Molecular Phylogeny of Thatcheria Mirabilis and the Superfamily of Conoidea

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Phylogeny of Thatcheria Mirabilis and the Superfamily of Conoidea ⊕ 國立中山大學海洋生物研究所 碩士論文 旋梯螺和芋螺超科之分子親緣關係探討 Molecular phylogeny of Thatcheria mirabilis and the Superfamily of Conoidea 研究生:賴政任 撰 指導教授:劉莉蓮 教授 中華民國 九十八年十月 謝辭 經過約兩年半的歲月,我的論文終於在劉莉蓮教授辛苦的指導下完成,從一開始對 於海洋生物的陌生,到現在對於某些生物具有一定的認識及了解,這都要感謝劉教授在 入學初期,提供多次出差的機會讓我去熟悉及摸索研究方向。就如老師所說的,我是到 這半年才比較像個研究生,因此我更感謝老師時時刻刻的提醒,讓我了解應盡的本分, 而可以順利的完成研究所學業。對於日常生活應有的禮節及態度更是重要,因為這些都 會影響到我出社會後的競爭力。最後,還是要再跟老師說一次感謝。 感謝兩位口試委員,高雄醫學大學的邱郁文教授及國家科學研究院海科中心的陳建 勳博士,你們對於研究論文所提供的建議,讓我的論文可以更加順利及完美的呈現。研 究樣本採集的順利與否對於實驗具有關鍵性的影響,在此感謝海資所陳孟仙教授實驗室 及東港張先生提供底拖的螺樣本,還有澎湖水試所謝恆毅博士提供有關水試所底拖計畫 的相關訊息,讓我的實驗樣本可以順利取得。 感謝實驗室的大姐,所辦的王小姐、劉小姐及旺哥,謝謝你們對於出差或日常生活 的協助,讓我感受到濃濃的人情味。感謝蘇老師的潛水訓練,讓我可以順利的採集自己 實驗所需的樣本。實驗的順利,學長姐的經驗提供更是不可或缺,靖穎學姐每次出差的 歡笑陪伴,馥如學姐、敏菁學姐及雅嵐學姐對於課業上或出差上的協助,志輝學長及宗 孟學長對於分生技術的教導及建議,晏瑋學長對於拍電顯的協助,感謝你們願意花時間 熱心的教導我。 在這裡更要感謝我三位大學兼研究所共六年的同學黑黑、容禎和 Jacky,在高雄的 這段期間,我們也是愛河之家的室友,一起度過風風雨雨,有歡樂、悲傷,也有驚奇, 這些壓力或歡笑可以與妳們分享,我真的覺得很棒。一樣也在高雄的小閃和威廷,宵夜 的邀約,心情的分享,雖然常都淪為嘴砲,但有你們的陪伴,我也才可以繼續瘋狂。 感謝研究所同學,好友傑米不斷的跟我分享好玩有趣的事物,去北部出差時提供我 住宿的地方,最重要的還有不斷的互相鼓勵與分享。感謝筱芸還有筱芸的爸媽,不斷的 吃到美食,真的是開心的來源阿!感謝小銘一開始對於出差的協助及建議,讓我可以很 快的進入狀況。感謝美足、Ops 及 Sam,研究所的生活有你們就是充滿歡笑,我們還要 一起繼續去釣魚去瘋狂的 K 歌。感謝學弟妹,慕婷、彥臻、小呆、致銜及阿威,一起 吃飯、玩樂、出差或發洩,讓我又年輕不少。 謝謝左左,雖然在很奇妙的情況下認識,過著一起看著海水缸,分享海裡陎樂趣的 生活,每次看到這些生物的悠遊就是覺得開心,祝福妳可以順利到加拿大,完成自己的 夢想。感謝鼓山長老教會的如珽及其他教友們,你們對於我的日常生活及論文的關心和 代禱,讓我的心靈更安穩。 感謝嘉義大學生資 96 級的各位,儘管大家已經畢業很久了,但每次的聚會及玩樂, 總是讓我又回想到大學多采多姿的生活。記得,大家還是要繼續保持聯絡,加油。 最後,我最要感謝的是我最重要的親人,爺爺、奶奶及外公,雖然你們已經過世了, 但你們對我的疼愛及關心我永遠記得,我會一直保持快樂的心體會生活。感謝外婆、我 的父母親和老哥,你們對於我課業上的關懷及金錢上的支持是最重要的,心理上的關心 更是加倍,現在我終於完成研究所學業,感謝你們,我們是永遠的一家人。 我的這篇論文要獻給對於我提供協助的各位,這篇論文是由我們大家一起完成,因 為有你們,才可以完美的結束。 I 旋梯螺和芋螺超科之分子親緣關係探討 國立中山大學海洋生物所碩士論文摘要 研究生 : 賴政任 指導教授 : 劉莉蓮 教授 旋梯螺在芋螺超科的分類地位不明,曾被歸在旋梯螺科、捲管螺科及芋螺科內,但 芋螺超科大而多元,全世界的物種數可能超過一萬種,傳統上以殼形及齒舌形態為分類 依據,分為芋螺科、筍螺科、捲管螺科,之後,以前腸的解剖構造、殼形及齒舌形態將 三科修訂至七科。本研究以粒線體的 16S rDNA 片段探討芋螺超科的分類及旋梯螺在超 科內的分類位階,結果顯示芋螺超科分為三大系群,推測此三系群分別為芋螺科、筍螺 科及捲管螺科;各系群內的帄均遺傳距離分別為 0.12、0.10 及 0.10,系群間則在 0.14~0.17 間;筍螺科及捲管螺科可能為姊妹群或二者在同一類群下,且筍螺科與捲管螺科的親緣 關係比芋螺科近。此外,旋梯螺和 Bathytoma luhdorfi 雖具有捲管螺的螺旋殼形,其親 緣關係卻與芋螺科系群的 Conus 屬較接近,其他原歸於捲管螺科的三個物種(如 Oenopota sagamiana、Phymorhynchus buccinoides 和 Raphitoma linearis)亦歸於芋螺科 系群。此分類結果不支持 Powell (1966) 和 Kohn (1998) 以殼形特徵為依據的傳統芋螺 超科分類,而與 Taylor 等人 (1993)、Rosenberg (1998) 及 Bouchet 和 Rocroi (2005) 以 前腸解剖特徵所做的支序親緣結果類似,而芋螺超科中空魚叉狀齒舌及毒腺構造可能由 各科獨立演化而產生。 關鍵字: 旋梯螺、芋螺超科、芋螺科、筍螺科、捲管螺科、16S rDNA II Molecular phylogeny of Thatcheria mirabilis and the Superfamily of Conoidea Jeng-Ren Lai Advisor: Dr. Li-Lian Liu Institute of Marine biology, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC The taxonomic status of the Japanese Wonder Shell, Thatcheria mirabilis is questionable, because it has been classified in the family of Thatcheriidae, Turridae or Conidae (Superfamily: Conoidea). Conoidea is a large and diverse superfamily with more than 10,000 species. Based on shell and radula characters, it is classified into three families, i.e. Conidae, Terebridae and Turridae. However, seven families have been proposed based on foregut structure, shell and radula morphology. In the present study, the molecular phylogeny of Conoidea and the taxonomic status of Thatcheria mirabilis were determined by mitochondria DNA 16S rDNA. The results show that Conoidea includes three clades, presuming Conidae, Terebridae and Turridae. The mean genetic distances within clades were 0.12, 0.10 and 0.10, respectively. And, the distances between clades were 0.14~0.17. Phylogenetic trees reveal that Terebridae and Turridae were within the same group or sister group, Terebridae was closer to Turridae than to Conidae. Although Thatcheria mirabilis and Bathytoma luhdorfi have turrid-form shells, their phylogenetic relationship was close to Conus which was in Conidae`s clade. Some other species, i.e. Oenopota sagamiana、 Phymorhynchus buccinoides and Raphitoma linearis were also in Conidae`s clade which had been placed in Turridae. In general, the results are consistent with the cladistic classification by Taylor et al (1993), Rosenberg (1998) and Bouchet & Rocroi (2005), but differenrt from the classification by Powell (1966) and Kohn (1998) based on shell characters. Additionally, the hollow, harpoon-like teeth and venom apparatus in Conoidea might independently evolve in each family. Keywords: Thatcheria mirabilis, Conoidea, Conidae, Terebridae, Turridae, 16S rDNA III 目錄 章次 頁碼 謝辭………………....................................................................................................................I 中文摘要…………….……………………………………………………….……………….II 英文摘要…………....…….………………………………………………….…....…………III 目錄……………….…….........................................................................................................IV 表目錄………………………….………………………………………………………….….V 圖目錄………………….……………………………………………………………...….…VI 附錄目錄……………………...………………………………………………………….…VII 前言……………………………………………….…………………………….…………..…1 材料與方法……………………………………….…………………………………...............7 結果…………………………………………………………………………………………..11 討論…………………………………………………………………………………………..16 參考文獻……………………………………………………………………………………..21 表……………………………………………………………………………………………..26 圖……………………………………………………………………………………………..35 附錄............…………………………………………………………………………………..52 IV 表目錄 表次 頁碼 表一、旋梯螺 Thatcheria mirabilis 分類的相關研究.........................................................26 表二、芋螺超科 Conoidea 分類的相關研究.......................................................................27 表三、芋螺超科的殼形、齒舌構造及毒腺構造之比較.....................................................28 表四、芋螺超科採集之物種名錄.........................................................................................29 表五、本研究中分生實驗所使用物種及引用 NCBI 的基因序列代號.............................31 表六、芋螺超科核苷酸組成比例及序列長度.....................................................................32 表七、芋螺超科之系群內帄均遺傳距離.............................................................................33 表八、芋螺超科之系群間帄均遺傳距離.............................................................................34 V 圖目錄 圖次 頁碼 圖一、芋螺超科物種之殼形外觀……………………………………………………...….35 圖二、芋螺超科的前腸構造示意圖…………………………………………………...….36 圖三、筍螺科的前腸構造示意圖……………………………………………………...….37 圖四、芋螺超科兩種不同型式的齒舌囊……………………………………………...….38 圖五、芋螺超科之四種齒舌形態……………………………………………………...….39 圖六、物種採樣地點分布……………………………………………………………...….40 圖七、筍螺的新紀錄種………………………………………………………………...….41 圖八、芋螺超科物種的軟體組織及前腸之解剖圖…………………………………...….42 圖九、鄰近接近法 (Neighbor-joining) 建立之芋螺超科親緣關係樹………...………...47 圖十、最大儉約法 (Maximum-Parsimony) 建立之芋螺超科親緣關係樹….......………48 圖十一、系群一 (clade 1) 親緣樹狀圖……………………………………….......…...….49 圖十二、系群二 (clade 2) 親緣樹狀圖………………………………………...…………50 圖十三、系群三 (clade 3) 親緣樹狀圖………………………………………...…………51 VI 附錄 附表一、芋螺超科種間之遺傳距離..................................................................................52 附表二、引用自 NCBI 的物種序列代號及其出處...........................................................56 附圖一、芋螺超科採集物種之殼形外觀…………………………………………….......58 VII 一. 前言 旋梯螺 (Thatcheria mirabilis, Angas 1877) 主要分布於東印度洋及西太帄洋深海約 150~500 m 的海底,北從日本南部,南至澳洲西北部都有其蹤跡;CSIRO (Australian Commonwealth Scientific and Industrial Research Organisation) 於 1982 年在澳洲西北部 海域的大陸棚及斜坡進行大規模的海洋生物物種底拖調查,結果在一個斜坡區域的 28 個測站中發現 53 隻旋梯螺,其中 24 隻為活體,分佈的深度範圍為 348~508 m;這樣的 發現也使得原本認為旋梯螺分佈範圍只侷限於日本至菲律賓海域,進而往南延伸 2500 公里至澳洲西北部海域。本種在台灣主要分布於東北角及西南海域 (鍾,2005)。 旋梯螺殼色為淡白或粉紅色,殼形如螺旋梯般故得其名 (圖一 A),其英文俗名為 Japanese Wonder Shell,意指世界上最精緻且不可思議的貝殼;Angas 於 1877 年從日本 海收集到第一個死亡標本,至 1950 年代前其貝殼價格仍昂貴,隨著採集的數量越多, 價格也隨之降低,但仍受許多貝殼收藏者喜好 (Wells, 1985);但旋梯螺的研究與文獻十 分稀少,主要為調查報告及解剖描述兩部分。 Charig (1963) 指出 Thatcheria 旋梯螺屬中,有五個化石種,包含 T. ecuadoriana、 T. edgariana、T. gradata、T. mirabilis、T. mirabils,旋梯螺 (T. mirabilis) 是唯一現存種, 但未提到本種應歸於芋螺超科 (Conoidea, Fleming 1822)中的哪一個科。 Eales (1938) 是第一位對旋梯螺進行組織解剖研究的學者,他所解剖的組織樣本是 雄性身體前半部分,包括頭部 (head)、腹足 (foot)、一部份外套膜 (mantle),但不含內 臟器官,在組織解剖描述部分 ,沒有發現吻部 (proboscis) 及齒舌構造 (radular apparatus);該文其他有關的組織解剖特徵為具有狹小的頭部、小的雄性生殖器 (penis)、 單一水管 (siphon) 及體層 (body whorl) 上有狹小的水管通道 (siphonal canal),傳統上, 這些是矢舌亞目 (Toxoglossa) 特有的特徵,因此,他認為旋梯螺應屬於矢舌亞目內的 一種,後來再以旋梯螺殼的X光影像認為其與捲管螺類較為類似,而應將之歸為捲管螺 科 (Turridae);Talyor et al. (1993) 後來對旋梯螺進行解剖研究,發現旋梯螺其實具有中 1 空的邊緣齒 (marginal teeth) 及吻部構造,這與 Eales (1938) 的解剖結果明顯不同,可 能是因為Eales取得的標本並不完整,使二者研究結果有差異,而相關研究均指出旋梯 螺無口蓋。 關於旋梯螺的分類問題至今仍無定論,但旋梯螺曾陸續被歸在芋螺科 (Conidae) (Taylor et al., 1993;Imperial et al., 2003)、捲管螺科 (Eales, 1938;Kuroda & Habe 1954; Powell, 1966 ; Kohn, 1998),甚至獨立的旋梯螺科 (Thatcheriidae) (Powell, 1942) (表一), 上述這幾科均是芋螺超科 (Conoidea) 的螺類。 芋螺超科是一個數量多且器官構造多元的超科,全世界的物種數可能超過一萬種 (Bouchet, 1990),目前多以19及20世紀初以殼形及齒舌特徵為依據的分類方式呈現,將 芋螺超科分為芋螺科 (Conidae, Rafinesque 1815)、筍螺科 (Terebridae, H. & A. Adams 1854) 和捲管螺科 (Turridae, Swainson 1840) (Fischer, 1887 ; Thiele, 1929 ; Wenz, 1938)。 芋螺科的傳統分類僅有Conus一屬,全世界約有500~700種,棲息範圍分布於潮間 帶至深海,60%的物種分佈於印度太帄洋地區,唯一生活於溫帶的是加州芋螺 (Conus californicus) (Rockel et al., 1995),台灣有136種 (邵等,2008)。芋螺科的殼形呈倒錐形 (obconic) (圖一B) 或雙錐狀 (biconic),體層極大,殼表陎光滑或有不明顯的螺脊 (spiral ridge),螺殼尖頂較短,某些物種在殼肩處有突瘤 (nodule),殼口 (aperture) 狹長且沒 有明顯的水管通道,腹足長且窄,所有物種皆具有口蓋 (Taylor et al., 1993)。 筍螺科的種類為三科中最少,全世界約有300~400種,且有許多尚未命名的深海種; 傳統分為四屬: Duplicaria、Hastula、Terebra 和 Terenolla (Bratcher & Cernohorsky 1987), 分佈侷限於熱帶地區,生活棲地為淺水沙地或亞潮帶,台灣有60種 (邵等,2008)。筍 螺科的外殼在三科內同質性最高,修長的螺層如竹筍般 (圖一C),螺殼有水管缺口 (siphonal notch) (Kohn, 1998),而其水管通道較短或消失,殼口小而寬,使得腹足呈現 寬短狀,所有物種皆具有口蓋 (Taylor et al., 1993)。 捲管螺科的種類為三科中最多,加上化石種,全世界物種數可達10,000種,現存約 2 有4,000多種,已有600個屬被描述並加以分類,分佈從兩極到赤道都有,生活棲地為深 海至亞潮帶的淺水區,數量在芋螺超科中佔了90% (Bouchet et al., 2002),台灣有247種 (邵等,2008)。捲管螺科的殼形及腹足最為多樣化,螺層高度、殼口形狀及水管通道長 度都會隨物種而有變化,但大致為紡錘狀 (fusiform) (圖一D);殼口外唇 (outer lip) 有 凹陷(sinus),為本科獨特的殼形特徵,具有細長的水管通道 (Kohn, 1998),大部分具有 口蓋,少部分沒有 (Taylor et al., 1993)。 芋螺超科的前腸構造大致上由吻腔 (rhynchocoel)、吻部 (proboscis)、口腔 (buccal cavity)、齒舌構造 (radular appratus)、前腸腺體 (glands of the foregut) 及毒腺構造 (venom apparatus) 組成 (圖二)。芋螺科 Conus 屬的口管 (buccal tube)前端延伸產生可收 縮的吻部,在口管基部有口球 (buccal mass),吻部可在吻腔內收縮,屬內種間的吻腔構 造較為一致。 Miller (1970) 曾對筍螺的口部做解剖研究,其下分三型 (圖三),第一型: 吻腔的基 部有口球,具有可收縮的吻部、齒舌及毒腺構造,這型的筍螺與Conus的構造較相似,
Recommended publications
  • INDEPENDENT STUDY: Module 2, Class 20
    Hello Students, I am always seeking ways to improve these lessons. With some of the links no longer available, I wanted to credit them for the information I found at the time they were on the internet. My solution is a new color code. For sites that are no longer available, but were the source of information in the transcript, I have added an orange highlight with blue text. Also, there is another homework below, but you only have to choose one shell in question 1 and question 5. Sending Seashell Blessings! Shell INDEPENDENT STUDY: Module 2, Class 20 Please note: The pictures and comments in the transcript and recording below have been gathered over many years and where possible, I attribute them to their original source. If anyone connected with these photographs or comments would like them removed, please notify me and I will be happy to comply. The video recording of Class 20 is around 25 minutes long. Class 20: Shell #s 99,70,73,91, 98, 104 In recent lessons, we have undertaken an exploration of the diverse ways shells interact with man. We covered religion, medicine, artists, and jewelers, and we were just touching on architecture. Inspired by the incredible shapes created by mollusks for their seashell homes, man has been influenced to construct pagodas in the orient, and a remarkable opera house in Australia. Let’s see how the shells worked their architectural magic in the USA. This is a Thatcheria, also called by the common name of Japanese Wonder Shell. It is shell #99 in Ocean Oracle, and its meaning is “Respect.” Due to its quite unusual structure, when the first Thatcheria was discovered it was considered to be a freak of nature, a “monstrosity”.
    [Show full text]
  • Large Scale Species Delimitation Method for Hyperdiverse Groups
    LARGE SCALE SPECIES DELIMITATION METHOD FOR HYPERDIVERSE GROUPS Nicolas Puillandre Guillaume Achaz, Sarah Samadi [email protected] [email protected] Barcode Species hypotheses database ? … Species delimitation: the easy way Lophiotoma acuta Lophiotoma jickelli Turris garnonsii Turridrupa bijubata Gemmula unilineata Gemmula bianca n. sp. Most species already known, characters and criteria congruent intra-interspecific limit deduced from the other species Problem I : "The grey zone" "Species concepts" de Queiroz 2007 The characters do not differenciate at the same rythm All the criteria will not lead to the same species hypotheses Species = hypotheses validated or rejected with the addition of new data: Criteria: Similarity, Biological (direct and indirect), Phylogenetic Characters: DNA, Morphology, Ecology, Geography… Methods: Cross tests, Morphospecies, Trees/networks, Genetic structure, Distances Problem II: Hyperdiverse and largely unknown groups Conoidea Scratching Convulsions, death Hyperactivity Hypersensitivity Depression, paralysis Rollings Tremor Chill, death 4,000 described species, probably more than 15,000 Problem II: Hyperdiverse and largely unknown groups Lophiotoma acuta Turris garnonsii Problem III: The shell Convergence Phenotypic plasticity cranaos punicea neocaledonica badifasciata episoma solomonensis X. legitima I. cingulifera I. devoizei I. musivum consors netrion tippetti stenos paratractoides atractoides Kantor et al. 2008 Zool. Sc. Puillandre et al. 2010 Syst. & Biodiv. Problem I: "The grey zone" Problem II: Hyperdiverse and largely unknown groups Problem III: The shell How to propose species hypotheses in this context? DNA sequences Exploratory method (without a priori hypotheses) A new method based only on DNA sequences: ABGD, Automatic Barcode Gap Discovery ABGD 0.08 0.09 0.03 0.12 0.05 0.05 x Nb.
    [Show full text]
  • Corel Ventura
    Ruthenica, 2002, 12(2): 125-133. ©Ruthenica, 2002 Structure of the venom gland — muscular bulb complex in the family Turridae (Gastropoda, Conoidea) Alexandra I. MEDINSKAYA A.N. Severtzov Institute of Problems of Evolution, Leninsky Prospect 33, Moscow 117071, Russia ABSTRACT. The histological structure of poison gland Material and methods and muscular bulb in the family Turridae has been ex- amined. The data on anatomy of about 50 species studied Published data on the foregut structure in the form the basis of the work. A correlation was revealed turrid subfamilies Crassispirinae [Taylor et al., 1993; between the structure of poison gland itself, position of Kantor et al., 1997], Cochlespirinae [Medinskaya, its duct, and the inner structure of muscular bulb. Six 1999], and Turrinae [Medinskaya, 2002] were used main types and 3 subtypes were recognized in the structure in the work. of poison gland — muscular bulb complex. Taking into Besides, photographs were taken from serial sections account the high variability of the anterior part of digestive 10 μm thick and stained with Masson’s triple stain. system in Turridae, the isolation of the complex of char- List of species, which have been sectioned, with acters, which can unite groups of genera, is of certain details of their collection location. interest for the taxonomy of the family. Subfamily Turrinae 1. Decollidrillia nigra Habe et Ito, 1965 R/V “Vityaz”, sta. 7498, 43°37,7’N, 147°00,7’E, 180 m. Venom gland is one of the most characteristic 2. Cryptogemma corneus (Okutani, 1966) R/V “Vityaz”, sta. 3578, 38°35’N, 142°53,3’E, 1660m.
    [Show full text]
  • Final Version
    Notizen über Thatcheria Angas, Clinura Bellardi und Clinuropsis Vincent VON C. Beets 1. Es sind bisher über die merkwürdige rezente marine Gastropoden- Gruppe Thatcheria Angas, 1877 sehr wenige Gegebenheiten bekannt, ver- gleichende Untersuchungen mit fossilen Arten fehlen (fast) vollkommen und auch die Frage ihrer systematischen Stellung ist nie in befriedigender Weise gelöst worden. Auf Grund vergleichender Forschungen bei der Bestimmung gewisser fossiler, systematisch schwieriger, doch morphologisch einfacher ost- indischer Arten glaube ich diese Frage endlich — jedenfalls zum grössten Teil — lösen zu können, dank auch der von N.B. Eales ausgeführten ana- tomischen Untersuchung der einzigen lebenden Art dieser „Gattung”. Angas beschrieb 1877 eine Schale der hiesigen Art, Thatcheria mirabilis als Glied der Fusinae. Seither ist von Japan; er betrachtete sie vorläufig Thatcheria wie erweitert worden unsere Kenntnis von so gut nicht (bis 1938): Tryon (Man. of Conchology, 3, 1881, S. 98, 112; Struct. a. system. Conchology, 2, 1883, S. 135), der den Typus gesehen hatte, betrachtete ihn als eine unzweifelhaft scalaroide Monstruosität, nahe verwandt mit Hemifusus [„Semifusus”] Swainson, 1840 (= Cochlidium Gray, 1850); Fischer (Manuel de Conchyl., S. 623) erwähnte kurz Tryon’s Meinung, rechnete Thatcheria der also ebenfalls zu den Melongenidae. Auch Cossmann hat sich seit 1889 Meinung Tryon’s angeschlossen (cf. Cossmann, Essais de pal., 4, 1901, S. 62, 93—94). Dann wird diese Gattung nochmals erwähnt im Jahre 1919, bloss als Merkwürdigkeit, “a monstrosity of Fusus”, der Sammlung De Burgh (Journal of Conchology, Bd. 16, 1919, S. 66). 1934 bildete Yokoyama (On Cochlioconus, S. 406) nochmals Tryon’s Figur des Genotypus ab, dabei seine fossile Gattung Cochlioconus Yokoyama, 1928 richtigerweise als Synonym Yokoyama von Thatcheria (nach neben Conus zu stellen) anführend, übrigens auf Anregung von Pilsbry.
    [Show full text]
  • Marine Mollusca of Isotope Stages of the Last 2 Million Years in New Zealand
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232863216 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) Article in Journal- Royal Society of New Zealand · March 2011 DOI: 10.1080/03036758.2011.548763 CITATIONS READS 19 690 1 author: Alan Beu GNS Science 167 PUBLICATIONS 3,645 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Integrating fossils and genetics of living molluscs View project Barnacle Limestones of the Southern Hemisphere View project All content following this page was uploaded by Alan Beu on 18 December 2015. The user has requested enhancement of the downloaded file. This article was downloaded by: [Beu, A. G.] On: 16 March 2011 Access details: Access Details: [subscription number 935027131] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of the Royal Society of New Zealand Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t918982755 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) AG Beua a GNS Science, Lower Hutt, New Zealand Online publication date: 16 March 2011 To cite this Article Beu, AG(2011) 'Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia)', Journal of the Royal Society of New Zealand, 41: 1, 1 — 153 To link to this Article: DOI: 10.1080/03036758.2011.548763 URL: http://dx.doi.org/10.1080/03036758.2011.548763 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes.
    [Show full text]
  • (Gastropods and Bivalves) and Notes on Environmental Conditions of Two
    Journal of Entomology and Zoology Studies 2014; 2 (5): 72-90 ISSN 2320-7078 The molluscan fauna (gastropods and bivalves) JEZS 2014; 2 (5): 72-90 © 2014 JEZS and notes on environmental conditions of two Received: 24-08-2014 Accepted: 19-09-2014 adjoining protected bays in Puerto Princesa City, Rafael M. Picardal Palawan, Philippines College of Fisheries and Aquatic Sciences, Western Philippines University Rafael M. Picardal and Roger G. Dolorosa Roger G. Dolorosa Abstract College of Fisheries and Aquatic Sciences, Western Philippines With the rising pressure of urbanization to biodiversity, this study aimed to obtain baseline information University on species richness of gastropods and bivalves in two protected bays (Turtle and Binunsalian) in Puerto Princesa City, Philippines before the establishment of the proposed mega resort facilities. A total of 108 species were recorded, (19 bivalves and 89 gastropods). The list includes two rare miters, seven recently described species and first record of Timoclea imbricata (Veneridae) in Palawan. Threatened species were not encountered during the survey suggesting that both bays had been overfished. Turtle Bay had very low visibility, low coral cover, substantial signs of ecosystem disturbances and shift from coral to algal communities. Although Binunsalian Bay had clearer waters and relatively high coral cover, associated fish and macrobenthic invertebrates were of low or no commercial values. Upon the establishment and operations of the resort facilities, follow-up species inventories and habitat assessment are suggested to evaluate the importance of private resorts in biodiversity restoration. Keywords: Binunsalian Bay, bivalves, gastropods, Palawan, species inventory, Turtle Bay 1. Introduction Gastropods and bivalves are among the most fascinating groups of molluscs that for centuries have attracted hobbyists, businessmen, ecologists and scientists among others from around the globe.
    [Show full text]
  • Magyar Malakológiai Bibliográfia (1727–2004)
    01_cikkek.qxd 2005.11.21. 10:00 Page 5 MALAKOLÓGIAI TÁJÉKOZTATÓ MALACOLOGICAL NEWSLETTER 2005 23: 5–129 Magyar Malakológiai Bibliográfia (1727–2004) Varga András, Fűköh Levente & Krolopp Endre Az első Magyar Malakológiai Bibliográfia 1983-ban a Budapesten megrendezett Unitas Malacologica Kongresszus alkalmával jelent meg, Merényi László szerkesztésében. A ki- advány – Magyarországi pleisztocén és recens malakológiai bibliográfia címen – igyekezett áttekintést adni mindazokról a munkákról, melyek Magyarország területén végzett kutatá- sok eredményeit tartalmazták. Az összeállítás Magyarország alatt az adott munka megjele- nési idejének megfelelő ország területét vette alapul. Jelen összeállítás is követi ezt az alap- elvet, de a fentieken túl tartalmaz minden olyan munkát is, mely magyar szerzők nevéhez fűződően hazánkon kívüli területek malakológiai anyagának feldolgozását tartalmazza, vagy valamilyen formában kapcsolatba került a magyarországi malakológiai kutatásokkal (pl. VERDCOURT 2004). Az 1983-ban megjelent kiadványt követően egyre gyakrabban jelentkezett az igény, hogy az időközben fellelt, s a kötetből kimaradt régebbi irodalmi adatok, illetve az eltelt időszak- ban elvégzett munkák összegzése is jelenjen meg. Ennek az igénynek igyekezett eleget tenni az 1991-ben PERJÉSI György és HORVÁTH Csaba által összeállított munka, „Magyarországi pleisztocén és recens malakológiai bibliográfia (Pótlás)” a Malakológiai Tájékoztató 10. (1991) kötetében, majd ugyancsak ez a szerzőpáros készítette el az időközben megjelent újabb dolgozatok bibliográfiáját: „Magyarországi pleisztocén, quarter és recens malakológiai bibliográfia 1980-1990.” (sic!) címmel a Malakológiai Tájékoztató 11. (1992) kötetében. A fentiekben megjelent munkák óta eltelt közel negyed század ismét felvetette az igényt, hogy készüljön egy új, részben eltérő szerkesztési elveket követő munka, melynek céljai közt szerepel, hogy egyrészt összevonja a MERÉNYI, PERJÉSI & HORVÁTH féle össze- állításokat, másrészt az anyagot 2004-ig bezáróan kiegészítse az időközben megjelent dol- gozatokkal.
    [Show full text]
  • Synopsis of the Biological Data on the Loggerhead Sea Turtle Caretta Caretta (Linnaeus 1758)
    OF THE BI sTt1cAL HE LOGGERHEAD SEA TURTLE CAC-Err' CARETTA(LINNAEUS 1758) Fish and Wildlife Service U.S. Department of the Interior Biological Report This publication series of the Fish and Wildlife Service comprises reports on the results of research, developments in technology, and ecological surveys and inventories of effects of land-use changes on fishery and wildlife resources. They may include proceedings of workshops, technical conferences, or symposia; and interpretive bibliographies. They also include resource and wetland inventory maps. Copies of this publication may be obtained from the Publications Unit, U.S. Fish and Wildlife Service, Washington, DC 20240, or may be purchased from the National Technical Information Ser- vice (NTIS), 5285 Port Royal Road, Springfield, VA 22161. Library of Congress Cataloging-in-Publication Data Dodd, C. Kenneth. Synopsis of the biological data on the loggerhead sea turtle. (Biological report; 88(14) (May 1988)) Supt. of Docs. no. : I 49.89/2:88(14) Bibliography: p. 1. Loggerhead turtle. I. U.S. Fish and Wildlife Service. II. Title. III. Series: Biological Report (Washington, D.C.) ; 88-14. QL666.C536D63 1988 597.92 88-600121 This report may be cit,-;c1 as follows: Dodd, C. Kenneth, Jr. 1988. Synopsis of the biological data on the Loggerhead Sea Turtle Caretta caretta (Linnaeus 1758). U.S. Fish Wildl. Serv., Biol. Rep. 88(14). 110 pp. Biological Report 88(14) May 1988 Synopsis of the Biological Dataon the Loggerhead Sea Turtle Caretta caretta(Linnaeus 1758) by C. Kenneth Dodd, Jr. U.S. Fish and Wildlife Service National Ecology Research Center 412 N.E.
    [Show full text]
  • Identifikasi Gambar Hewan Moluska Dalam Media Cetak Dua Dimensi
    Jurnal Moluska Indonesia, April 2021 Vol 5(1):25 -33 ISSN : 2087-8532 Identifikasi Gambar Hewan Moluska Dalam Media Cetak Dua Dimensi (Identification of Molluscan Animal Image in Two-Dimensional Print Media) Nova Mujiono*, Alfiah, Riena Prihandini, Pramono Hery Santoso Pusat Penelitian Biologi LIPI, Cibinong, 16911, Indonesia. *Corresponding authors: [email protected], Telp: 021-8765056 Diterima: 7 Februari 2021 Revisi :16 Februari 2021 Disetujui: 14 Maret 2021 ABSTRACT Humans have known mollusks for a long time. The diverse and unique shell shapes are interesting to draw. The easiest medium to describe the shape of a mollusk is in two dimensions. This study aims to identify various images of mollusks in two-dimensional print media such as cloth, paper and plates. Based on the 10 sources of photos analyzed, 56 species of mollusks from 38 families were identified. The Gastropod class dominates with 45 species from 31 families, followed by Bivalves with 7 species from 5 families, then Cephalopods with 4 species from 2 families. Some of the problems found are the shape and proportion of images that different with specimens, some inverted or cropped images, different direction of rotation of the shells with specimens, and different colour patterns with specimens. Biological and distributional aspects of several families will be discussed briefly in this paper. Keywords : identification, mollusca, photo, species, two-dimension ABSTRAK Manusia telah mengenal hewan moluska sejak lama. Bentuk cangkangnya yang beraneka ragam dan unik membuatnya menarik untuk digambar. Media yang paling mudah untuk menggambarkan bentuk moluska ialah dalam bentuk dua dimensi. Penelitian ini bertujuan untuk mengidentifikasi bermacam gambar moluska dalam media cetak dua dimensi seperti kain, kertas, dan piring.
    [Show full text]
  • An Educational Publication of the Hawaiian Malacological Society
    AN EDUCATIONAL PUBLICATION OF THE HAWAIIAN MALACOLOGICAL SOCIETY VOL. XXVI NO.7 JULY. 1978 NEW SERIES NO. 223 by WILLIAM BRUCE WELLS This is the story of a Hawaiian conus species that is largely unknown and neglected, yet is very old. It is also something of a malacological mys- tery, involving the reappearance of a long-lost member of the genus whose birth and demise oc- curred in the mists of antiquity. The protagonist of our tale has no valid name, nor has a proper description ever been published, as far as I know, although the shell itself was discovered some years ago. Hence, keeping in mind John Tucker's recent discussion of the pit- falls in assigning names to new species, I am going to refer here to the Incognito Cone, for reasons that will become apparent. The circumstances of the shell's appearance (or, more properly, its reappearance) offer some interesting thoughts on environmental and ecolog- ical disruptions. My home is in Kailua, a residential suburb of Honolulu adjoining the Kaneohe Marine Corps Air Station on Mokapu Peninsula (see aerial photo). From time to time I shell along the wave bench cut into the slopes of Ulupau crater facing Kailua Bay and the open Pacific. Late in 1975 I beganto find a newcone - alwaysdead but never struction of a deep-waterocean outfall for a new crabbedor beachworn. I wasimmediately struck and enlargedsewage system to divert effluent by its distinctiveform andcolor pattern,but puz- from KaneoheBay to deeperwaters off Kailua zled by its suddenappearance in an area I had Bay, northeastof Mokapu Peninsula.Shoreline shelledfor someeight years.
    [Show full text]
  • Identifying Gastropod Spawn from DNA Barcodes: Possible but Not Yet Practicable
    Molecular Ecology Resources (2009) doi: 10.1111/j.1755-0998.2009.02576.x DNABlackwell Publishing Ltd BARCODING Identifying gastropod spawn from DNA barcodes: possible but not yet practicable N. PUILLANDRE,* E. E. STRONG,† P. BOUCHET,‡ M.-C. BOISSELIER,* A. COULOUX§ and S. SAMADI* *UMR 7138, Systématique, adaptation, évolution (UPMC/IRD/MNHN/CNRS), Université Pierre et Marie Curie (UPMC), CP26, 57 rue Cuvier, 75231 Paris cedex 05, France, †Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, MRC 163, PO Box 37012, Washington, DC 20013-7012, USA, ‡Muséum National d’Histoire Naturelle, 57 rue Cuvier, 75231 Paris cedex 05, France, §GENOSCOPE, Centre National de Séquençage, 91000 Evry, France Abstract Identifying life stages of species with complex life histories is problematic as species are often only known and/or described from a single stage. DNA barcoding has been touted as an important tool for linking life-history stages of the same species. To test the current efficacy of DNA barcodes for identifying unknown mollusk life stages, 24 marine gastropod egg capsules were collected off the Philippines in deep water and sequenced for partial fragments of the COI, 16S and 12S mitochondrial genes. Two egg capsules of known shallow- water Mediterranean species were used to calibrate the method. These sequences were compared to those available in GenBank and the Barcode of Life Database (BOLD). Using COI sequences alone, only a single Mediterranean egg capsule was identified to species, and a single Philippine egg capsule was identified tentatively to genus; all other COI sequences recovered matches between 76% and 90% with sequences from BOLD and Gen- Bank.
    [Show full text]
  • Shell's Field Guide C.20.1 150 FB.Pdf
    1 C.20.1 Human beings have an innate connection and fascination with the ocean & wildlife, but still we know more about the moon than our Oceans. so it’s a our effort to introduce a small part of second largest phylum “Mollusca”, with illustration of about 600 species / verities Which will quit useful for those, who are passionate and involved with exploring shells. This database made from our personal collection made by us in last 15 years. Also we have introduce website “www.conchology.co.in” where one can find more introduction related to our col- lection, general knowledge of sea life & phylum “Mollusca”. Mehul D. Patel & Hiral M. Patel At.Talodh, Near Water Tank Po.Bilimora - 396321 Dist - Navsari, Gujarat, India [email protected] www.conchology.co.in 2 Table of Contents Hints to Understand illustration 4 Reference Books 5 Mollusca Classification Details 6 Hypothetical view of Gastropoda & Bivalvia 7 Habitat 8 Shell collecting tips 9 Shell Identification Plates 12 Habitat : Sea Class : Bivalvia 12 Class : Cephalopoda 30 Class : Gastropoda 31 Class : Polyplacophora 147 Class : Scaphopoda 147 Habitat : Land Class : Gastropoda 148 Habitat :Freshwater Class : Bivalvia 157 Class : Gastropoda 158 3 Hints to Understand illustration Scientific Name Author Common Name Reference Book Page Serial No. No. 5 as Details shown Average Size Species No. For Internal Ref. Habitat : Sea Image of species From personal Land collection (Not in Scale) Freshwater Page No.8 4 Reference Books Book Name Short Format Used Example Book Front Look p-Plate No.-Species Indian Seashells, by Dr.Apte p-29-16 No.
    [Show full text]