Of Refraction, N

Total Page:16

File Type:pdf, Size:1020Kb

Of Refraction, N Chapter 35 I am Watching YOU!! Human Retina Sharp Spot: Fovea Blind Spot: Optic Nerve Human Vision An optical Tuning Fork Optical Antennae: Rods & Cones Rods: Intensity Cones: Color Where does light actually come from? Light comes from the acceleration of charges. Light is emitted when an electron in an atom jumps between energy levels either by excitation or collisions. Atoms are EM Tuning Forks They are ‘tuned’ to particular frequencies of light energy. Atomic Emission of Light Each chemical element produces its own unique set of spectral lines when it burns Hydrogen Spectra Light Emission Incandescent Light Bulb Full Spectrum of Light All frequencies excited! Light Waves E = Emax cos (kx – ωt) B = Bmax cos (kx – ωt) E 1 c == B … ∝ 00 Speed of Light in a vacuum: 186,000 miles per second vcn= / 300,000 kilometers per second 3 x 10^8 m/s The Electromagnetic Spectrum Visible Light • Different wavelengths correspond to different colors • The range is from red (λ ~ 7 x 10-7 m) to violet (λ ~4 x 10-7 m) If you pass white light through a prism, it separates into its component colors. long wavelengths short wavelengths R.O.Y. G. B.I.V spectrum Radiation of Visible Sunlight Additive Primary Colors Red, Green, Blue RGB Color Theory Additive Complementary Colors Yellow, Cyan, Magenta The color you have to add to get white light. Red + Green = Yellow Blue + Green = Cyan Red + Blue = Magenta Red + Blue + Green = White White light – red light = ?? White light – yellow light = ?? FYI: Mixing Colored Pigments Subtractive Colors Pigments subtract colors from white light. Yellow + Cyan = Green Cyan + Magenta = Purple Yellow + Magenta = Red Yellow + Cyan + Magenta = Black Why are some materials colored? Why are some materials colored? Colored materials absorb certain colors that resonate with their electron energy levels and reject & reflect those that do not. Why is the Ocean Cyan? White light minus cyan is red. Ocean water absorbs red. Why are most materials Opaque? (Opaque – Can’t see through) They absorb light without re-emitting it. Vibrations given by the light to their atoms and molecules are turned into random kinetic energy – they become slightly warmer. Opacity: Mirrors Free electrons in opaque reflective surfaces can vibrate, absorb & re-emit at any frequency. Transparency Selective Absorption Glass resonates strongly with UV and infrared, absorbing those frequencies while transmitting visible frequencies. The heating effect of a medium such as glass or the Earth’s atmosphere that is transparent to short wavelengths but opaque to longer wavelengths: Short get in, longer are trapped! Why is the Sky Blue? How are Rainbows Formed? Light Ray Approximatin Geometric Optics Review Basic Geometry! Ray Approximation • The rays are straight lines perpendicular to the wave fronts • With the ray approximation, we assume that a wave moving through a medium travels in a straight line in the direction of its rays Light Rays: Ignore Diffraction and Interference of waves! Diffraction depends on SLIT WIDTH: the smaller the width, relative to wavelength, the more bending and diffraction. We will assume that λ<<d , where d is the diameter of the opening. This approximation is good for the study of mirrors, lenses, prisms, etc. Reflection & Refraction nn1122sinθ = sinθ θir=θ Law of Reflection • The normal is a line perpendicular to the surface – It is at the point where the incident ray strikes the surface • The incident ray makes an angle of θ1 with the normal • The reflected ray makes an angle of θ1’ with the normal Specular Reflection • Specular reflection is reflection from a smooth surface • The reflected rays are parallel to each other • All reflection in this text is assumed to be specular Diffuse Reflection • Diffuse reflection is reflection from a rough surface • The reflected rays travel in a variety of directions • A surface behaves as a smooth surface as long as the surface variations are much smaller than the wavelength of the light Law of Reflection θir=θ How many times will the incident beam shown be reflected by each of the parallel mirrors? What is the smallest mirror that you can see your entire image in? 1. As tall as you 2. Longer than you 3. Shorter than you 4. Depends on distance to the mirror. 5. Depends on where it is hung How long does a mirror have to be to see your entire image in? Suppose a woman stands in front of a mirror as shown. Her eyes are 1.65 m above the floor, and the top of her head is 0.13 higher. Find the height above the floor of the top and bottom of the smallest mirror in which she can see both the top of her head and her feet. How is the distance related to the woman’s height? A light ray travels from medium 1 to medium 3 as shown. For these media, A. n3 < n1. B. n3 = n1. C. n3 > n1. D. We can’t compare n1 to n3 without knowing n2. A light ray travels from medium 1 to medium 3 as shown. For these media, A. n3 < n1. B. n3 = n1. C. n3 > n1. D. We can’t compare n1 to n3 without knowing n2. Refraction: Bending Light into Focus Refraction: Bending of Light Transmitted through Materials Light Bends because it Slows Down. Atoms are Optical Tuning Forks Light slows down as it travels through glass because it takes time to be absorbed and re-emitted. Light Slows Down in Materials Light Bends Toward the Normal when going from a medium of lower refractive index to one that has a higher refractive index and visa versa. lower n higher n Index of Refraction c n = v n ≥1 Vacuum: 1 Water: 1.33 Glass: 1.46 Diamond: 2.4 The Index of Refraction • The speed of light in any material is less than its speed in vacuum •The index of refraction, n, of a medium can be defined as speed of light in a vacuum c n ≡= speed of light in a medium v λλ⎛⎞in vacuum n = ⎜⎟ λλn ⎝⎠in a medium Some Indices of Refraction Frequency Doesn’t Change! • As light travels from one medium to another, its frequency does not change – Both the wave speed and the wavelength do change – The wavefronts do not pile up, nor are created or destroyed at the boundary, so ƒ must stay the same Snell’s Law of Refraction Angles are always measured from the normal. nn1122sinθ = sinθ Snell’s Law – Example • Light is refracted into a crown glass slab o • θ1 = 30.0 , θ2 = ? • n1 = 1.00 and n2 = 1.52 -1 o • θ2 = sin (n1 / n2) sin θ1 = 19.2 • The ray bends toward the normal, as expected Example 35.4 Emerging Beam is Parallel to Incident Beam but offset distance d Fig. 35-15, p. 989 You Try Problem What is the apparent depth of the diver? Assume that the horizontal distance doesn’t change. 25° Possible Beam Directions • Possible directions of the beam are indicated by rays numbered 1 through 5 • The refracted rays are bent away from the normal since n1 > n2 Total Internal Reflection o θ2 = 90 nn1122sinθ = sinθ n 2 The Critical Angle sinθC = n1 • An application of internal Fiber Optics reflection • Plastic or glass rods are used to “pipe” light from one place to another • Applications include: – medical use of fiber optic cables for diagnosis and correction of medical problems – Telecommunications • A flexible light pipe is called an optical fiber • A bundle of parallel fibers (shown) can be used to construct an optical transmission line Construction of an Optical Fiber • The transparent core is surrounded by cladding – The cladding has a lower n than the core – This allows the light in the core to experience total internal reflection • The combination is surrounded by the jacket Critical Angle Sample Problem A ray of light, emitted by a laser located beneath the surface of an unknown liquid with air above it, undergoes total internal refection as shown. What is the index of refraction for the liquid? Wht is its likely identification? If you pass white light through a prism, it separates into its component colors. long wavelengths short wavelengths R.O.Y. G. B.I.V The index of refraction depends on WAVELENGTH. long wavelengths short wavelengths R.O.Y. G. B.I.V The speed and wavelength change but the FREQUENCY does NOT. Fr Frequency depends on the oscillating source! long wavelengths short wavelengths R.O.Y. G. B.I.V Why does Violet Light bend more than Red Light? Violet light slows down more because the atoms in the material are tuned to higher frequencies. As the violet light travels through glass it takes more time to be absorbed and re-emitted. Angle of Deviation • The ray emerges refracted from its original direction of travel by an angle δ, called the angle of deviation • The angle of deviation depends on the wavelength Refraction in a Prism • Since all the colors have different angles of deviation, white light will spread out into a spectrum – Violet deviates the most – Red deviates the least – The remaining colors are in between Dispersion • For a given material, the index of refraction varies with the wavelength of the light passing through the material • This dependence of n on λ is called dispersion • Snell’s law indicates light of different wavelengths is bent at different angles when incident on a refracting material Variation of Index of Refraction with Wavelength • The index of refraction for a material generally decreases with increasing wavelength • Violet light bends more than red light when passing into a refracting material Dispersion Sample Problem The index of refraction for violet light in silica flint glass is 1.66, and that for red light is 1.62.
Recommended publications
  • Lighting Effects Guide Desired One Color to Another
    RANDOM COLOR CONTROL SPEED EXAMPLE OF COLOR WASH EFFECT SWITCH# 7 8 9 In Color Wash, Speed is defined as the amount of time which External Control Speed of 20 seconds, full saturation, full brightness, in a clock- The Random Color effect produces a randomly generated set 0 No blue elapses between the initial display of the starting color in cycle wise direction (ROYGBIV) of colors at user-definable speeds. Colors step in discrete If you are using a Color Kinetics controller or DMX512 con- 1 Lightest blue I 2 A little more I one (red in ROYGBIV, or violet in VIBGYOR), and its next dis- increments from one hue to the next. troller to control your Color Kinetics lights, you need to set 3 A bit more II play which begins cycle two. There are 64 different speeds each light to external control mode, (switches 10, 11, and 12) 4 Still more I CHOOSE THE EFFECT: RANDOM COLOR 10 11 12 5 Even more II which can be set in the Color Wash effect, ranging from as COLOR Switches #10 and 11: OFF ON and then set the DMX address for each light (switches 1–9). 6 More intense II fast as .5 seconds to as long as 2 hours to complete a single 7 Most intense III Switch #12: ON OFF For details about external control, skip directly to the External cycle. Switches #1-6 control the speed options. For the fastest Control section, on the other side of this sheet. With additive color mixing, you can mix reds, greens and speed (.5 sec.), all switches between #1-6 are OFF.
    [Show full text]
  • Color: Intro • to Create Image, Need 3 Things: 1. Object 2. Light 3. Viewer
    Color: Intro • To create image, need 3 things: 1. Object 2. Light 3. Viewer • Same thing is true for color { Color of object depends on "natural" color (under white light) and color of light { Color perceived depends on viewer ∗ 2 viewers observing same object under same conditions may perceive different color • Major topics to be discussed: { Nature of light and color { The eye and color perception { Color models 1 Color: Basics • Color attributes { Hue - basic color { Saturation - purity of a color ∗ How much white is mixed with a pure color { Lightness (brightness) - intensity ∗ Lightness pertains to reflected color ∗ Brightness pertains to emitted color • Artists' terminology { These relate to pure pigments (pure colors) { Tint ∗ Result of adding white to pigment ∗ Reduces saturation { Shade ∗ Result of adding black to pigment ∗ Reduces lightness { Tone ∗ Result of adding white and black to pigment • Both terminologies widely used { Both are subjective • Want objective system for describing color 2 Color: Primaries • Represent using color wheel • Additive primaries { Apply to colors of light { Primaries: RGB { Secondaries: CMY { Max combination of 3 primaries: white { Absence of primaries: black { Called additive because as add more primaries, are contributing more colors to the light ∗ i.e., the more wavelengths are represented • Subtractive { Apply to colors of pigments { Primaries: CMY { Secondaries: RGB { Max combination of 3 primaries: black { Absence of primaries: white** { Called subtractive because as add more primaries, are
    [Show full text]
  • I Am Fascinated by the Phenomenon of Color, And, More Specifically, How Individuals Perceive It Differently
    I am fascinated by the phenomenon of color, and, more specifically, how individuals perceive it differently. For the colorblind, color is merely various shades of grey with designated titles. To Synesthetes, color manifests as an association with words, letters, and sounds. This research led me to three-dimensional zoetropes, which animate stationary objects as you watch. This concept - what you think you see is not truly what you will see - fascinated me. The PVC pipes easily flow together, with only their interiors painted to represent how they may look different depending on what you choose to focus on, or what angle you are standing at. The figures sit on a wooden board moved by a turntable, proving the relativity of not only perception vs. reality, but of my perception vs. yours. We often rely too heavily on our observations, which are not fact. The zoetrope suggests that we may need to change the homogenous way we think about color. Increasingly, I found that color was less of a fact and more of an experience. Alexandra L. When we look at a rainbow, do we all see the same colors? No, because when humans look at it we see Red, Orange, Yellow, Green, Blue, Indigo, Violet. But when colorblind people look at the rainbow, they see varying shades of gray that they’ve learned to assign ROYGBIV to. When a dog looks at a rainbow they only see green and blue. And when a mantis shrimp looks at it, they can see colors we don’t even have names for. This concept that we don’t see the “same” colors proves that my blue might be a pale variant of your blue, or might not even be blue at all but actually red, but I’ve learned that everyone else calls it “blue”.
    [Show full text]
  • Holding a Rainbow in Your Hand Modeling the Electromagnetic Spectrum
    Holding a Rainbow in Your Hand Modeling the Electromagnetic Spectrum Students can quickly and easily construct this paper model that illustrates the electromagnetic spectrum, with visible and invisible components. Topics: Light, Waves, Electromagnetic Spectrum Materials List 2.5 cm (1”) Strips of construction paper in the following colors: Red, Orange, Yellow, Green, Blue, Indigo (dark blue), Violet 2.5 cm (1”) Strips To Do and Notice of clear material 1. Gather 6 clear strips and one strip each of red, orange, yellow, green, blue, indigo, (i.e. - scrap violet. laminate) 2. Accordion-fold the paper strips so that the distance between creases represents Permanent marker the differences in wavelength – red has the longest wavelength and violet has the Stapler shortest. 3. Label clear strips as follows: Radio & TV; Microwave; Infrared; Ultraviolet; X- rays; Gamma rays. 4. Assemble the spectrum model by stapling the strips together at both ends in the following order: Radio & TV; Microwave; Infrared; Red; Orange; Yellow; Green; Blue; Indigo; Violet; Ultraviolet; X-rays; Gamma rays. (Note: this model This Activity can be used is not to scale. Visible light (rainbow colors) is actually a very small band in the to teach: Waves: Amplitude, whole electromagnetic spectrum. See chart above.) wavelength, energy Note: This model allows for easy viewing by either frequency or wavelength. (Next Generation Science Standards: Viewing lowest to highest frequency illustrates the common mnemonic for the colors Grade 4, Physical of the rainbow: ROYGBIV. Science 4-1; Middle School, Physical The Science Behind the Activity Science 4-1) Electromagnetic radiation, or “light”, is a form of energy.
    [Show full text]
  • The Relationship Between Wavelength and Frequency in the Electromagnetic Spectrum
    Name_______________________________________ The Relationship Between Wavelength and Frequency in the Electromagnetic Spectrum Purpose: To discover and verify the relationship between Wavelength and Frequency of the Electromagnetic Spectrum. Background Information: Visible light is Electromagnetic radiation at wavelengths which the human eye can see. We perceive this radiation as colors ranging from red (longer wavelengths; ~ 700 nanometers) to violet (shorter wavelengths; ~400 nanometers.) The visible light from the Sun is actually composed of the colors red, orange, yellow, green, blue, and violet, which can become distinguishable when sunlight passes through a prism. A good way to remember the order of the colors is to note that the first letters of the colors spell out the name ROY G. BV. We can think of light traveling in waves with properties of wavelength and frequency. Wavelength is the distance between identical locations on adjacent waves (see figure below). Frequency is the number of complete waves, or wavelengths, that pass a given point each second. All light travels at the same speed, but each color has a different wavelength and frequency. It is their different wavelengths that cause the different colors of light to separate and become visible when passing through a prism. Look at the illustration of the visible spectrum above. Can you guess which color has the longest wavelength? It's red! The wavelengths of the other colors decrease in order, with violet light having the shortest. Adapted from: http://imagine.gsfc.nasa.gov/docs/teachers/lessons/roygbiv/roygbiv.html Before you start: Summarize the graphic on the electromagnetic spectrum shown below. Think about the relationships in and among the various wavelengths and the position of each type of radiation in the electromagnetic spectrum.
    [Show full text]
  • Final-Pride-Color-Wheel
    Art Outreach Program Projects & Lesson Plan: Pride Color Wheel Painting 7TH-12TH GRADE PAINTING PROJECT Lesson Overview: Students will learn the basics of color theory, & artists who challenge gender roles through art and art processes. Project Overview: Students will create their own color wheel in ROYGBIV, using the primary colors in acrylic paint. ART VOCABULARY: Color Theory: the science and art of using and understanding color. Hue: a “pure” color or pigment. Artist: Gilbert Baker (1951-2017) Tint: a hue mixed with white. The Pride flag was created by Baker in 1978. Tone: a hue mixed with gray. The original was made up of 8 colors, with each Shade: a hue mixed with black. color associated with a word. Today the Pride flag uses only 6 colors, and refers to the intensity of the Saturation: many variations of the flag exist to hue. Saturation can be altered when mixing include all LGBTQAI+ tones, shades or tints. Color Gradient: Gradual and smooth change from one hue to the next. Color Association: cross-cultural phenomenon where humans identify colors as symbols with their own meaning based on experience and social-cultural aspects. PRIDE: confidence, self-respect, and solidarity as expressed by LGBTQAI+ people, associated with openness about one’s own sexual identity, and the celebration of gay culture and history. Gender Roles: the role or behavior learned by a person as appropriate to their gender, determined by the prevailing cultural norms. LEARN ABOUT ARTISTS WHO USE THE RAINBOW CHALLENGE GENDER ROLES Gabriel Dawe: •Is a male artist who uses string and textiles to create his rainbow thread installations.
    [Show full text]
  • Hector's Colour-Music Code
    HECTOR’S COLOUR-MUSIC CODE Niels Hutchison, 2020 [email protected] 1912–1913 PATENTS AU1912003713 & GB191229615A Hector stipulated the colours red, orange, yellow, green, blue, indigo and violet (ROYGBIV) to occupy the seven notes of a musical octave. Isaac Newton had used these colours in “Opticks” of 1704, to fill the intervals of a scale starting on the note D. Hector named no particular musical scale in these patents. While the patents awaited approval, an article on Hector in the Sydney Mail applied his ROYGBIV colour to a diatonic scale on A – the white notes A, B, C, D, E, F and G on a piano. An article in the Western Australian concurred. Hector’s patents specified that low-pitched octaves were dark, and successively higher octaves were in lighter colours. Here; the beginning of the next highest octave on A’ is shown in a lighter shade of red. The patents also specified ‘half tones’ for the sharps and flats, so that 12 differently coloured lights corresponded to the 12 semitones of an octave. Seven different brightness levels were given in the patents, for successive octaves. They are indicated below over seven octaves, from the deepest dark notes to the lightest high notes. Hector varied his scheme by spreading one spectrum over an entire keyboard, below. He mentioned red, orange, yellow, green, blue and violet, omitting the usual indigo. HECTOR’S COLOUR-MUSIC CODE 2 1916–1917 PATENTS AUSTRALIA AU1916001299 AU1916001412 AU1916001936 GREAT BRITAIN GB107380A GB107767A GB109263A FRANCE FR485860A FR485928A FR486612A UNITED STATES US1432553 US1432552 US1388706 Hector took out three additional patents in Australia on consecutive months of 1916.
    [Show full text]
  • Historic Look on Color Theory Steele R
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarsArchive at Johnson & Wales University Johnson & Wales University ScholarsArchive@JWU Honors Theses - Providence Campus College of Arts & Sciences 9-2018 Historic Look on Color Theory Steele R. Stokley Johnson & Wales University - Providence, [email protected] Follow this and additional works at: https://scholarsarchive.jwu.edu/student_scholarship Part of the Arts and Humanities Commons Repository Citation Stokley, Steele R., "Historic Look on Color Theory" (2018). Honors Theses - Providence Campus. 30. https://scholarsarchive.jwu.edu/student_scholarship/30 This Honors Thesis is brought to you for free and open access by the College of Arts & Sciences at ScholarsArchive@JWU. It has been accepted for inclusion in Honors Theses - Providence Campus by an authorized administrator of ScholarsArchive@JWU. For more information, please contact [email protected]. Historic Look on Color Theory By Rose Stokley Advisors: Kristi Girdharry, Don Kaczmarczyk, & Wendy Wagner September 2018 Submitted in partial fulfillment of the requirements for the University Honors Scholar designation at Johnson & Wales University Stokley 1 Table of Contents I. Abstract Page 2 II. Introduction to Color Science Page 3 III. Historical Context Page 7 IV. Color Elucidated Page 24 V. Color Interactions Page 29 VI. Conclusion Page 41 VII. Works Cited Page 43 Stokley 2 I. Abstract The science of color is called chromatics, colorimetry, or color science. This field of science includes the perception of color by the human eye, origin of colors, art theory, therapy, the psychics of electromagnetic radiation, and effects on the brain (Azeemi). Experts throughout time have desired to decipher the composition of color to explain how and why humans are able to see colors in order to use them in numerous disciplines; from scientific to artistic.
    [Show full text]
  • Is Black Really Black?
    Super Science Connections: Is Black Really Black? How many ways can we make the color black? This activity is intended for children entering grades K-4 in the next school year. To carry it out safely there must be a responsible older person to prepare materials, read directions aloud, and supervise the activity. This could be a parent, guardian, or older sibling. The supervisor should do the preparation steps and consult the science background information on the last page before leading children through the activity. Materials • One set of food coloring (red, yellow, green, and blue) * • One clear container, such as a plastic cup (plastic is preferred because glass can shatter) • Water • Crayons or pencils to record data on a copy of page 3. * Food coloring can stain clothing and some surfaces! Depending on the age of the participants, supervisors may want to handle the food coloring themselves. Preparation • Before beginning, make several copies of the worksheet on page 3. • Use a crayon or marker to color each of the color words at the bottom of the worksheet with the appropriate color. (This will allow non-readers to record their data.) • Tell participants the goal is to make water black by adding drops of different food colors. This activity is courtesy of ICE, the Institute for Chemical Education at UW-Madison’s Chemistry Department. It is adapted for use at home from Is Black Really Black? in the Super Science Connections Section 1: Color and Light activities offered by ICE at this link: http://ice.chem.wisc.edu/SSC/. Directions 1.
    [Show full text]
  • Communicating with Colors
    Colors that Communicate The human eye can see 7,000,000 colors. So how appropriate is it that Johann, a veteran of SSTV, has a call sign: W5CST, or Color Slowscan TV!! While yellow in large doses is the most fatiguing color, it is also the most visible of all the colors. It is the first color the human eye notices. One can use yellow very effectively in SSTV templates to get attention, and to communicate clearly, and when accented with black, it can be particularly effective. White is the abundance of all colors. Black is the lack of color. White reflects back about 80% of the light, while black reflects only 5%. As a percentage (80/5), we get a 16:1 Light Reflectance ratio. The US Illuminating Engineering Society (IES) recommends a maximum ratio of 3:1 for visual tasks. This is something to consider when thinking about color choices for SSTV template texts. This tutorial is an exploration of useful colors that can enhance communications in Slow Scan TV (SSTV). Electromagnetic waves & light Electromagnetic waves are waves that are capable of traveling through a vacuum. Unlike mechanical waves that require a medium in order to transport their energy, electromagnetic waves are capable of transporting energy through the vacuum of outer space. Electromagnetic waves are produced by a vibrating electric charge and as such, they consist of both an electric and a magnetic component. Electromagnetic waves exist within an enormous range of frequencies. This continuous range of frequencies is known as the electromagnetic spectrum . The entire range of the spectrum is often broken into specific regions.
    [Show full text]
  • Make a Rainbow
    MAKE A RAINBOW Most people would agree; a rainbow is a beautiful sight! Did you ever wonder how these beautiful arcs of color form in the sky? Sunlight is considered white light, only a part of which can be seen by the human eye. White light is actually made up of all the colors of the rainbow blended together. The scientist Sir Isaac Newton identified the colors of the visible light spectrum that make up white light. Have you ever heard of ROYGBIV? If you can remember this acronym (an abbreviation formed from the first letters of other words), you can remember all the colors of the rainbow in order: red, orange, yellow, green, blue, indigo, and violet! Light travels in waves that have both a wavelength and frequency. Wavelength is the distance between the crests of the waves. Frequency is a measure of the number of wave crests that pass a stationary point each second. Longer wavelengths have a lower frequency. Shorter wavelengths have a higher frequency. Each color in the visible light spectrum has a different wavelength, as you can see in the illustration below. When light enters glass, it slows down and is bent or refracted. You can see the full spectrum of colors in white light if you shine a bright light, or focus sunlight, through a prism. A prism is a specially shaped crystal that separates light into all of its colors. The different wavelengths that make up white light bend at different angles, which is why the colors appear in a specific order. An illustration of the separation of white light passing through a prism.
    [Show full text]
  • Rainbow in Your House
    Rainbow in Your House All of us have seen rainbows in the sky. Have you observed that the colors of the rainbow are always in the same order? What kind of weather is best to see a rainbow? In this activity you will make a rainbow in your home or school. You will need a sunny window. What You Will Need clear glass or jar white paper crayons, markers or colored pencils What To Do 1. Fill a clear glass or jar with water. 2. Place the glass or jar in a sunny window. The sun must be visible as shown in the illustration to the right. Courtesy of NOVA 3. You can also place the glass or jar on a table in front of the window. 4. To see the rainbow, you might have to raise the glass or jar up or down or move it forward or backward. 5. Place the white paper where you see the rainbow. What Do You Observe Observe the rainbow on the paper. The colors will be in this order: Red, Orange, Yellow, Green, Blue, Indigo, Violet. The arrangement of colors can be abbreviated as ROYGBIV. Since the colors blend together, you may not be able to see all of them clearly separated from each other. How Rainbows Form The best time to observe a rainbow is in the spring right after a rainfall and the sun is starting to shine through the clouds. Even Courtesy of Fidcal Techzone though the rain has stopped, raindrops remain in the sky. The sun is now shining through the drops.
    [Show full text]