Open Source Tools for Monitoring MPLS Nodes

Total Page:16

File Type:pdf, Size:1020Kb

Open Source Tools for Monitoring MPLS Nodes PROJECT REPORT Open Source Tools For Monitoring MPLS Nodes BHAVESH SHARMA 10412EN008 Mathematics and Computing PROJECT GUIDE Dr. N.P. DHAVALE Deputy General Manager Institute for Development and Research in Banking Technology, (Established By Reserve Bank of India) CERTIFICATE This is to certify that project report titled Open Source Networking Tools for monitoring the MPLS nodes submitted by Bhavesh Sharma, a 2nd year UG of Mathematics and Computing, MTech. Integrated from IIT BHU, is record of a bonafide work carried out by him under my guidance during the period 17th May 2012 to 20th July 2012 at Institute of Development and Research in Banking Technology, Hyderabad. The project work is a research study, which has been successfully completed as per the set objectives. In this project assigned to Mr. Bhavesh Sharma, he has done excellent work. We wish him all the best for the near endeavors. Dr. N.P. Dhavale DGM, Infinet office IDRBT,Hyderabad Institute for Development And Research in Banking Technology 1 ABSTRACT There are a large number of RBI locations and an even large number of member banks in India. As the number of member banks registered with the RBI is very high, the monitoring of the network would be very challenging. There is a high need to constantly monitor the network for slow or failing components and notify the network administrator in case of outages. A detailed study of free open source tools including zabbix, netdisco, opennms and many more is to be performed and the best tools is to be selected for final integration. Institute for Development And Research in Banking Technology 2 ACKNOWLEDGEMENT I would like to express my sincere gratitude to the Institute for Development and Research in Banking Technology (IDRBT) and particularly Dr.N.P. Dhavale,(DGM , INFINET and Services) who was my guide in this project. This opportunity of learning all about banking architecture and a SLA (Service level Agreement) system application of the country was a boon to me as one rarely gets such exposure. I would not hesitate to add that this short stint in IDRBT has added a different facet to my life as this is a unique organization being a combination of academics, research, technology, communication services, crucial applications, etc., and at the same time performing roles as an arm of regulation, spread of technology, facilitator for implementing technology in banking and non-banking systems, playing a role of an NGO (without being one) and many more varied activities. I am extremely grateful to Dr.N.P.Dhavale for his advice, innovative suggestions and supervision. I thank him for introducing me to an excellent banking application and giving me the opportunity to approach diverse sections of people starting from bankers to general public. I am thankful to the staff of INFINET department at IDRBT for helping me to get familiar with the application. They gave me a chance to study the application and its impact from different perspectives. I am thankful to my college, IIT BHU for giving me this golden opportunity to work in a high-end research institute like IDRBT. I am thankful for IDRBT for providing such an amazing platform for students to work in real application oriented research. Finally, I thank one and all who made this project successful either directly or indirectly. I am very thankful to Ms. Anuraddha Madam and Shri Shrihari Sir with whom I worked throughout my stint at IDRBT and the project was possible only with their cooperation. Bhavesh Sharma Project Trainee Department of INFINET IDRBT, Hyderabad Institute for Development And Research in Banking Technology 3 Contents: 1.0 INTRODUCTION……………………………………………………………………………………………………………………1 1.1 KNOWING THE NETWORK……………………………………………………………………………………….2 1.2 WHAT TO MONITOR AND WHY?.................................................................................3 1.3 WHAT TO LOOK IN A NETWORK MONITORING APPLICATION………………………………….4 1.4 IDRBT NETWORK……………………………………………………………………………………………………..5 1.5 MPLS……………………………………………………………………………………………………………………….5 1.6 IDRBT MPLS ARCHITECHTURE …………………………………………………………………………………6 1.7 THE PROBLEM………………………………………………………………………………………………………….7 1.8 THE APPROACH……………………………………………………………………………………………………….7 2.0 NETDISCO……………………………………………………………………………………………………………………………10 2.1 INSTALLATION………………………………………………………………………………………………………..10 2.2 SOME BASIC OPERATION FOR NETDISCO………………………………………………………………..14 3.0 FRAMEFLOW……………………………………………………………………………………………………………………….17 3.1 INSTALLATION………………………………………………………………………………………………………..17 3.2 USAGE…………………………………………………………………………………………………………………….17 4.0 OPENQRM…………………………………………………………………………………………………………………………..23 4.1 SYSTEM REQUIREMENTS………………………………………………………………………………………...23 4.2 INSTALLATION…………………………………………………………………………………………………………23 4.3 CONFIGURATION…………………………………………………………………………………………………….24 4.4 USAGE…………………………………………………………………………………………………………………....24 CONCLUSION………………………………………………………………………………………………………………………………31 FUTURE WORK……………………………………………………………………………………………………………………………32 APPENDICES………………………………………………………………………………………………………………………………..32 REFERENCES ……………………………………………………………………………………………………………………………...32 1.0 INTRODUCTION Networking as we see today has constantly evolved from merely just two computers connected through a wire to a broader platform of Internet which acclaims to connect one part of the world to the other. As a result modern computer networks tend to be large heterogeneous collections of computers, switches, routers and a large assortment of other devices. To a large degree, the growth of such networks is ad-hoc and based on the current and perceived future needs of the users. As networks get larger and faster, the job of monitoring and managing them gets more complex. However, the job of managing computer networks becomes increasingly more important as society becomes more dependent on computers and the Internet for everyday business tasks. Network downtime now costs significant amounts of money so it is important that network and system managers are aware of everything that is happening on the networks for which they are responsible. As a result a solitary network consultant monitoring network activity is required based on the Open Systems Interconnect (OSI) reference model proposed by International Telecommunications Union (ITU).This task is accomplished by using some form of tool to gather, analyze and represent information about a computer network therefore, in general, network monitoring involves a set of tools to aid people to monitor and maintain computer networks. With a resource this valuable, ensuring its availability is essential. It’s also challenging because of threats such as hackers, denial of service attacks, viruses, and information theft, all of which can lead to downtime, loss of data, and overall decreasing credibility and profitability. Additionally, the network is evolving drastically, with new technologies, devices, and strategies, such as virtualization and service-oriented architectures. That’s why network management is such an important function and capability for businesses of all sizes. If our business depends on our network, then network management is critical. Network management is a broad functional area incorporating device monitoring, application management, security, ongoing maintenance, service levels, troubleshooting, planning, and other tasks – ideally all coordinated and overseen by an experienced and reliable network administrator. Yet even the most knowledgeable and capable network administrator is only as good as the network information that is visible, and that he or she can manage and act on. Administrators need to know what’s happening on their networks at all times, including real- time and historical information on usage, performance, and status of every device, application, and all data on the network. This is the domain of network monitoring, the most critical function of network management. The only way to know if everything on our network is operating as it should is to monitor it continuously. Institute for Development And Research in Banking Technology 1 1.1 KNOWING THE NETWORK Today’s networks can be astounding in their complexity. Routers, switches, and hubs link the multitude of workstations to critical applications on myriad servers and to the Internet. In addition, there are numerous security and communications utilities and applications installed, including firewalls, virtual private networks (VPNs), and spam and virus filters. These technologies span all verticals and companies of all sizes. Network management, therefore, is not confined to only certain industries or solely to large, public companies. Understanding the composition and complexity of our network, and having the capacity to be informed of how all the individual elements are performing at any given time, is a key success factor in maintaining the performance and integrity of the network – and often of the business – as a whole. There are potentially thousands of data points to monitor on a network, and it is critical to be able to access meaningful, accurate, and current information at any given time. Network administrators need to feel confident that they know what’s happening on their network from end to end at any given point in time. It is critical to “know our network” at all times. A network is no longer a monolithic structure. It includes the Internet, local area networks (LANs) , wide area networks (WANs), virtual LANS (VLANS), wireless networks, and all of the devices, servers, and applications that run on them.
Recommended publications
  • A Survey of Network Performance Monitoring Tools
    A Survey of Network Performance Monitoring Tools Travis Keshav -- [email protected] Abstract In today's world of networks, it is not enough simply to have a network; assuring its optimal performance is key. This paper analyzes several facets of Network Performance Monitoring, evaluating several motivations as well as examining many commercial and public domain products. Keywords: network performance monitoring, application monitoring, flow monitoring, packet capture, sniffing, wireless networks, path analysis, bandwidth analysis, network monitoring platforms, Ethereal, Netflow, tcpdump, Wireshark, Ciscoworks Table Of Contents 1. Introduction 2. Application & Host-Based Monitoring 2.1 Basis of Application & Host-Based Monitoring 2.2 Public Domain Application & Host-Based Monitoring Tools 2.3 Commercial Application & Host-Based Monitoring Tools 3. Flow Monitoring 3.1 Basis of Flow Monitoring 3.2 Public Domain Flow Monitoring Tools 3.3 Commercial Flow Monitoring Protocols 4. Packet Capture/Sniffing 4.1 Basis of Packet Capture/Sniffing 4.2 Public Domain Packet Capture/Sniffing Tools 4.3 Commercial Packet Capture/Sniffing Tools 5. Path/Bandwidth Analysis 5.1 Basis of Path/Bandwidth Analysis 5.2 Public Domain Path/Bandwidth Analysis Tools 6. Wireless Network Monitoring 6.1 Basis of Wireless Network Monitoring 6.2 Public Domain Wireless Network Monitoring Tools 6.3 Commercial Wireless Network Monitoring Tools 7. Network Monitoring Platforms 7.1 Basis of Network Monitoring Platforms 7.2 Commercial Network Monitoring Platforms 8. Conclusion 9. References and Acronyms 1.0 Introduction http://www.cse.wustl.edu/~jain/cse567-06/ftp/net_perf_monitors/index.html 1 of 20 In today's world of networks, it is not enough simply to have a network; assuring its optimal performance is key.
    [Show full text]
  • Best Practices for Network Monitoring
    White Paper Best Practices for Network Monitoring How a Network Monitoring Switch Helps IT Teams Stay Proactive 26601 Agoura Road, Calabasas, CA 91302 | Tel: 818.871.1800 | Fax: 818.871.1805 | www.ixiacom.com | 915-6509-01 Rev. B, June 2013 2 Table of Contents Monitoring Challenges in Today’s Business Environment .......................................... 4 Giving Monitoring Tools Full Visibility to the Network ............................................... 5 Easing the Path to Upgrade ........................................................................................ 6 Making Monitoring Tools Work Better ........................................................................ 7 Filtering ...................................................................................................................... 7 Load Balancing ........................................................................................................... 8 Packet De-duplication ................................................................................................ 8 Packet Trimming ........................................................................................................ 8 MPLS Stripping .......................................................................................................... 9 Keeping Network Data Secure ................................................................................... 9 Improving Productivity in IT ....................................................................................... 9 Filter Libraries
    [Show full text]
  • Large Scale Monitoring of Home Routers
    IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications 21-23 September 2009, Rende (Cosenza), Italy Large scale monitoring of home routers S. Costas-Rodr´ıguez+,R.Mart´ınez-Alvarez´ +,F.J.Gonz´alez-Casta˜no∗+, F. Gil-Casti˜neira∗,R.Duro× +Gradiant, ETSI Telecomunicaci´on, Campus, 36310 Vigo, Spain ∗Departamento de Ingenier´ıa Telem´atica, Universidad de Vigo, Spain ×Grupo Integrado de Ingenier´ıa, Universidad de La Coru˜na, Spain Tel: +34 986 813788, fax: +34 986 812116 E-mail: {scostas,rmartinez}@gradiant.org,{javier,xil}@det.uvigo.es,[email protected] Abstract – This paper describes our experience with reception power, memory usage or uptime are useful to concurrent asynchronous monitoring of large populations of detect and fix many potential problems. end-user broadband-access routers. In our real tests we focused on home/office ADSL Despite of the wealth of research in large-scale monitoring, which assumes that it is possible to inquiry individual nodes routers, although our results are valid for any other access efficiently, end-user access routers usually have manual legacy technology. We monitored the routers of the Spanish ISP interfaces, either HTTP- or telnet-oriented. They seldom and VoIP operator Comunitel (www.comunitel.es). With offer a direct interface to other programs. Moreover, the our approach, a full monitoring cycle of 22,300 such uptime of end-user routers is unpredictable. For all these routers took less than five minutes. reasons, commercial large-scale monitoring tools such as SNMP collectors are useless. The rest of this paper is organized as follows: In This research is motivated by the fact that some telecom- section II we review the background, comprising academic munications operators do not let end-users buy their routers research and existing industrial solutions.
    [Show full text]
  • Network Monitoring Using Nagios and Autoconfiguration for Cyber Defense Competitions
    NETWORK MONITORING USING NAGIOS AND AUTOCONFIGURATION FOR CYBER DEFENSE COMPETITIONS Jaipaul Vasireddy B.Tech, A.I.E.T, Jawaharlal Nehru Technological University, India, 2006 PROJECT Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in COMPUTER SCIENCE at CALIFORNIA STATE UNIVERSITY, SACRAMENTO FALL 2009 NETWORK MONITORING USING NAGIOS AND AUTOCONFIGURATION FOR CYBER DEFENSE COMPETITIONS A Project by Jaipaul Vasireddy Approved by: __________________________________, Committee Chair Dr. Isaac Ghansah __________________________________, Second Reader Prof. Richard Smith __________________________ Date ii Student: Jaipaul Vasireddy I certify that this student has met the requirements for format contained in the University format manual, and that this Project is suitable for shelving in the Library and credit is to be awarded for the Project. __________________________, Graduate Coordinator ________________ Dr. Cui Zhang Date Department of Computer Science iii Abstract of NETWORK MONITORING USING NAGIOS AND AUTOCONFIGURATION FOR CYBER DEFENSE COMPETITIONS by Jaipaul Vasireddy The goal of the project is to monitor the services running on the CCDC (College Cyber Defense Competition) network, using Nagios which uses plugins to monitor the services running on a network. Nagios is configured by building configuration files for each machine which is usually done to monitor small number of systems. The configuration of Nagios can also be automated by using shell scripting which is generally done in an industry, where the numbers of systems to be monitored are large. Both the above methods of configuration have been implemented in this project. The project has been successfully used to know the status of each service running on the defending team’s network.
    [Show full text]
  • Architecture of Network Management Tools for Heterogeneous System
    (IJCSIS) International Journal of Computer Science and Information Security, Vol. 6, No. 3, 2009 Architecture of Network Management Tools for Heterogeneous System Rosilah Hassan, Rozilawati Razali, Shima Mohseni, Ola Mohamad and Zahian Ismail Department of Computer Science, Faculty of Information Science and Technology Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia . Human: where human manager defines the policy and organization approaches. Abstract— Managing heterogeneous network systems is Methodology: defines the architectural a difficult task because each of these networks has its own curious management system. These networks framework and the functions to be usually are constructed on independent management performed. protocols which are not compatible with each other. Instrumentation: the actual operational This results in the coexistence of many management aspects that establish the procedures, systems with different managing functions and services methods and algorithms for data collection, across enterprises. Incompatibility of different processing and reporting, and analysis of management systems makes management of whole problems, their repair, prediction or system a very complex and often complicated job. forecasting of service levels and probable Ideally, it is necessary to implement centralized meta- level management across distributed heterogeneous improvements to enhance performance. systems and their underlying supporting network systems where the information flow and guidance is S&NM aims to provide network
    [Show full text]
  • Deploying F5 with Nagios Open Source Network Monitoring System Welcome to the F5 and Nagios Deployment Guide
    DEPLOYMENT GUIDE Version 1.0 IMPORTANT: This guide has been archived. While the content in this guide is still valid for the products and version listed in the document, it is no longer being updated and may refer to F5 or 3rd party products or versions that have reached end-of-life or end-of-support. See https://support.f5.com/csp/article/K11163 for more information. Deploying the BIG-IP LTM with the Nagios Open Source Network Monitoring System Archived Deploying F5 with Nagios Open Source Network Monitoring System Welcome to the F5 and Nagios deployment guide. This guide provides detailed procedures for configuring F5 devices with the Nagios Open Source Network Monitoring System. Network Management Systems (NMS) provide insight to device and application performance, system stability, network trouble spots and a host of other items that affect a company's ability to provide computer network services. Recent advances in automated event correlation, data storage and retrieval, as well as open source systems that allow greater integration, have greatly improved today's Network Management Systems. The Nagios system and network monitoring application is an open source project. Nagios maintains network status information by polling objects for specific service responses. Examples of monitored network services include SMTP, DNS, HTTP, and so on. For more information on the Nagios project, see http://www.nagios.org/ or http://sourceforge.net/projects/nagios/. For further Nagios resources and information, see http://community.nagios.org/. For more information on F5 devices described in this guide, see http://www.f5.com/products/big-ip/. To provide feedback on this deployment guide or other F5 solution documents, contact us at [email protected].
    [Show full text]
  • Assessing the Impact of Lack of Network Documentation in Higher Learning Institutions: Case of University of Dodoma
    The University of Dodoma University of Dodoma Institutional Repository http://repository.udom.ac.tz Information and Communication Technology Master Dissertations 2014 Assessing the impact of lack of network documentation in higher learning institutions: Case of University of Dodoma Kachemela, Seif J The University of Dodoma Kachemela, J. S. (2014). Assessing the impact of lack of network documentation in higher learning institutions: Case of University of Dodoma (Master's dissertation). The University of Dodoma, Dodoma. http://hdl.handle.net/20.500.12661/1352 Downloaded from UDOM Institutional Repository at The University of Dodoma, an open access institutional repository. ASSESSING THE IMPACT OF LACK OF NETWORK DOCUMENTATION IN HIGHER LEARNING INSTITUTIONS: CASE OF UNIVERSITY OF DODOMA By Seif J. Kachemela Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science of the University of Dodoma The University of Dodoma October, 2014 CERTIFICATION The undersigned certify that they have read and hereby recommend for acceptance by the University of Dodoma a dissertation entitled “Assessing the severity of the technological impact of lack of network documentation in higher learning institutions: Case of University of Dodoma”, in partial fulfillment of the requirements for the degree of Master of Science in Computer Science of the University of Dodoma. ………………………..……. Dr. Leonard. J. MseIle (SUPERVISOR) ………………………………. Prof. Justinian Anatory (SUPERVISOR) Date……………………………….. i DECLARATION AND COPYRIGHT I, Seif J. Kachemela, declare that this dissertation is my own original work and that it has not been presented and will not be presented to any other University for a similar or any other degree award.
    [Show full text]
  • Network Management
    Chapter 12: Network Management Jian Ren and Tongtong Li, Michigan State University Introduction 2 Network Scanners . 25 OSI Network Management Model . .3 Packet Filters . 26 Network Management Layers . .4 Wireless Network Management 26 ISO Network Management Functions 6 Cellular Networks . 27 Configuration Management . .6 Location Management for Cellular Fault Management . .6 Networks . 28 Security Management . .7 Accounting Management . .7 Policy-based Network Management 29 What Is a Policy? . 30 Performance Management . .7 Benefits of PBNM . 31 Network Management Protocols 7 Architecture of a PBNM System . 31 SNMP/SNMPv1 . .8 Conclusion 32 SNMPv2 . 13 SNMPv3 . 15 Glossary 33 Remote Network Monitoring (RMON) 23 Acknowledgements 34 Network Management Tools 24 Network Monitors . 25 Acronyms 37 Abstract: The continuous growth in scale and diversity of computer networks and network components has made network management one of the most challenging issues facing network administrators. It has become impossible to carry out network management functions without the support of automated tools and applications. In this chapter, the major network management issues, including network management requirements, functions, techniques, security, some well- known network management protocols and tools, will be discussed. Location management for the wireless cellular networks will also be briefly described. Finally, policy-based network management, which is a promising direction for the next generation of network management, will be briefly described. Keywords:
    [Show full text]
  • V3.5 IP Address Management Software
    GestióIP IPAM v3.5 IP address management software Documentation v1.11 www.gestioip.net GestióIP Copyright © Marc Uebel 2021 Documentation GestióIP IPAM v3.5 Table of Contents 1 Introduction......................................................................................................................................7 2 Use....................................................................................................................................................8 2.1 Access.......................................................................................................................................8 2.2 Show networks..........................................................................................................................8 2.2.1 Root networks.................................................................................................................10 2.3 Show hosts..............................................................................................................................11 2.3.1 Host list view..................................................................................................................11 2.3.2 Host overview.................................................................................................................13 2.3.3 Host status view..............................................................................................................13 2.3.4 Host check.......................................................................................................................14
    [Show full text]
  • Comparative Analysis of Two Open Source Network Monitoring Systems: Nagios & Opennms
    Master Thesis Computer Science Thesis no: MCS-2010-37 December 2010 Comparative Analysis of two Open Source Network Monitoring Systems: Nagios & OpenNMS Muhammad Qadir Muhammad Adnan SchoolSchool of Computing of Computing BlekingeBlekinge Institute Institute of Technology of Technology SE –Box 371 520 79 Karlskrona SwedenSE – 372 25 Ronneby Sweden This thesis is submitted to the School of Computing at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Computer Science. The thesis is equivalent to 20 weeks of full time studies. Contact Information: Author(s): Muhammad Qadir Folkparksvagen 18:03 Ronneby 372 40, Sweden [email protected] Muhammad Adnan Folkparksvagen 14:11 Ronneby 372 40, Sweden [email protected] University advisor(s): Jeff Winter School of Computing School of Computing Blekinge Institute of Technology Internet : www.bth.se/com SE – 371 79 Karlskrona Phone : +46 455 38 50 00 Sweden Fax : +46 455 38 50 57 1 ABSTRACT Context: Extensive and rapid continuous growth in Internet Protocol (IP) based networks and as the result of increasing dependencies on these networks makes them extremely challenging to manage and keep them running all the time. 24/7 non-stop monitoring is important to minimize the down time of the network. For this reason dependency on automated network monitoring has been increased. Objectives: There are many tools and systems available for network monitoring. This includes expensive commercial solutions to open source products. Nagios and OpenNMS are two of the most popular systems and they are considered to be close competitors. Comparison discussions about them are very common at different forums on internet.
    [Show full text]
  • Monitoring the I2P Network Juan Pablo Timpanaro, Chrisment Isabelle, Festor Olivier
    Monitoring the I2P network Juan Pablo Timpanaro, Chrisment Isabelle, Festor Olivier To cite this version: Juan Pablo Timpanaro, Chrisment Isabelle, Festor Olivier. Monitoring the I2P network. [Research Report] RR-7844, INRIA. 2011. hal-00653136 HAL Id: hal-00653136 https://hal.inria.fr/hal-00653136 Submitted on 18 Dec 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE Monitoring the I2P network Juan Pablo Timpanaro, Isabelle Chrisment, Olivier Festor N° 7844 — version 1 initial version October 2011 — revised version Décembre 2011 Domaine 2 apport de recherche ISSN 0249-6399 ISRN INRIA/RR--7844--FR+ENG Monitoring the I2P network Juan Pablo Timpanaro, Isabelle Chrisment, Olivier Festor Domaine : Algorithmique, programmation, logiciels et architectures Equipe-Projet´ madynes Rapport de recherche n° 7844 | version 1 | initial version October 2011 | revised version D´ecembre 2011 | 15 pages Abstract: We present the first monitoring study aiming to characterize the usage of the I2P network, a low-latency anonymous network based on garlic routing. We design a distributed monitoring architecture for the I2P network and show through a one week long experiment the ability of the system identify a significant number of all running applications, among web servers and file- sharing clients.
    [Show full text]
  • Introduction to Networking Monitoring and Management
    Network Monitoring and Management Introduction to Networking Monitoring and Management These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/) as part of the ICANN, ISOC and NSRC Registry Operations Curriculum. Part I: Overview Core concepts presented: – What is network monitoring – What is network management – Getting started – Why network management – The big three – Attack detection – Documentation – Consolidating the data – The big picture Network Monitoring “Monitoring an active communications network in order to diagnose problems and gather statistics for administration and fine tuning.” PC Magazine Network Management …the activities, methods, procedures, and tools that pertain to the operation, administration, maintenance, and provisioning of networked systems. wikipedia Network Management Details We Monitor • System & Services – Available, reachable • Resources – Expansion planning, maintain availability • Performance – Round-trip-time, throughput • Changes and configurations – Documentation, revision control, logging Network Management Details We Keep Track Of • Statistics – For purposes of accounting and metering • Faults (Intrusion Detection) – Detection of issues, – Troubleshooting issues and tracking their history • Ticketing systems are good at this • Help Desks are an important component Expectations A network in operation needs to be monitored in order to: - Deliver projected SLAs (Service Level Agreements) - SLAs depend on
    [Show full text]