Weed Notes: Miscanthus Sinensis

Total Page:16

File Type:pdf, Size:1020Kb

Weed Notes: Miscanthus Sinensis Weed Notes: Miscanthus sinensis TunyaLee Morisawa The Nature Conservancy Wildland Weeds Management and Research http://tncweeds.ucdavis.edu 19 July 1999 Background: Miscanthus sinensis Anderss. is a popular horticultural bunch grass. Many cultivars exist, and have many common names (susuki, fairy grass, eulalia, chinese sedge, japanese silver grass, and maiden grass, etc.). M. sinensis ‘Giganteus’ is primarily grown for the production of bio-energy or paper pulp in Europe and Asia. The quick growing plant also has a use in preventing soil loss in agricultural fields when grown as a hedge. Other Miscanthus species are used for landscaping as well. M. sinensis prefers full sun and moist, rich soil that drains well. Slight drought can be tolerated once plants are established. New shoots begin to grow from the ground in March or April. Plants tolerate cold climates but do not grow well in hot, humid southern climates. Horticulturists claim it can be grown in zones 5-9, i.e. it can tolerate winter temperatures as low as -26ºC (-15ºF), and can survive as far south as the Florida panhandle. It has been observed escaping along roadsides in North Carolina (Enloe, 1999). Mutoh (1985) observed that M. sinensis populations grew in disturbed areas that had been burned or cut. Reproduction: M. sinensis has a branched, subterranean rhizome system. It spreads rhizomatously, and pieces of rhizome 4 cm long can be used to propagate the plant (Nielsen, 1987). Research to determine if plants bought from nurseries are self-seeding is occurring currently. Aficionados of bunch grasses feel this plant rarely or never produce seed, although some strains of Miscanthus sinensis seed easily. Replanting with desirable plants after the removal of M. sinensis should occur as Mutoh (1985) observed that Miscanthus invaded soil that had been disturbed by burning or cutting. On the whole, Miscanthus does not seem to pose as aggressive a threat as other invasive grasses. Mechanical Control: The ability of M. sinensis to reshoot from pieces of rhizome makes control difficult. The whole underground rhizome system must be killed in order to prevent regrowth the next year. Digging out plants will probably result in resprouts and would need follow-up treatments. Similarly, discing and cutting methods may spread rhizome pieces into clean areas. Burning/Cutting/Grazing: M. sinensis productivity is lessened with defoliation (Huggett, 1997), but the effects of grazing, burning, and cutting in various combinations are not at all consistent. No single approach has yet been shown to be consistently effective, although the amount of Miscanthus present and its seed production can be reduced by using any of them. In Japan, a M. sinensis grassland tolerated being cut 1-5 times over the course of five months (Hayashi, 1994). A study in Korea found that M. sinensis still dominated plots after cutting and was present in uncut burned areas (Che, 1997). Meanwhile, in agricultural settings, weeding and grazing close to the ground provided control of M. sinensis. Weeding around the crown of planted trees (one-year-old Cryptomeria japonica and Chamaecyparis obtusa) was successful if M. sinensis was cut at a low height (Tange, 1993). M. sinensis grazing in a Japanese conifer plantation provided significant control of weeds (Nogami, 1993). Chemical Control: As with similar bunchgrasses and Pampas grass, the best control would probably be achieved by using a foliar application in the fall (2% RoundUp or 1% Fusilade) or in the late spring (4% RoundUp or 2% Fusilade) (Enloe, personal communication; Drewitz, personal communication). Lower rates are required in the fall since translocation to the rhizome is occurring at that time. It is unknown how cutting prior to application would affect effectiveness during either season. References: 1. Che-S., W. Kim and S.H. Che. 1997. Comparison of plant communitystructures in cut and uncut areas at burned area of Mt. Gumo-san. Journal of Korean Forestry Society 86(4):509-520. 2. Drewitz, J. J. 1999, personal communication. —HUMULUS.DOC— 3. Enloe, S. F. 1999, personal communication. 4. Hayashi, I. 1994. Experimental community ecology in Miscanthus sinensis grassland - change of species composition according to mowing frequency. Japanese Journal of Ecology 44(2):161-170. 5. Huggett, D.A.J. 1997. The effect of timing and severity of artificial defoliations upon the yield of Miscanthus sinensis 'Giganteus'. Aspects of Applied Biology 49:129-136. 6. Kees, H., H. Raab and A. Penzkofer. 1994. Weed management in Chinese sedge (Miscanthus sinensis) - first experiences in Bavaria. Gesunde Pflanzen 46(4):139-143. 7. Kim, Y.J., G.J. Park, S.S. Choi, S.J. Hwang and W.B. Yook. 1995. Ecological studies on weeds in cultivated pasture. II. Effects of pasture management and utilization characteristics of weed development. Journal of Agricultural Science and Livestock 37(2):564-572. 8. Mutoh, N; Kimura, M; Oshima, Y; Iwaki, H. Species diversity and primary in Miscanthus sinensis grasslands: 1. Diversity in relation tostand structure and Botanical Magazine Tokyo, v.98, n.1050, 1985:159-170. 9. Nielsen, P N. Vegetative Propagation of Miscanthus sinensis Cultivar 'Giganteus'. Tidsskrift for Planteavl, v.91, n.4, 1987:361-368. 10. Nishiwaki, A., K. Sugawara and I. Ito. 1996. The effect of cattle grazing on seed production in Miscanthus sinensis Anderss. Grassland Science 42(1):47-51. 11. Nogami, K., Y. Muramoto and M. Nakagawa. 1993. Grazed plants by Wagyu cattle and weeding of Miscanthus sinensis by grazing in young Cryptomeria japonica and Chamaecyparis obtusa plantation. Bulletin of the Faculty of Agriculture, Miyazaki University 40(2):113-119. 12. Tange, T., M. Suzuki, H. Yagi, S. Sasaki and Y. Minamikata. 1993. Influence of the weeding method on the growth of planted trees. Journal of the Japanese Forestry Society 75(5):416-423. —HUMULUS.DOC—.
Recommended publications
  • Grass Genera in Townsville
    Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers.
    [Show full text]
  • Molecular Phylogenetic Analysis of Japanese Miscanthus (Poaceae)
    ISSN 1346-7565 Acta Phytotax. Geobot. 68 (2): 83–92 (2017) doi: 10.18942/apg.201703 Molecular Phylogenetic Analysis of Japanese Miscanthus (Poaceae) 1 2 3,† 2 HIDENORI NAKAMORI , MIKI TOMITA , HIROSHI AZUMA , TAKEHIRO MASUZAWA 2,* AND TORU TOKUOKA 1Graduate School of Integrated Science and Technology, Shizuoka University, Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; 2Department of Biological Science, Faculty of Science, Shizuoka University, Ohya, Suruga-ku, Shizuoka, 422-8529, Japan. *[email protected] (author for corresponding); 3Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan; †Present Name & address: HIROSHI SUZUKI; Liberal arts and Sciences, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan Miscanthus (Poaceae) comprises about 20 species, of which seven species and two forms occur in Japan. There is controversy whether M. condensatus is a separate species or a variety or subspecies of M. sinen- sis. To determine its taxonomic status, we conducted a molecular phylogenetic analysis using DNA se- quences of the atpB-rbcL, psbC-trnS(UGA), rpl20-rps12, trnL(UAA)-trnF(GAA), trnS(GGA)- trnT(UGU), and nuclear ITS regions, and the Adh1 gene from 31 samples of the seven Japanese species of Miscanthus. The neighbor-joining (NJ) tree based on the cpDNA sequences shows that M. condensa- tus and M. sinensis share two haplotypes, and that the nuclear ITS and Adh1 sequences of the two species are identical, making it difficult to distinguishM. condensatus from M. sinensis based on DNA sequenc- es. The evidence indicates that hybridization between the two species has proceeded rapidly, or that M.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Ornamental Grasses for Kentucky Landscapes Lenore J
    HO-79 Ornamental Grasses for Kentucky Landscapes Lenore J. Nash, Mary L. Witt, Linda Tapp, and A. J. Powell Jr. any ornamental grasses are available for use in resi- Grasses can be purchased in containers or bare-root Mdential and commercial landscapes and gardens. This (without soil). If you purchase plants from a mail-order publication will help you select grasses that fit different nursery, they will be shipped bare-root. Some plants may landscape needs and grasses that are hardy in Kentucky not bloom until the second season, so buying a larger plant (USDA Zone 6). Grasses are selected for their attractive foli- with an established root system is a good idea if you want age, distinctive form, and/or showy flowers and seedheads. landscape value the first year. If you order from a mail- All but one of the grasses mentioned in this publication are order nursery, plants will be shipped in spring with limited perennial types (see Glossary). shipping in summer and fall. Grasses can be used as ground covers, specimen plants, in or near water, perennial borders, rock gardens, or natu- Planting ralized areas. Annual grasses and many perennial grasses When: The best time to plant grasses is spring, so they have attractive flowers and seedheads and are suitable for will be established by the time hot summer months arrive. fresh and dried arrangements. Container-grown grasses can be planted during the sum- mer as long as adequate moisture is supplied. Cool-season Selecting and Buying grasses can be planted in early fall, but plenty of mulch Select a grass that is right for your climate.
    [Show full text]
  • Ornamental Grasses for the Midsouth Landscape
    Ornamental Grasses for the Midsouth Landscape Ornamental grasses with their variety of form, may seem similar, grasses vary greatly, ranging from cool color, texture, and size add diversity and dimension to season to warm season grasses, from woody to herbaceous, a landscape. Not many other groups of plants can boast and from annuals to long-lived perennials. attractiveness during practically all seasons. The only time This variation has resulted in five recognized they could be considered not to contribute to the beauty of subfamilies within Poaceae. They are Arundinoideae, the landscape is the few weeks in the early spring between a unique mix of woody and herbaceous grass species; cutting back the old growth of the warm-season grasses Bambusoideae, the bamboos; Chloridoideae, warm- until the sprouting of new growth. From their emergence season herbaceous grasses; Panicoideae, also warm-season in the spring through winter, warm-season ornamental herbaceous grasses; and Pooideae, a cool-season subfamily. grasses add drama, grace, and motion to the landscape Their habitats also vary. Grasses are found across the unlike any other plants. globe, including in Antarctica. They have a strong presence One of the unique and desirable contributions in prairies, like those in the Great Plains, and savannas, like ornamental grasses make to the landscape is their sound. those in southern Africa. It is important to recognize these Anyone who has ever been in a pine forest on a windy day natural characteristics when using grasses for ornament, is aware of the ethereal music of wind against pine foliage. since they determine adaptability and management within The effect varies with the strength of the wind and the a landscape or region, as well as invasive potential.
    [Show full text]
  • Miscanthus Sinensis Sacchariflorus X Giganteus STERILE + =
    Miscanthus: biofuels, invaders or both? Emily Heaton1, Allison Snow2, Maria Mariti2 and Catherine Bonin1 1Dept. Of Agronomy, Iowa State University 2Dept. of Evolution, Ecology, and Organismal Biology, The Ohio State University 2 36 Billion Gallons of Alternative Fuel… 2007 Energy Independ ence and Security Act What makes a good biomass crop? C4 photosynthesis Mobile Long canopy duration nutrients High water use efficiency & carbs to shoot Recycles nutrients to roots in spring Low input Clean burning translocated Sterile – non-invasive below ground as Winter standing shoot Easily removed senesces No known pests/diseases Easily managed Fig 1: Translocation increases nutrient use efficiency in perennial grasses What Are “The Canes”? - multiple interbreeding genera and species Examples include: SUGAR FIBER COLD/DISEASE Saccharum spp. Erianthus spp. Miscanthus spp. M. × giganteus: Naturally Occurring Hybrid Miscanthus Miscanthus Miscanthus sinensis sacchariflorus x giganteus STERILE + = Diploid Tetraploid Triploid 2n=2x=38 2n=4x=76 2n=3x=57 Distribution of three Asian Miscanthus species Original M. x giganteus hybrid collected in 1935 in Yokohama, Japan, cultivated in Denmark, then distributed throughout Europe and U.S. as an ornamental plant. Slide courtesy of Tom Voigt, UIUC. Giant Miscanthus (Miscanthus × 7 High Yielding (6-15 t/acre) giganteus) Sterile clone A higher Must be planted from yielding rhizomes alternative to New to US: 10’s to 100’s of switchgrass acres in some Widely planted in Europe: areas, especially thousands of acres the Used for heat and power Midwest with coal From Heaton et al. (2010) Advances in Botanical Research, 56, 76-137. First US field trial results in Illinois Field Bical Ltd.
    [Show full text]
  • Non-Native Invasive Plants of the City of Alexandria, Virginia
    March 1, 2019 Non-Native Invasive Plants of the City of Alexandria, Virginia Non-native invasive plants have increasingly become a major threat to natural areas, parks, forests, and wetlands by displacing native species and wildlife and significantly degrading habitats. Today, they are considered the greatest threat to natural areas and global biodiversity, second only to habitat loss resulting from development and urbanization (Vitousek et al. 1996, Pimentel et al. 2005). The Virginia Department of Conservation and Recreation has identified 90 non-native invasive plants that threaten natural areas and lands in Virginia (Heffernan et al. 2014) and Swearingen et al. (2010) include 80 plants from a list of nearly 280 non-native invasive plant species documented within the mid- Atlantic region. Largely overlapping with these and other regional lists are 116 species that were documented in the City of Alexandria, Virginia during vegetation surveys and natural resource assessments by the City of Alexandria Dept. of Recreation, Parks, and Cultural Activities (RPCA), Natural Lands Management Section. This list is not regulatory but serves as an educational reference informing those with concerns about non-native invasive plants in the City of Alexandria and vicinity, including taking action to prevent the further spread of these species by not planting them. Exotic species are those that are not native to a particular place or habitat as a result of human intervention. A non-native invasive plant is here defined as one that exhibits some degree of invasiveness, whether dominant and widespread in a particular habitat or landscape or much less common but long-lived and extremely persistent in places where it occurs.
    [Show full text]
  • Microstegium Vimineum
    Microstegium vimineum http://www.fs.fed.us/database/feis/plants/graminoid/micvim/all.html Microstegium vimineum INTRODUCTORY DISTRIBUTION AND OCCURRENCE BOTANICAL AND ECOLOGICAL CHARACTERISTICS FIRE ECOLOGY FIRE EFFECTS MANAGEMENT CONSIDERATIONS REFERENCES INTRODUCTORY AUTHORSHIP AND CITATION FEIS ABBREVIATION SYNONYMS NRCS PLANT CODE COMMON NAMES TAXONOMY LIFE FORM FEDERAL LEGAL STATUS OTHER STATUS Understory infestation. Photo ©John M. Randall/The Nature Conservancy AUTHORSHIP AND CITATION: Howard, Janet L. 2005. Microstegium vimineum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2007, September 24]. FEIS ABBREVIATION: MICVIM SYNONYMS: Eulalia viminea (Trin.) Kuntze Eulalia viminea var. variabilis Kuntze [31] Microstegium vimineum var. imberbe (Nees) Honda Microstegium vimineum var. vimineum [50] NRCS PLANT CODE [101]: MIVI COMMON NAMES: Nepalese browntop eulalia Japanese stiltgrass Japanese grass Mary's grass Nepal grass TAXONOMY: The scientific name for Nepalese browntop is Microstegium vimineum (Trin.) A. Camus (Poaceae) [39,50,52,66,69,75,109]. 1 of 25 9/24/2007 4:53 PM Microstegium vimineum http://www.fs.fed.us/database/feis/plants/graminoid/micvim/all.html LIFE FORM: Graminoid FEDERAL LEGAL STATUS: None OTHER STATUS: As of this writing (2005), Nepalese browntop is classified as an invasive species in 6 states and 2 Forest Service Regions. Missouri ranks Nepalese browntop in Category B: a plant species that either a) has occasional impact with low impact on native plant communities; or b) disrupts native plant communities in other states, in habitats similar to those found in Missouri [65].
    [Show full text]
  • GRAPHIE by Cornelia D. Niles with INTRODUCTION and BOTANICAL
    A BIBLIOGRAPHIC STUDY OF BEAUVOIS' AGROSTO- • GRAPHIE By Cornelia D. Niles WITH INTRODUCTION AND BOTANICAL NOTES By Aones Chase nrntODTJCTiON The Essai d?une Nouvelle Agrostographie ; ou Nouveaux Genres des Graminees; avec figures representant les Oaracteres de tous les Genres, by A. M. F. J. Palisot de Beauvois, published in 1812, is, from the standpoint of the nomenclature of grasses, a very important work, its importance being due principally to its innumerable errors, less so because of its scientific value. In this small volume 69 new genera are proposed and some 640 new species, new binomials, and new names are published. Of the 69 genera proposed 31 are to-day recognized as valid, and of the 640 names about 61 are commonly accepted. There is probably not a grass flora of any considerable region anywhere in the world that does not contain some of Beauvois' names. Many of the new names are made in such haphazard fashion that they are incorrectly listed in the Index Kewensis. There are, besides, a number of misspelled names that have found their way into botanical literature. The inaccuracies are so numerous and the cita- tions so incomplete that only a trained bibliographer* could solve the many puzzles presented. Cornelia D. Niles in connection with her work on the bibliography of grasses, maintained in the form of a card catalogue in the Grass Herbarium, worked out the basis in literature of each of these new names. The botanical problems involved, the interpretation of descriptions and figures, were worked out by Agnes Chase, who is also respon- sible for the translation and summaries from the Advertisement, Introduction, and Principles.
    [Show full text]
  • Miscanthus Sinensis
    Miscanthus sinensis Miscanthus sinensis INTRODUCTORY DISTRIBUTION AND OCCURRENCE BOTANICAL AND ECOLOGICAL CHARACTERISTICS FIRE ECOLOGY FIRE EFFECTS MANAGEMENT CONSIDERATIONS REFERENCES INTRODUCTORY AUTHORSHIP AND CITATION FEIS ABBREVIATION NRCS PLANT CODE COMMON NAMES TAXONOMY SYNONYMS LIFE FORM James H. Miller, USDA Forest Service, Bugwood.org AUTHORSHIP AND CITATION: Waggy, Melissa A. 2011. Miscanthus sinensis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2011, January 26]. FEIS ABBREVIATION: MISSIN NRCS PLANT CODE [108]: MISI COMMON NAMES: Chinese silvergrass Chinese silver grass eulalia http://www.fs.fed.us/database/feis/plants/graminoid/missin/all.html[1/26/2011 11:50:53 AM] Miscanthus sinensis Japanese silver grass zebra grass TAXONOMY: The scientific name of Chinese silvergrass is Miscanthus sinensis Andersson (Poaceae) [24,36,38,50,65,116]. Hitchcock [38] recognizes 3 varieties in the United States: Miscanthus sinensis var. gracillimus Hitchc. (narrow blades) Miscanthus sinensis var. variegatus Beal (blades striped with white) Miscanthus sinensis var. zebrinus Beal (blades banded or zoned with white) Various Chinese silvergrass infrataxa occur in Taiwan and Japan ([8], review by [96]). Under cultivation, Chinese silvergrass is often hybridized with other species of this genus [12], particularly with M. sacchariflorus to create the hybrid Miscanthus × giganteus [49]. More than 50 cultivars of Chinese silvergrass have been introduced to North America since 1980 [70]. SYNONYMS: None LIFE FORM: Graminoid DISTRIBUTION AND OCCURRENCE SPECIES: Chinese silvergrass GENERAL DISTRIBUTION HABITAT TYPES AND PLANT COMMUNITIES GENERAL DISTRIBUTION: Chinese silvergrass is nonnative to North America.
    [Show full text]
  • Miscanthus: Madison County's "Wildfire Grass"
    MISCANTHUS Madison County’s “Wildfire Grass” DID YOU KNOW? The Mars Hill, Grapevine, Petersburg, and Paint Fork areas of Madison County have extensive infestations of Miscanthus sinensis. It is quickly spreading into the Hot Springs, Laurel, Spring Creek, Big Pine, Marshall, and Walnut areas of the county. In 2020, 80% of Madison County’s wildfires occurred in the Mars Hill Fire District where the Miscanthus infestation is the worst. What is Miscanthus (aka pampas grass) ? Miscanthus is commonly referred to as pampas grass or Mars Hill grass in Madison County. It is also known as maiden grass, eulalia and Chinese silvergrass. Miscanthus is: Tall, perennial, densely bunched grass that can grow 5 to 10 feet in height. Elongated, upright to arching leaves 3 feet long and 1 inch wide with whitish upper midrib; leaves have sharp tips and rough margins. Blades are green to variegated (light green horizontal stripes). Showy, fan-shaped, silvery to pink, terminal inflorescence that emerges in late August to early September and matures in early fall. Photo: Chris Evans, University of Illinois, Bugwood.org Where did Miscanthus come from? Miscanthus is native to eastern Asia throughout China, Japan and Korea. It was introduced to the United States more than a century ago as an ornamental landscaping plant. Since, it has spread across the eastern United States, and in our state, it is most prevalent in Western North Carolina. In Madison County, the most severe infestations of Miscanthus are in the southern and eastern portions of the county specifically the Mars Hill, Grapevine and Petersburg areas. Why is Miscanthus harmful? Spreading through farm fields and along roadsides in the Interstate Highway 26 corridor, large masses of Miscanthus are one of the most serious wildfire hazards in Madison County.
    [Show full text]
  • Savannahs of Asia: Antiquity, Biogeography, and an Uncertain Future
    This is a repository copy of Savannahs of Asia: Antiquity, biogeography, and an uncertain future. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/105211/ Version: Accepted Version Article: Ratnam, J, Tomlinson, KW, Rasquinha, DN et al. (1 more author) (2016) Savannahs of Asia: Antiquity, biogeography, and an uncertain future. Philosophical Transactions of the Royal Society B: Biological Sciences, 371 (1703). 20150305. ISSN 0962-8436 https://doi.org/10.1098/rstb.2015.0305 © 2016 The Author(s) Published by the Royal Society. All rights reserved. This is an author produced version of a paper published in Philosophical Transactions of the Royal Society B: Biological Sciences. Uploaded in accordance with the publisher's self-archiving policy. Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Savannas of Asia: evidence for antiquity, biogeography, and an uncertain future 2 3 Jayashree Ratnam1#, Kyle W.
    [Show full text]