Monitoring the I2P Network Juan Pablo Timpanaro, Chrisment Isabelle, Festor Olivier
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Survey of Network Performance Monitoring Tools
A Survey of Network Performance Monitoring Tools Travis Keshav -- [email protected] Abstract In today's world of networks, it is not enough simply to have a network; assuring its optimal performance is key. This paper analyzes several facets of Network Performance Monitoring, evaluating several motivations as well as examining many commercial and public domain products. Keywords: network performance monitoring, application monitoring, flow monitoring, packet capture, sniffing, wireless networks, path analysis, bandwidth analysis, network monitoring platforms, Ethereal, Netflow, tcpdump, Wireshark, Ciscoworks Table Of Contents 1. Introduction 2. Application & Host-Based Monitoring 2.1 Basis of Application & Host-Based Monitoring 2.2 Public Domain Application & Host-Based Monitoring Tools 2.3 Commercial Application & Host-Based Monitoring Tools 3. Flow Monitoring 3.1 Basis of Flow Monitoring 3.2 Public Domain Flow Monitoring Tools 3.3 Commercial Flow Monitoring Protocols 4. Packet Capture/Sniffing 4.1 Basis of Packet Capture/Sniffing 4.2 Public Domain Packet Capture/Sniffing Tools 4.3 Commercial Packet Capture/Sniffing Tools 5. Path/Bandwidth Analysis 5.1 Basis of Path/Bandwidth Analysis 5.2 Public Domain Path/Bandwidth Analysis Tools 6. Wireless Network Monitoring 6.1 Basis of Wireless Network Monitoring 6.2 Public Domain Wireless Network Monitoring Tools 6.3 Commercial Wireless Network Monitoring Tools 7. Network Monitoring Platforms 7.1 Basis of Network Monitoring Platforms 7.2 Commercial Network Monitoring Platforms 8. Conclusion 9. References and Acronyms 1.0 Introduction http://www.cse.wustl.edu/~jain/cse567-06/ftp/net_perf_monitors/index.html 1 of 20 In today's world of networks, it is not enough simply to have a network; assuring its optimal performance is key. -
A Generic Data Exchange System for F2F Networks
The Retroshare project The GXS system Decentralize your app! A Generic Data Exchange System for F2F Networks Cyril Soler C.Soler The GXS System 03 Feb. 2018 1 / 19 The Retroshare project The GXS system Decentralize your app! Outline I Overview of Retroshare I The GXS system I Decentralize your app! C.Soler The GXS System 03 Feb. 2018 2 / 19 The Retroshare project The GXS system Decentralize your app! The Retroshare Project I Mesh computers using signed TLS over TCP/UDP/Tor/I2P; I anonymous end-to-end encrypted FT with swarming; I mail, IRC chat, forums, channels; I available on Mac OS, Linux, Windows, (+ Android). C.Soler The GXS System 03 Feb. 2018 3 / 19 The Retroshare project The GXS system Decentralize your app! The Retroshare Project I Mesh computers using signed TLS over TCP/UDP/Tor/I2P; I anonymous end-to-end encrypted FT with swarming; I mail, IRC chat, forums, channels; I available on Mac OS, Linux, Windows. C.Soler The GXS System 03 Feb. 2018 3 / 19 The Retroshare project The GXS system Decentralize your app! The Retroshare Project I Mesh computers using signed TLS over TCP/UDP/Tor/I2P; I anonymous end-to-end encrypted FT with swarming; I mail, IRC chat, forums, channels; I available on Mac OS, Linux, Windows. C.Soler The GXS System 03 Feb. 2018 3 / 19 The Retroshare project The GXS system Decentralize your app! The Retroshare Project I Mesh computers using signed TLS over TCP/UDP/Tor/I2P; I anonymous end-to-end encrypted FT with swarming; I mail, IRC chat, forums, channels; I available on Mac OS, Linux, Windows. -
Best Practices for Network Monitoring
White Paper Best Practices for Network Monitoring How a Network Monitoring Switch Helps IT Teams Stay Proactive 26601 Agoura Road, Calabasas, CA 91302 | Tel: 818.871.1800 | Fax: 818.871.1805 | www.ixiacom.com | 915-6509-01 Rev. B, June 2013 2 Table of Contents Monitoring Challenges in Today’s Business Environment .......................................... 4 Giving Monitoring Tools Full Visibility to the Network ............................................... 5 Easing the Path to Upgrade ........................................................................................ 6 Making Monitoring Tools Work Better ........................................................................ 7 Filtering ...................................................................................................................... 7 Load Balancing ........................................................................................................... 8 Packet De-duplication ................................................................................................ 8 Packet Trimming ........................................................................................................ 8 MPLS Stripping .......................................................................................................... 9 Keeping Network Data Secure ................................................................................... 9 Improving Productivity in IT ....................................................................................... 9 Filter Libraries -
Large Scale Monitoring of Home Routers
IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications 21-23 September 2009, Rende (Cosenza), Italy Large scale monitoring of home routers S. Costas-Rodr´ıguez+,R.Mart´ınez-Alvarez´ +,F.J.Gonz´alez-Casta˜no∗+, F. Gil-Casti˜neira∗,R.Duro× +Gradiant, ETSI Telecomunicaci´on, Campus, 36310 Vigo, Spain ∗Departamento de Ingenier´ıa Telem´atica, Universidad de Vigo, Spain ×Grupo Integrado de Ingenier´ıa, Universidad de La Coru˜na, Spain Tel: +34 986 813788, fax: +34 986 812116 E-mail: {scostas,rmartinez}@gradiant.org,{javier,xil}@det.uvigo.es,[email protected] Abstract – This paper describes our experience with reception power, memory usage or uptime are useful to concurrent asynchronous monitoring of large populations of detect and fix many potential problems. end-user broadband-access routers. In our real tests we focused on home/office ADSL Despite of the wealth of research in large-scale monitoring, which assumes that it is possible to inquiry individual nodes routers, although our results are valid for any other access efficiently, end-user access routers usually have manual legacy technology. We monitored the routers of the Spanish ISP interfaces, either HTTP- or telnet-oriented. They seldom and VoIP operator Comunitel (www.comunitel.es). With offer a direct interface to other programs. Moreover, the our approach, a full monitoring cycle of 22,300 such uptime of end-user routers is unpredictable. For all these routers took less than five minutes. reasons, commercial large-scale monitoring tools such as SNMP collectors are useless. The rest of this paper is organized as follows: In This research is motivated by the fact that some telecom- section II we review the background, comprising academic munications operators do not let end-users buy their routers research and existing industrial solutions. -
Network Monitoring Using Nagios and Autoconfiguration for Cyber Defense Competitions
NETWORK MONITORING USING NAGIOS AND AUTOCONFIGURATION FOR CYBER DEFENSE COMPETITIONS Jaipaul Vasireddy B.Tech, A.I.E.T, Jawaharlal Nehru Technological University, India, 2006 PROJECT Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in COMPUTER SCIENCE at CALIFORNIA STATE UNIVERSITY, SACRAMENTO FALL 2009 NETWORK MONITORING USING NAGIOS AND AUTOCONFIGURATION FOR CYBER DEFENSE COMPETITIONS A Project by Jaipaul Vasireddy Approved by: __________________________________, Committee Chair Dr. Isaac Ghansah __________________________________, Second Reader Prof. Richard Smith __________________________ Date ii Student: Jaipaul Vasireddy I certify that this student has met the requirements for format contained in the University format manual, and that this Project is suitable for shelving in the Library and credit is to be awarded for the Project. __________________________, Graduate Coordinator ________________ Dr. Cui Zhang Date Department of Computer Science iii Abstract of NETWORK MONITORING USING NAGIOS AND AUTOCONFIGURATION FOR CYBER DEFENSE COMPETITIONS by Jaipaul Vasireddy The goal of the project is to monitor the services running on the CCDC (College Cyber Defense Competition) network, using Nagios which uses plugins to monitor the services running on a network. Nagios is configured by building configuration files for each machine which is usually done to monitor small number of systems. The configuration of Nagios can also be automated by using shell scripting which is generally done in an industry, where the numbers of systems to be monitored are large. Both the above methods of configuration have been implemented in this project. The project has been successfully used to know the status of each service running on the defending team’s network. -
Zeronet Presentation
ZeroNet Decentralized web platform using Bitcoin cryptography and BitTorrent network. ABOUT ZERONET Why? Current features We believe in open, free, and ◦ Real-time updated sites uncensored network and communication. ◦ Namecoin .bit domain support ◦ No hosting costs ◦ Multi-user sites Sites are served by visitors. ◦ Password less, Bitcoin's BIP32- ◦ Impossible to shut down based authorization It's nowhere because it's ◦ Built-in SQL server with P2P data everywhere. synchronization ◦ No single point of failure ◦ Tor network support Site remains online so long as at least 1 peer serving it. ◦ Works in any browser/OS ◦ Fast and works offline You can access the site even if your internet is unavailable. HOW DOES IT WORK? THE BASICS OF ASYMMETRIC CRYPTOGRAPHY When you create a new site you get two keys: Private key Public key 5JNiiGspzqt8sC8FM54FMr53U9XvLVh8Waz6YYDK69gG6hso9xu 16YsjZK9nweXyy3vNQQPKT8tfjCNjEX9JM ◦ Only you have it ◦ This is your site address ◦ Allows you to sign new content for ◦ Using this anyone can verify if the your site. file is created by the site owner. ◦ No central registry ◦ Every downloaded file is verified, It never leaves your computer. makes it safe from malicious code inserts or any modifications. ◦ Impossible to modify your site without it. MORE INFO ABOUT CRYPTOGRAPHY OF ZERONET ◦ ZeroNet uses the same elliptic curve based encryption as in your Bitcoin wallet. ◦ You can accept payments directly to your site address. ◦ Using the current fastest supercomputer, it would take around 1 billion years to "hack" a private key. WHAT HAPPENS WHEN YOU VISIT A ZERONET SITE? WHAT HAPPENS WHEN YOU VISIT A ZERONET SITE? (1/2) 1 Gathering visitors IP addresses: Please send some IP addresses for site 1EU1tbG9oC1A8jz2ouVwGZyQ5asrNsE4Vr OK, Here are some: 12.34.56.78:13433, 42.42.42.42:13411, .. -
Deploying F5 with Nagios Open Source Network Monitoring System Welcome to the F5 and Nagios Deployment Guide
DEPLOYMENT GUIDE Version 1.0 IMPORTANT: This guide has been archived. While the content in this guide is still valid for the products and version listed in the document, it is no longer being updated and may refer to F5 or 3rd party products or versions that have reached end-of-life or end-of-support. See https://support.f5.com/csp/article/K11163 for more information. Deploying the BIG-IP LTM with the Nagios Open Source Network Monitoring System Archived Deploying F5 with Nagios Open Source Network Monitoring System Welcome to the F5 and Nagios deployment guide. This guide provides detailed procedures for configuring F5 devices with the Nagios Open Source Network Monitoring System. Network Management Systems (NMS) provide insight to device and application performance, system stability, network trouble spots and a host of other items that affect a company's ability to provide computer network services. Recent advances in automated event correlation, data storage and retrieval, as well as open source systems that allow greater integration, have greatly improved today's Network Management Systems. The Nagios system and network monitoring application is an open source project. Nagios maintains network status information by polling objects for specific service responses. Examples of monitored network services include SMTP, DNS, HTTP, and so on. For more information on the Nagios project, see http://www.nagios.org/ or http://sourceforge.net/projects/nagios/. For further Nagios resources and information, see http://community.nagios.org/. For more information on F5 devices described in this guide, see http://www.f5.com/products/big-ip/. To provide feedback on this deployment guide or other F5 solution documents, contact us at [email protected]. -
Recognition and Investigation of Listening in Anonymous Communication Systems 1 K
AEGAEUM JOURNAL ISSN NO: 0776-3808 Recognition and investigation of listening in anonymous communication systems 1 K. Balasubramanian, 2 Dr. S. Kannan, 3 S. Sharmila 1Associate Professor, Department of CSE, E.G.S Pillay Engineering College, Nagapattinam, Tamil Nadu, India. Email: [email protected] 2, Professor, Department of CSE, E.G.S Pillay Engineering College, Nagapattinam, Tamil Nadu, India. 3, P.G Student, Department of CSE, E.G.S Pillay Engineering College, Nagapattinam, Tamil Nadu, India. Abstract components through which client activity is steered can Mysterious correspondence systems similar to listen in and get delicate information, for example, user Tor, mostly secure the secrecy of client activity by verification qualifications. This circumstance can scrambling all interchanges inside the overlay system. conceivably decline when clients utilize intermediary based frameworks to get to similar administrations However, when the transferred activity achieves the without utilizing end-to-end encryption, as the quantity limits of the system, toward its end, the first client of hosts or hubs that can listen stealthily on their activity is definitely presented to the last node on the movement increments. Different open and private path. Accordingly, users sending sensitive information, systems may square access to interpersonal interaction similar to verification accreditations, over such and other prominent online administrations for systems, risk having their information between different reasons. Under these conditions, users accepted and uncovered, unless end-to-end encryption regularly depend on utilizing disseminated proxying frameworks to prevent their activity from being is utilized. Listening can be performed by malicious or filtered. They fall back on such mechanisms so as to compromised relay nodes, and additionally any rebel evade system activity filtering in light of source, goal, arrange substance on the way toward the actual end. -
Conditional Pseudonymity in Vehicular Ad Hoc Networks
Diplom Thesis Faculty of Engineering and Computer Science Ulm University Conditional Pseudonymity in Vehicular Ad Hoc Networks Florian Marcus Schaub presented on November 13, 2008 Supervisors Prof. Dr.-Ing. Michael Weber Dr. Frank Kargl Advisor Zhendong Ma Faculty of Engineering and Computer Science, Ulm University James-Franck-Ring, 89081 Ulm, Germany This thesis has been prepared in the summer semester 2008 as a requirement for the completion of the Diplom course Medieninformatik at Ulm University. Cover photo: Night blur by Mando Gomez http://www.mandolux.com Printed on November 9, 2008. Some rights reserved. This work is licensed under the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. To view a copy of this license, visit http://creativecommons.org/ licenses/by-nc-nd/3.0/de/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Computer Science is no more about computers than astronomy is about telescopes. Edsger W. Dijkstra Contents 1 Introduction 1 2 Problem Analysis 5 2.1 Characteristics of Vehicular Ad Hoc Networks . 5 2.2 Security and Privacy in Vehicular Ad Hoc Networks . 9 2.3 Conditional Pseudonymity . 14 2.4 Summary . 18 3 Requirements for Privacy in VANETs 19 3.1 Assumptions . 20 3.2 General VANET Requirements . 21 3.3 Pseudonym Requirements . 23 3.4 Authentication Requirements . 28 3.5 Summary . 30 4 Privacy in other Domains 33 4.1 Health Care . 34 4.2 E-Government . 39 4.3 E-Commerce . 43 4.4 Internet . 51 4.5 Ad Hoc Networks . 59 4.6 Summary . -
Network Management
Chapter 12: Network Management Jian Ren and Tongtong Li, Michigan State University Introduction 2 Network Scanners . 25 OSI Network Management Model . .3 Packet Filters . 26 Network Management Layers . .4 Wireless Network Management 26 ISO Network Management Functions 6 Cellular Networks . 27 Configuration Management . .6 Location Management for Cellular Fault Management . .6 Networks . 28 Security Management . .7 Accounting Management . .7 Policy-based Network Management 29 What Is a Policy? . 30 Performance Management . .7 Benefits of PBNM . 31 Network Management Protocols 7 Architecture of a PBNM System . 31 SNMP/SNMPv1 . .8 Conclusion 32 SNMPv2 . 13 SNMPv3 . 15 Glossary 33 Remote Network Monitoring (RMON) 23 Acknowledgements 34 Network Management Tools 24 Network Monitors . 25 Acronyms 37 Abstract: The continuous growth in scale and diversity of computer networks and network components has made network management one of the most challenging issues facing network administrators. It has become impossible to carry out network management functions without the support of automated tools and applications. In this chapter, the major network management issues, including network management requirements, functions, techniques, security, some well- known network management protocols and tools, will be discussed. Location management for the wireless cellular networks will also be briefly described. Finally, policy-based network management, which is a promising direction for the next generation of network management, will be briefly described. Keywords: -
BRKSEC-2011.Pdf
#CLUS About Garlic and Onions A little journey… Tobias Mayer, Technical Solutions Architect BRKSEC-2011 #CLUS Me… CCIE Security #14390, CISSP & Motorboat driving license… Working in Content Security & TLS Security tmayer{at}cisco.com Writing stuff at “blogs.cisco.com” #CLUS BRKSEC-2011 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 3 Agenda • Why anonymization? • Using Tor (Onion Routing) • How Tor works • Introduction to Onion Routing • Obfuscation within Tor • Domain Fronting • Detect Tor • I2P – Invisible Internet Project • Introduction to Garlic Routing • Conclusion #CLUS BRKSEC-2011 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 4 Cisco Webex Teams Questions? Use Cisco Webex Teams (formerly Cisco Spark) to chat with the speaker after the session How 1 Find this session in the Cisco Events App 2 Click “Join the Discussion” 3 Install Webex Teams or go directly to the team space 4 Enter messages/questions in the team space Webex Teams will be moderated cs.co/ciscolivebot#BRKSEC-2011 by the speaker until June 18, 2018. #CLUS © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 5 Different Intentions Hide me from Government! Hide me from ISP! Hide me from tracking! Bypass Corporate Bypass Country Access Hidden policies restrictions (Videos…) Services #CLUS BRKSEC-2011 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 6 Browser Identity Tracking does not require a “Name” Tracking is done by examining parameters your browser reveals https://panopticlick.eff.org #CLUS BRKSEC-2011 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 7 Proxies EPIC Browser #CLUS BRKSEC-2011 © 2018 Cisco and/or its affiliates. -
Analysis of the I2P Network
Analysis of the I2P Network Degree programme: BSc in Computer Science | Specialisation: IT-Security Thesis advisor: Prof. Dr. Emmanuel Benoist Expert: Daniel Voisard (BAKOM) Providing anonymous online communication is challenging and an 1 important task. Similar to the well-known and -researched TOR project, I2P (Invisible Internet Project) aims to provide this inside its own network. But how secure and protected can a user feel when using I2P? The main objectives of this thesis were to create I2P Observer, a Java program which gathers and publishes information about the I2P network, and to evaluate possible attacks on the software. The I2P Network view pages with accurate data and monthly ones I2P aims to provide anonymous communication bet- where the average for each day is computed. I2P ween participating systems inside an overlay network, Observer is also easily configurable to collect more separated from other Internet traffic. It is written in and more accurate data. Java with versions for Windows, Linux and Mac, pro- viding HTTP- and HTTPS-Proxies for browsing and Theoretical Attacks on I2P APIs to adapt applications to communicate over I2P. The main motivation for this thesis was an evaluation Multiple layers of strong cryptography are used to pro- of I2P’s security, which was researched with 4 dif- tect the content of packets and a mechanism called ferent approaches: Garlic Routing, where multiple messages for the same − Impersonation of a service: Can a user be redirec- destination can be encapsulated, to hide meta data. ted to a malicious server without noticing it? Jens Henning Müller Its NetDB, a database distributed across participating A Clickjacking attack which allows this under cer- [email protected] peers – so called floodfil routers – contains all infor- tain circumstances was found.