms inhabit the fine sand and coarse silts perfect for fossilization (Schram, 1986). Bachmayer, (1960) Thiee new species of are described from North malacostracans recorded a poorly preserved cumacean-like speci- America in the UpperMississippian Into Formation ofArkansas, men Palaeocuma hessi from the Callovian, Middle and the Pennsylvanian Eudora Shale of southeastern Kansas. of France’. These Jurassic, Subsequently, Malzahn (1972) appear to be the oldest fossils attributed to the Cumacea and studied two Permian are well-preserved species of the only the third collection of fossil cumaceansanywhere to be described. Permian genus O. and O. Previously depicted forms occur in the Opthalmdiastylis, inflata costata, and Jurassic of Europe. We herein double the numberof described from the marl beds ofZechstein I, Kamp-Lintfort, fossil cumacean species and suggest some adjustments necessary Germany. These latter taxa are noteworthy in that tothe higher ofthe accommodate taxonomy group to apomorphic they exhibit lobed as the features of distinctly eyes, generic the fossil and Recent forms. name implies. This describes paper three new species of Car- Contents boniferous cumaceans from the lino Formation (Up- per Mississippian) of northwestern Arkansas, and the Eudora Shale (Pennsylvanian) of southeastern Introduction 1 Localities and Kansas.
    [Show full text]