Dependence of Liquid Supercooling on Liquid Overheating Levels of Al Small Particles

Total Page:16

File Type:pdf, Size:1020Kb

Dependence of Liquid Supercooling on Liquid Overheating Levels of Al Small Particles Article Dependence of Liquid Supercooling on Liquid Overheating Levels of Al Small Particles Qingsong Mei 1,* and Juying Li 2 Received: 5 November 2015; Accepted: 17 December 2015; Published: 24 December 2015 Academic Editor: Andreas Taubert 1 Department of Materials Engineering, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China 2 School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China; [email protected] * Correspondence: [email protected]; Tel.: +86-27-6877-2252 Abstract: The liquid thermal history effect on liquid supercooling behavior has been found in various metals and alloys; typically the degree of liquid supercooling (DT´) increases with the increase of liquid overheating (DT`) up to several to tens of degrees above the equilibrium melting point ´ ` (T0). Here we report quantitative experimental measurements on the DT -DT relationship of Al small particles encapsulated in Al2O3 shells by using a differential scanning calorimeter. We find a remarkable dependence of DT´ on DT` of Al small particles, extending to at least 340 ˝C above T0 of Al (~1.36T0), which indicates the existence of temperature-dependent crystallization centers in liquid Al up to very high liquid overheating levels. Our results demonstrate quantitatively the significant effect of liquid thermal history on the supercooling behavior of Al and its alloys, and raise new considerations about the dependence of DT´ on DT` at very high DT` levels. Keywords: liquid overheating; liquid supercooling; solidification; thermal history; Al particles 1. Introduction Solidification and melting are transformations basic to technological applications such as casting, crystal growth, and glass formation. Historically, the liquid thermal history was discovered to have a significant effect on the liquid supercooling behavior and thus, the nucleation and growth of crystals and their qualities [1–13]. The thermal history effect can be quantified by the relationship between liquid overheating (DT`), which is measured by the difference between liquid temperature and the ´ equilibrium melting point (T0), and liquid supercooling (DT ), which is measured by the difference ´ ` between T0 and the temperature of solidification. Thus far, the dependence of DT on DT has been investigated in metals/semimetals (Bi, Sn, Ga) [2–5,11,14] and alloys [6–11]; typically DT´ increases ` with an increase of DT up to several to tens of degrees above T0. Despite the fundamental and technical importance, the underlying mechanism of this phenomenon in relation to the liquid structure and the kinetics of heterogeneous nucleation of solidification is not well understood. Turnbull [14] suggested that crystals in microcavities, which are on the container or surface of impurity particles inside a melt, can be retained above T0, i.e., they have elevated melting points. These retained crystals can serve as nuclei for solidification at a certain supercooling level, which results in an increase of DT´ with the increase of DT` [14]. The cavity theory has been quantitatively validated by various experimental results [2–5], but it was considered to be not general, e.g., the dependence of DT´ on DT` in Bi, Sn, SnSb and SnPb was found to be either continuous or discontinuous [10,11], which points to the evolution of transient short range order structures in the liquid state. Obviously, more investigations of the DT`-DT´ relationship (thermal history effect) in metals and alloys are needed. In the casting of Al alloys, liquid Materials 2016, 9, 7; doi:10.3390/ma9010007 www.mdpi.com/journal/materials Materials 2016, 9, 7 2 of 8 thermal history effects on the microstructure of solidification have been reported [15,16]. Hereby, a quantitative study of the dependence of DT´ on DT` in the simple metallic system Al is considered to be interesting. For experimental measurements of the DT`-DT´ relationship, a precise control of temperature and heating/cooling rate is needed, and extraneous effects (e.g., oxidation) should be excluded [3,4]. Meanwhile, in bulk continuous systems, the factors affecting the solidification process are rather accidental, and the crystallization centers in one region may have an effect on the freezing behavior of the whole. In this study, we prepared samples of Al particles encapsulated in Al2O3 shells to eliminate possible effects of oxidation and coalescence at high temperatures. By using differential scanning calorimeter (DSC), we quantitatively measured the DT`-DT´ relationship of encapsulated Al particles and found a remarkable dependence of DT´ on DT` that extends to ultrahigh DT` levels. 2. Materials andMaterials Methods 2016, 9, 0007 quantitative study of the dependence of ΔT− on ΔT+ in the simple metallic system Al is considered to Al small particlesbe interesting. were For preparedexperimental bymeasurements means of of active the ΔT+‐Δ HT2 plasmarelationship, evaporation a precise control and of condensation, using bulk Al (withtemperature a purity and heating/cooling of 99.8%) rate as theis needed, starting and extraneous material. effects The (e.g., particles oxidation) were shouldin be situ passivated excluded [3,4]. Meanwhile, in bulk continuous systems, the factors affecting the solidification process at room temperatureare rather before accidental, exposure and the crystallization to air. The centers passivated in one region Al may particles have an effect were on the further freezing oxidized in air to produce a thickbehavior surface of the whole. oxide In this shell. study, Samples we prepared with samples different of Al particles oxidation encapsulated extents in Al2O3 wereshells produced by changing the temperature/durationto eliminate possible effects of ofoxidation oxidation. and coalescence at high temperatures. By using differential scanning calorimeter (DSC), we quantitatively measured the ΔT+‐ΔT relationship of encapsulated Al The morphologyparticles and and found size a remarkable of Al particles dependence was of Δ investigatedT− on ΔT+ that extends by a to transmission ultrahigh ΔT+ levels. electron microscope (TEM, Philips, Amsterdam, The Netherlands) and a high-resolution transmission electron microscope 2. Materials and Methods (HRTEM, JEOL, Tokyo, Japan), which was conducted on a Philips EM 420 microscope (Philips) Al small particles were prepared by means of active H2 plasma evaporation and condensation, with an acceleratingusing bulk voltage Al (with a of purity 100 of kV 99.8%) and as athe JEM starting 2010 material. high-resolution The particles were microscope in situ passivated (JEOL) with an accelerating voltageat room of temperature 200 kV, before respectively. exposure to Samples air. The passivated for TEM Al particles and HRTEM were further observations oxidized in air were prepared to produce a thick surface oxide shell. Samples with different oxidation extents were produced by by dispersing thechanging particles the temperature/duration in ethanol by of sonicationoxidation. and then, dropping on a carbon-coated copper grid. Formation ofThe an morphology oxide shell and size on of Al the particles Al particle was investigated surface by a transmission was confirmed electron microscope by TEM and HRTEM observations. The(TEM, surface Philips, Amsterdam, oxide shell The was Netherlands) found and to bea high able‐resolution to retain transmission the shape electron of microscope Al particles effectively (HRTEM, JEOL, Tokyo, Japan), which was conducted on a Philips EM 420 microscope (Philips) with upon heating andan accelerating cooling sovoltage that of the 100 particlekV and a canJEM melt2010 high and‐resolution freeze independently.microscope (JEOL) with an Thermal analysisaccelerating was voltage performed of 200 kV, on respectively. a Netzsch Samples high-temperature for TEM and HRTEM differential observations scanning were calorimeter prepared by dispersing the particles in ethanol by sonication and then, dropping on a carbon‐coated (DSC 404C, Netzsch,copper grid. Selb, Formation Germany). of an oxide The shell sample on the Al inparticle Al2 Osurface3 crucible was confirmed was measuredby TEM and in a dynamic ˝ Ar atmosphereHRTEM with observations. a gas flow The surface rate oxide of 50 shell mL/min was found to and be able a to heating/cooling retain the shape of Al particles rate of 20 C/min. The temperatureeffectively and enthalpy upon heating were and cooling calibrated so that the by particle the melting can melt and endotherms freeze independently. of pure In, Al and Ag. Thermal analysis was performed on a Netzsch high‐temperature differential scanning calorimeter (DSC 404C, Netzsch, Selb, Germany). The sample in Al2O3 crucible was measured in a dynamic Ar 3. Results andatmosphere Discussion with a gas flow rate of 50 mL/min and a heating/cooling rate of 20 °C/min. The temperature and enthalpy were calibrated by the melting endotherms of pure In, Al and Ag. As shown in Figure1a, the original Al particles are nearly spherical in shape with sizes mostly 3. Results and Discussion ranged from ~30 to ~500 nm. Al particles were encapsulated in Al2O3 shells after thermal oxidation at 500 ˝C for 90 minAs in shown air (Figure in Figure1 b,c).1a, the X-rayoriginal diffractionAl particles are (XRD)nearly spherical analysis in shape also with confirmed sizes mostly the formation ranged from ~30 to ~500 nm. Al particles were encapsulated in Al2O3 shells after thermal oxidation at of oxide shells500 (Figure °C for 901d). min Thein air Al(Figure2O 1b,c).3 shells X‐ray are diffraction able to(XRD) prevent
Recommended publications
  • LATENT HEAT of FUSION INTRODUCTION When a Solid Has Reached Its Melting Point, Additional Heating Melts the Solid Without a Temperature Change
    LATENT HEAT OF FUSION INTRODUCTION When a solid has reached its melting point, additional heating melts the solid without a temperature change. The temperature will remain constant at the melting point until ALL of the solid has melted. The amount of heat needed to melt the solid depends upon both the amount and type of matter that is being melted. Therefore: Q = ML Eq. 1 f where Q is the amount of heat absorbed by the solid, M is the mass of the solid that was melted and Lf is the latent heat of fusion for the type of material that was melted, which is measured in J/kg, NOTE: to fuse means to melt. In this experiment the latent heat of fusion of water will be determined by using the method of mixtures ΣQ=0, or QGained +QLost =0. Ice will be added to a calorimeter containing warm water. The heat energy lost by the water and calorimeter does two things: 1. It melts the ice; 2. It warms the water formed by the melting ice from zero to the final equilibrium temperature of the mixture. Heat gained + Heat lost = 0 Heat needed to melt ice + Heat needed to warm the melt water + Heat lost by warn water = 0 MiceLf + MiceCw (Tf - 0) + MwCw (Tf – Tw) = 0 Eq. 2. * Note: The mass of the melted water is the same as the mass of the ice. where M = mass of warm water initially in calorimeter w Mice = mass of ice and water from the melted ice Cw = specific heat of water Lf = latent heat of fusion of water Tw = initial temperature water Tf = equilibrium temperature of mixture APPARATUS: Calorimeter, thermometer, balance, ice, water OBJECTIVE: To determine the latent heat of fusion of water PROCEDURE: 1.
    [Show full text]
  • Niobium Doped BGO Glasses: Physical, Thermal and Optical Properties
    IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861. Volume 3, Issue 5 (Mar. - Apr. 2013), PP 80-87 www.iosrjournals.org Niobium doped BGO glasses: Physical, Thermal and Optical Properties Khair-u-Nisa1, Ejaz Ahmed2, M. Ashraf Chaudhry3 1,2,3Department of Physics, Bahauddin Zakariya University, Multan (60800), Pakistan. Abstract: IR- transparent niobium substituted heavy metal oxide glass system in formula composition (100-x) BGO75- xNb2O5; 5 ≤ x ≤ 25 was fabricated by quenching and press molding technique. Glassy state was confirmed by XRD. Density ρexp varied 6.381 g/cc-7.028 g/cc ±0.06%. Modifying behavior of Nb2O5 was corroborated by rate of increase in theoretical volume Vth, measured volume Vexp and oxygen molar volume -2 5+ 4+ VMO . Nb had larger cation radius and greater polarizing strength as compared to Ge ions. It replaced 4+ o Ge sites introducing more NBOs in the network. Transformation temperatures Tg, Tx and Tp1 were 456 -469 C ±2 oC, 516 -537 oC ±2 oC and 589 -624 oC ±2 oC respectively. In the range from room temperature to 400 oC -6 -1 -6 -1 the coefficient of linear thermal expansion α was 5.431±0.001*10 K to 7.333±0.001*10 K . ΔT = Tx-Tg and ΔTP1 = TP1-Tg varied collinearly with increase in niobium concentration and revealed thermal stability against devitrification. The direct bandgap Eg values lay in 3.24 -2.63 eV ±0.01 eV range and decreased due to impurity states of Nb5+ within the forbidden band. Mobility edges obeyed Urbach law verifying amorphousness of the compositions.
    [Show full text]
  • Equation of State for Benzene for Temperatures from the Melting Line up to 725 K with Pressures up to 500 Mpa†
    High Temperatures-High Pressures, Vol. 41, pp. 81–97 ©2012 Old City Publishing, Inc. Reprints available directly from the publisher Published by license under the OCP Science imprint, Photocopying permitted by license only a member of the Old City Publishing Group Equation of state for benzene for temperatures from the melting line up to 725 K with pressures up to 500 MPa† MONIKA THOL ,1,2,* ERIC W. Lemm ON 2 AND ROLAND SPAN 1 1Thermodynamics, Ruhr-University Bochum, Universitaetsstrasse 150, 44801 Bochum, Germany 2National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA Received: December 23, 2010. Accepted: April 17, 2011. An equation of state (EOS) is presented for the thermodynamic properties of benzene that is valid from the triple point temperature (278.674 K) to 725 K with pressures up to 500 MPa. The equation is expressed in terms of the Helmholtz energy as a function of temperature and density. This for- mulation can be used for the calculation of all thermodynamic properties. Comparisons to experimental data are given to establish the accuracy of the EOS. The approximate uncertainties (k = 2) of properties calculated with the new equation are 0.1% below T = 350 K and 0.2% above T = 350 K for vapor pressure and liquid density, 1% for saturated vapor density, 0.1% for density up to T = 350 K and p = 100 MPa, 0.1 – 0.5% in density above T = 350 K, 1% for the isobaric and saturated heat capaci- ties, and 0.5% in speed of sound. Deviations in the critical region are higher for all properties except vapor pressure.
    [Show full text]
  • Geometrical Vortex Lattice Pinning and Melting in Ybacuo Submicron Bridges Received: 10 August 2016 G
    www.nature.com/scientificreports OPEN Geometrical vortex lattice pinning and melting in YBaCuO submicron bridges Received: 10 August 2016 G. P. Papari1,*, A. Glatz2,3,*, F. Carillo4, D. Stornaiuolo1,5, D. Massarotti5,6, V. Rouco1, Accepted: 11 November 2016 L. Longobardi6,7, F. Beltram2, V. M. Vinokur2 & F. Tafuri5,6 Published: 23 December 2016 Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have been focused on the fabrication of superconducting devices capable of immobilizing vortices, hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields and temperatures made superconducting strips a mainstream of superconductivity studies. Here we report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined magnetoresistance measurements and numerical simulations unambiguously relate the resistance oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical spectroscopy, inferring detailed information of the structure of the vortex system through a combined use of MR curves and large-scale simulations. Superconductors are materials in which below the superconducting transition temperature, Tc, electrons form so-called Cooper pairs, which are bosons, hence occupying the same lowest quantum state1. The wave function of this Cooper condensate has a fixed phase. Hence, by virtue of the uncertainty principle, the number of Cooper pairs in the condensate is undefined.
    [Show full text]
  • Determination of the Identity of an Unknown Liquid Group # My Name the Date My Period Partner #1 Name Partner #2 Name
    Determination of the Identity of an unknown liquid Group # My Name The date My period Partner #1 name Partner #2 name Purpose: The purpose of this lab is to determine the identity of an unknown liquid by measuring its density, melting point, boiling point, and solubility in both water and alcohol, and then comparing the results to the values for known substances. Procedure: 1) Density determination Obtain a 10mL sample of the unknown liquid using a graduated cylinder Determine the mass of the 10mL sample Save the sample for further use 2) Melting point determination Set up an ice bath using a 600mL beaker Obtain a ~5mL sample of the unknown liquid in a clean dry test tube Place a thermometer in the test tube with the sample Place the test tube in the ice water bath Watch for signs of crystallization, noting the temperature of the sample when it occurs Save the sample for further use 3) Boiling point determination Set up a hot water bath using a 250mL beaker Begin heating the water in the beaker Obtain a ~10mL sample of the unknown in a clean, dry test tube Add a boiling stone to the test tube with the unknown Open the computer interface software, using a graph and digit display Place the temperature sensor in the test tube so it is in the unknown liquid Record the temperature of the sample in the test tube using the computer interface Watch for signs of boiling, noting the temperature of the unknown Dispose of the sample in the assigned waste container 4) Solubility determination Obtain two small (~1mL) samples of the unknown in two small test tubes Add an equal amount of deionized into one of the samples Add an equal amount of ethanol into the other Mix both samples thoroughly Compare the samples for solubility Dispose of the samples in the assigned waste container Observations: The unknown is a clear, colorless liquid.
    [Show full text]
  • Parallel-Powered Hybrid Cycle with Superheating “Partially” by Gas
    Parallel-Powered Hybrid Cycle with Superheating “Partially” by Gas Turbine Exhaust Milad Ghasemi, Hassan Hammodi, Homan Moosavi Sigaroodi ETA800 Final Thesis Project Division of Heat and Power Technology Department of Energy Technology Royal Institute of Technology Stockholm, Sweden [This page is left intentionally blank for the purposes of printing] Abstract It is of great importance to acquire methods that has a sustainable solution for treatment and disposal of municipal solid waste (MSW). The volumes are constantly increasing and improper waste management, like open dumping and landfilling, causes environmental impacts such as groundwater contamination and greenhouse gas emissions. The rationalization of developing a sustainable solution implies in an improved way of utilizing waste resources as an energy source with highest possible efficiency. MSW incineration is by far the best available way to dispose the waste. One drawback of conventional MSW incineration plants is that when the energy recovery occurs in the steam power cycle configuration, the reachable efficiency is limited due to steam parameters. The corrosive problem limits the temperature of the superheated steam from the boiler which lowers the efficiency of the system. A suitable and relatively cheap option for improving the efficiency of the steam power cycle is the implementation of a hybrid dual-fuel cycle. This paper aims to assess the integration of an MSW incineration with a high quality fuel conversion device, in this case natural gas (NG) combustion cycle, in a hybrid cycle. The aforementioned hybrid dual-fuel configuration combines a gas turbine topping cycle (TC) and a steam turbine bottoming cycle (BC). The TC utilizes the high quality fuel NG, while the BC uses the lower quality fuel, MSW, and reaches a total power output of 50 MW.
    [Show full text]
  • Physics, Chapter 17: the Phases of Matter
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 17: The Phases of Matter Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 17: The Phases of Matter" (1958). Robert Katz Publications. 165. https://digitalcommons.unl.edu/physicskatz/165 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 17 The Phases of Matter 17-1 Phases of a Substance A substance which has a definite chemical composition can exist in one or more phases, such as the vapor phase, the liquid phase, or the solid phase. When two or more such phases are in equilibrium at any given temperature and pressure, there are always surfaces of separation between the two phases. In the solid phase a pure substance generally exhibits a well-defined crystal structure in which the atoms or molecules of the substance are arranged in a repetitive lattice. Many substances are known to exist in several different solid phases at different conditions of temperature and pressure. These solid phases differ in their crystal structure. Thus ice is known to have six different solid phases, while sulphur has four different solid phases.
    [Show full text]
  • Two-Dimensional Vortex Lattice Melting Superconducting Length
    Two-Dimensional Vortex Lattice Melting Superconducting Length-Scales and Vortex Lattices Flux Motion Melting Concepts Journal Paper Presentation: “Melting of the Vortex Lattice Through the Hexatic Phase in an MoGe3 Thin Film” 1 Repulsive Interaction Between Vortices Vortex Lattice 2 Vortex Melting in Superconducting Nb 3 (For 3D clean Type II superconductor) Vortex Lattice Expands on Freezing (Like Ice) Jump in the Magnetization 4 Melting Concepts 3D Solid Liquid Lindemann Criterion (∆r)2 ↵a 1st Order Transition ⇡ p 5 6 Journal Presentation Motivation/Context Results Interpretation Questions/Ideas for Future Work (aim for 30-45 mins) Please check the course site about the presentation schedule No class on The April 8, 15 Make-Ups on Ms April 12, 19 (Weekly Discussion to be Rescheduled) 7 First Definitive Observation of the Hexatic Phase in a Superconducting Film (with 8 thanks to Indranil Roy and Pratap Raychaudhuri) Two Dimensional Melting (BKT + HNY theory) 9 10 Hexatics have been observed in 2D colloidal systems Why not in the Melting of the Vortex Phase of Superconducting Films ?? 11 Quest for the Hexatic Liquid Phase in ↵ MoGe − Why Not Before ?? Orientational Coupling Hexatic Glass !! between Atomic and Vortex Lattices Solution: Amorphous Superconductor (no lattice effect) Very Weak Pinning BCS-Type Superconductor 12 Scanning Tunneling Spectroscopy (STS) Magnetotransport 13 14 15 16 17 The Resulting Phase Diagram 18 Summary First Observation of Hexatic Fluid Phase in a 2D Superconducting Film Pinning Significantly Weaker than in Previous Studies STS (imaging) Magnetotransport (“shear”) Questions/Ideas for the Future Size-Dependence of Hexatic Order Parameter ?? Low T limit of the Hexatic Fluid: Quantum Vortex Fluid ?? What happens in Layered Films ?? 19 20.
    [Show full text]
  • Lecture 4 (Pdf)
    GFD 2006 Lecture 4: Interfacial instability in two-component melts Grae Worster; notes by Shane Keating and Takahide Okabe March 15, 2007 So far, we have looked at some of the fundamentals associated with solidification of pure melts. When we try to solidify a solution of two or more components, salt and water, for example, the character of the solidification changes considerably. In particular, the presence of salt can depress the temperature at which ice and salt water can coexist in thermal equilibrium. This has an important consequence for the growth of sea ice: unless there is some other mechanism for the transport of the salt field, such as convection, the growth of the ice is limited by the rate at which excess salt can diffuse away from the interface. Finally, we will discuss the morphological instability in two-component melts. We shall see that the solute field is destabilizing and can give rise to morphological instability even when the liquid phase is not initially supercooled. 1 Two-component melts 1.1 A simple demonstration We shall begin with a simple demonstration. Crushed ice at 0◦C is placed in a cup with a thermometer. We add a handful of salt at room temperature and stir briskly. The ice begins to melt, but what happens to the temperature? We notice that there is some melt water in the cup, which helps bring the ice and salt into contact, and see a fairly rapid decrease in the temperature measured by the thermometer: after a few minutes, it reads almost 10 C.
    [Show full text]
  • Fluidized Bed Chemical Vapor Deposition of Zirconium Nitride Films
    INL/JOU-17-42260-Revision-0 Fluidized Bed Chemical Vapor Deposition of Zirconium Nitride Films Dennis D. Keiser, Jr, Delia Perez-Nunez, Sean M. McDeavitt, Marie Y. Arrieta July 2017 The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance INL/JOU-17-42260-Revision-0 Fluidized Bed Chemical Vapor Deposition of Zirconium Nitride Films Dennis D. Keiser, Jr, Delia Perez-Nunez, Sean M. McDeavitt, Marie Y. Arrieta July 2017 Idaho National Laboratory Idaho Falls, Idaho 83415 http://www.inl.gov Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 Fluidized Bed Chemical Vapor Deposition of Zirconium Nitride Films a b c c Marie Y. Arrieta, Dennis D. Keiser Jr., Delia Perez-Nunez, * and Sean M. McDeavitt a Sandia National Laboratories, Albuquerque, New Mexico 87185 b Idaho National Laboratory, Idaho Falls, Idaho 83401 c Texas A&M University, Department of Nuclear Engineering, College Station, Texas 77840 Received November 11, 2016 Accepted for Publication May 23, 2017 Abstract — – A fluidized bed chemical vapor deposition (FB-CVD) process was designed and established in a two-part experiment to produce zirconium nitride barrier coatings on uranium-molybdenum particles for a reduced enrichment dispersion fuel concept. A hot-wall, inverted fluidized bed reaction vessel was developed for this process, and coatings were produced from thermal decomposition of the metallo-organic precursor tetrakis(dimethylamino)zirconium (TDMAZ) in high- purity argon gas. Experiments were executed at atmospheric pressure and low substrate temperatures (i.e., 500 to 550 K). Deposited coatings were characterized using scanning electron microscopy, energy dispersive spectroscopy, and wavelength dis-persive spectroscopy.
    [Show full text]
  • Single Crystal Growth of Mgb2 by Using Low Melting Point Alloy Flux
    Single Crystal Growth of Magnesium Diboride by Using Low Melting Point Alloy Flux Wei Du*, Xugang Xian, Xiangjin Zhao, Li Liu, Zhuo Wang, Rengen Xu School of Environment and Material Engineering, Yantai University, Yantai 264005, P. R. China Abstract Magnesium diboride crystals were grown with low melting alloy flux. The sample with superconductivity at 38.3 K was prepared in the zinc-magnesium flux and another sample with superconductivity at 34.11 K was prepared in the cadmium-magnesium flux. MgB4 was found in both samples, and MgB4’s magnetization curve being above zero line had not superconductivity. Magnesium diboride prepared by these two methods is all flaky and irregular shape and low quality of single crystal. However, these two metals should be the optional flux for magnesium diboride crystal growth. The study of single crystal growth is very helpful for the future applications. Keywords: Crystal morphology; Low melting point alloy flux; Magnesium diboride; Superconducting materials Corresponding author. Tel: +86-13235351100 Fax: +86-535-6706038 Email-address: [email protected] (W. Du) 1. Introduction Since the discovery of superconductivity in Magnesium diboride (MgB2) with a transition temperature (Tc) of 39K [1], a great concern has been given to this material structure, just as high-temperature copper oxide can be doped by elements to improve its superconducting temperature. Up to now, it is failure to improve Tc of doped MgB2 through C [2-3], Al [4], Li [5], Ir [6], Ag [7], Ti [8], Ti, Zr and Hf [9], and Be [10] on the contrary, the Tc is reduced or even disappeared.
    [Show full text]
  • Thermodynamics of Air-Vapour Mixtures Module A
    roJuclear Reactor Containment Design Chapter 4: Thermodynamics ofAir-Vapour Mixtures Dr. Johanna Daams page 4A - 1 Module A: Introduction to Modelling CHAPTER 4: THERMODYNAMICS OF AIR-VAPOUR MIXTURES MODULE A: INTRODUCTION TO MODELLING MODULE OBJECTIVES: At the end of this module, you will be able to describe: 1. The three types of modelling, required for nuclear stations 2. The differences between safety code, training simulator code and engineering code ,... --, Vuclear Reector Conte/nment Design Chapter 4: Thermodynamics ofAir-Vapour Mixtures ". Johanna Daams page 4A-2 Module A: Introduction to Modelling 1.0 TYPES OF MODELLING CODE n the discussion of mathematical modelling of containment that follows, I will often say that certain !pproxlmatlons are allowable for simple simulations, and that safety analysis require more elaborate :alculations. Must therefore understand requirements for different types of simulation. 1.1 Simulation for engineering (design and post-construction design changes): • Purpose: Initially confirm system is within design parameters • limited scope - only parts of plant, few scenarios - and detail; • Simplified representation of overall plant or of a system to design feedback loops 1.2 Simulation for safety analysis: • Purpose: confirm that the nuclear station's design and operation during normal and emergency conditions will not lead to unacceptable excursions in physical parameters leading to equipment failure and risk to the public. Necessary to license plant design and operating mode. • Scope: all situations that may cause unsafe conditions. All systems that may cause such conditions. • Very complex representation of components and physical processes that could lead to public risk • Multiple independent programs for different systems, e.g.
    [Show full text]