Implications for Volcano Monitoring & the Lateral Extent of Magmatic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DOCUMENT RESUME ED 262 129 UD 024 466 Hawaiian Studies
DOCUMENT RESUME ED 262 129 UD 024 466 TITLE Hawaiian Studies Curriculum Guide. Grades K-1. INSTITUTION Hawaii State Dept. of Education, Honolulu. Office of Instructional Services. PUB DATE Dec 83 NOTE 316p.; For the Curriculum Guides for Grades 2,3, and 4, see UD 024 467-468, and ED 255 597. "-PUB TYPE Guides Classroom Use - Guides (For Teachers) (052) EDRS PRICE MF01/PC13 Plus Postage. DESCRIPTORS Community Resources; *Cultural Awareness; *Cultural Education; *Early Childhood Education; Grade 1; Hawaiian; *Hawaiians; Instructional Materials; Kindergarten; *Learning Activities; Pacific Americans; *Teacher Aides; Vocabulary IDENTIFIERS *Hawaii ABSTRACT This curriculum guide suggests activities and educational experiences within a Hawaiian cultural context for kindergarten and Grade 1 students in Hawaiian schools. First, a introduction-discusses the contents of the guide, the relations Hip of - the classroom teacher and the kupuna (ljawaiian-speaking elder); the identification and scheduling of Kupunas; and how to use the ide. The remainder of the guide is divided into two major sections. Each is preceded by an overview which outlines the subject areas into which Hawaiian Studies instruction is integrated; the emphases or major lesson topics taken up within each subject, area; the learning objectives addressed by the instructional activities; and a key to the unit's appendices, which provide cultural information to supplement the activities. The activities in Unit I focus on the "self" and the immediate environment. They are said to give children ___Dppor-tumit-ies to investigate and experience feelings and ideas and then to determine whether they are acceptable within classroom and home situations. The activities of Unit II involve the children in experiences dealing with the "'ohana" (family) by having them identify roles, functions, dependencies, rights, responsibilities, occupations, and other cultural characteristics of the 'ohana. -
Field Excursion Report 2010
Presented at “Short Course on Geothermal Drilling, Resource Development and Power Plants”, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, January 16-22, 2011. GEOTHERMAL TRAINING PROGRAMME LaGeo S.A. de C.V. GEOTHERMAL ACTIVITY AND DEVELOPMENT IN SOUTH AMERICA: SHORT OVERVIEW OF THE STATUS IN BOLIVIA, CHILE, ECUADOR AND PERU Ingimar G. Haraldsson United Nations University Geothermal Training Programme Orkustofnun, Grensasvegi 9, 108 Reykjavik ICELAND [email protected] ABSTRACT South America holds vast stores of geothermal energy that are largely unexploited. These resources are largely the product of the convergence of the South American tectonic plate and the Nazca plate that has given rise to the Andes mountain chain, with its countless volcanoes. High-temperature geothermal resources in Bolivia, Chile, Ecuador and Peru are mainly associated with the volcanically active regions, although low temperature resources are also found outside them. All of these countries have a history of geothermal exploration, which has been reinvigorated with recent changes in global energy prices and the increased emphasis on renewables to combat global warming. The paper gives an overview of their main regions of geothermal activity and the latest developments in the geothermal sector are reviewed. 1. INTRODUCTION South America has abundant geothermal energy resources. In 1999, the Geothermal Energy Association estimated the continent’s potential for electricity generation from geothermal resources to be in the range of 3,970-8,610 MW, based on available information and assuming the use of technology available at that time (Gawell et al., 1999). Subsequent studies have put the potential much higher, as a preliminary analysis of Chile alone assumes a generation potential of 16,000 MW for at least 50 years from geothermal fluids with temperatures exceeding 150°C, extracted from within a depth of 3,000 m (Lahsen et al., 2010). -
Abandonment of the Name Hartford Hill Rhyolitetuff and Adoption of New Formation Names for Middle Tertiary Ash-Flow Tuffs in the Carson City- Silver City Area, Nevada
Abandonment of the Name Hartford Hill RhyoliteTuff and Adoption of New Formation Names for Middle Tertiary Ash-Flow Tuffs in the Carson City- Silver City Area, Nevada GEOLOGICAL SURVEY BULLETIN 1457-D Abandonment of the Name Hartford Hill Rhyolite Tuff and Adoption of New Formation Names for Middle Tertiary Ash-Flow Tuffs in the Carson City- Silver City Area, Nevada By EDWARD C. BINGLER CONTRIBUTIONS TO STRATIGRAPHY GEOLOGICAL SURVEY BULLETIN 1457-D UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1978 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Dingier, Edward C. Abandonment of the name Hartford Hill rhyolite tuff and adoption of new formation names for middle Tertiary ash-flow tuffs in the Carson City - Silver City area, Nevada (Contributions to stratigraphy) Geological Survey Bulletin 1457-D Supt. of Docs. No.: I 19.3: 1457-D Bibliography: p. D19 I. Geology, Stratigraphic-Tertiary. 2. Volcanic ash, tuff, etc.-Nevada- Carson City region. 3. Geology-Nevada-Carson City region. I. Title. II. Series. HI. Series: United States. Geological Survey. Bulletin 1457-D. QE75.B9 no. 1457-D [QE691] 557.3'08s [551.7'8] 78-606063 For sale by the Superintendent of Documents, U. S. Government Printing Office Washington, D. C. 20402 Stock Number 024-001-03124-8 CONTENTS Page Abstract___________________________________ Dl Introduction ______________________________________ 1 Acknowledgments ________________________________ 5 Ash-flow stratigraphy in the Carson City-Silver City area ___________ 7 Mickey Pass Tuff ________________________________ 7 Lenihan Canyon Tuff _____________________________ 8 Nine Hill Tuff _______________________________ 11 Eureka Canyon Tuff ______________________________ 14 Dacitetuff __________________________________ 16 Rhyolite tuff and augite rhyodacite tuff ___________________ 16 Santiago Canyon Tuff _____________________________ 17 References cited _____________________________^_____ 19 ILLUSTRATIONS Page FIGURE 1. -
Full-Text PDF (Final Published Version)
Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H. -
University of Nevada, Reno a Study of Pleistocene Volcano Manantial
University of Nevada, Reno A study of Pleistocene volcano Manantial Pelado, Chile: Unique access to a long history of primitive magmas in the thickened crust of the Southern Andes A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by Heather Winslow Dr. Philipp Ruprecht, Thesis Advisor May 2018 THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by HEATHER WINSLOW Entitled A Study Of Pleistocene Volcano Manantial Pelado, Chile: Unique Access To A Long History Of Primitive Magmas In The Thickened Crust Of The Southern Andes be accepted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Philipp Ruprecht, Ph.D., Advisor Wenrong Cao, Ph.D., Committee Member Adam Csank, Ph.D., Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School May, 2018 i ABSTRACT Textural and geochemical analysis of lavas and tephra from a poorly studied, glacially dissected, mafic, stratocone, Manantial Pelado, in the Southern Andean Volcanic Zone was collected to characterize the volcano’s petrogenesis and assess its primitive nature. Manantial Pelado lies within the transitional segment of the Southern Volcanic Zone (35.5°S) amidst thickened crust (~55 km) while surrounded by extensive silicic volcanism such as the Descabezado Grande-Cerro Azul Volcanic Complex. How mafic magmas reached the surface through thickened continental crust is a larger question at hand, but prior to addressing broader processes at work, initial geochemical characterization is necessary. Understanding the full extent of its primitive nature is crucial for broader insight of proximal vent interactions and relationships as well as insight towards magma genesis. -
Receiver Function Analyses of Uturuncu Volcano, Bolivia and Vicinity
University of South Florida Scholar Commons School of Geosciences Faculty and Staff Publications School of Geosciences 11-2017 Receiver Function Analyses of Uturuncu Volcano, Bolivia and Vicinity Heather McFarlin University of South Florida Douglas Christensen University of Alaska, Fairbanks Stephen R. McNutt University of South Florida, [email protected] Kevin M. Ward University of Utah Jamie Ryan University of Arizona See next page for additional authors Follow this and additional works at: https://scholarcommons.usf.edu/geo_facpub Part of the Earth Sciences Commons Scholar Commons Citation McFarlin, Heather; Christensen, Douglas; McNutt, Stephen R.; Ward, Kevin M.; Ryan, Jamie; Zandt, George; and Thompson, Glenn, "Receiver Function Analyses of Uturuncu Volcano, Bolivia and Vicinity" (2017). School of Geosciences Faculty and Staff Publications. 1430. https://scholarcommons.usf.edu/geo_facpub/1430 This Article is brought to you for free and open access by the School of Geosciences at Scholar Commons. It has been accepted for inclusion in School of Geosciences Faculty and Staff Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Authors Heather McFarlin, Douglas Christensen, Stephen R. McNutt, Kevin M. Ward, Jamie Ryan, George Zandt, and Glenn Thompson This article is available at Scholar Commons: https://scholarcommons.usf.edu/geo_facpub/1430 Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Receiver function analyses of Uturuncu volcano, Bolivia and vicinity Heather McFarlin1, Douglas Christensen2, Stephen R. McNutt1, Kevin M. Ward3, Jamie Ryan4, George Zandt4, and Glenn Thompson1 1University of South Florida School of Geosciences, 4202 E. Fowler Avenue, NES 107, Tampa, Florida 33620, USA GEOSPHERE; v. -
Scale Deformation of Volcanic Centres in the Central Andes
letters to nature 14. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides of 1–1.5 cm yr21 (Fig. 2). An area in southern Peru about 2.5 km and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). east of the volcano Hualca Hualca and 7 km north of the active 15. Hansen, M. (ed.) Constitution of Binary Alloys (McGraw-Hill, New York, 1958). 21 16. Emsley, J. (ed.) The Elements (Clarendon, Oxford, 1994). volcano Sabancaya is inflating with U LOS of about 2 cm yr . A third 21 17. Tanaka, H., Takahashi, I., Kimura, M. & Sobukawa, H. in Science and Technology in Catalysts 1994 (eds inflationary source (with ULOS ¼ 1cmyr ) is not associated with Izumi, Y., Arai, H. & Iwamoto, M.) 457–460 (Kodansya-Elsevier, Tokyo, 1994). a volcanic edifice. This third source is located 11.5 km south of 18. Tanaka, H., Tan, I., Uenishi, M., Kimura, M. & Dohmae, K. in Topics in Catalysts (eds Kruse, N., Frennet, A. & Bastin, J.-M.) Vols 16/17, 63–70 (Kluwer Academic, New York, 2001). Lastarria and 6.8 km north of Cordon del Azufre on the border between Chile and Argentina, and is hereafter called ‘Lazufre’. Supplementary Information accompanies the paper on Nature’s website Robledo caldera, in northwest Argentina, is subsiding with U (http://www.nature.com/nature). LOS of 2–2.5 cm yr21. Because the inferred sources are more than a few kilometres deep, any complexities in the source region are damped Acknowledgements such that the observed surface deformation pattern is smooth. -
The Loma Seca Tuff and the Calabozos Caldera: a Major Ash-Flow and Caldera Complex in the Southern Andes of Central Chile
The Loma Seca Tuff and the Calabozos caldera: A major ash-flow and caldera complex in the southern Andes of central Chile WES HILDRETH U.S. Geological Survey, Menlo Park, California 94025 ANITA L. GRÜNDER Department of Geology, Stanford University, Stanford, California 94305 ROBERT E. DRAKE Department of Geology and Geophysics, University of California, Berkeley, California 94720 ABSTRACT Voluminous ash-flow sheets of early Miocene agglutinates that erupted for the most part from to Quaternary age are extensive and well- long-lived composite centers. In contrast, south A 26 x 14-km composite ring-structure cal- preserved in the arid central segment (Guest, of 37°S, high-alumina basalt exceeds the inter- dera of late Pleistocene age has been discovered 1969; Pichler and Zeil, 1972; Kussmaul and mediate rocks (Moreno, 1974) and to the north and mapped near the Andean crest in central others, 1977; Baker, 1981), where such sheets (28°S-33°S), an extensive segment of the Andes Chile (35°30'S). Rhyodacitic to dacitic zoned may constitute 10% to 40% of the total volume apparently has lacked post-Miocene volcanic ac- ash-flow sheets, each representing 150 to 300 erupted during that time interval (Francis and tivity entirely. km3 of magma, were emplaced 0.8, 0.3, and Rundle, 1976; Baker and Francis, 1978). Ash- Between 33°S and 36°S, the belt of active 0.15 m.y. ago; the youngest of the associated flow eruptions have also been important in the stratovolcanoes lies —260 km east of the axis of collapses was closely followed by resurgent basalt-poor part (33°S-36°S) of the southern the Chile Trench and ~90 km above the top of a doming of the caldera floor and development of segment, and one contribution of this study is to Wadati-Benioff zone that dips ~20°E (Stauder, a longitudinal graben. -
Chronology and References of Volcanic Eruptions and Selected Unrest in the United States, 1980- 2008
Chronology and References of Volcanic Eruptions and Selected Unrest in the United States, 1980- 2008 By Angela K. Diefenbach, Marianne Guffanti, and John W. Ewert Open-File Report 2009–1118 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2009 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation Diefenbach, A.K., Guffanti, M., and Ewert, J.W., 2009, Chronology and references of volcanic eruptions and selected unrest in the United States, 1980-2008: U.S. Geological Survey Open-File Report 2009-1118, 85 p. [http://pubs.usgs.gov/of/2009/1118/]. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. 2 Contents Part I…..............................................................................................................................................4 Introduction .......................................................................................................................................4 -
1934 the MOUNTAINEERS Incorpora.Ted T�E MOUNTAINEER VOLUME TWENTY-SEVEN Number One
THE MOUNTAINEER VOLUME TWENTY -SEVEN Nom1-0ae Deceml.er, 19.34 GOING TO GLACIER PUBLISHED BY THE MOUNTAIN�ER.S INCOaPOllATBD SEATTLI: WASHINGTON. _,. Copyright 1934 THE MOUNTAINEERS Incorpora.ted T�e MOUNTAINEER VOLUME TWENTY-SEVEN Number One December, 1934 GOING TO GLACIER 7 •Organized 1906 Incorporated 1913 EDITORIAL BOARD, 1934 Phyllis Young Katharine A. Anderson C. F. Todd Marjorie Gregg Arthur R. Winder Subscription Price, $2.00 a Year Annual (only) Seventy-five Cents Published by THE MOUNTAINEERS Incorporated Seattle, Washington Entered as second class matter, December 15, 1920, at the Postofflce at Seattle, Washington, under the Act of March 3, 1879. TABLE OF CONTENTS Greeting ........................................................................Henr y S. Han, Jr. North Face of Mount Rainier ................................................ Wolf Baiter 3 r Going to Glacier, Illustrated ............... -.................... .Har iet K. Walker 6 Members of the 1934 Summer Outing........................................................ 8 The Lake Chelan Region ............. .N. W. <J1·igg and Arthiir R. Winder 11 Map and Illustration The Climb of Foraker, Illitstrated.................................... <J. S. Houston 17 Ascent of Spire Peak ............................................... -.. .Kenneth Chapman 18 Paradise to White River Camp on Skis .......................... Otto P. Strizek 20 Glacier Recession Studies ................................................H. Strandberg 22 The Mounta,ineer Climbers................................................ -
Keeping an Eye on Alaska
Keeping an Eye on Alaska Cutting Edge Remote Sensing Activities in the State FJ Meyer1) 2) 1)Earth & Planetary Remote Sensing, University of Alaska Fairbanks 2)Alaska Satellite Facility (ASF) Collaborating Organizations: My Qualifications • Technical Expertise: • Experience in Science from Radar: – A decade of radar remote sensing – PI of 7 active science projects (~$1.8 M) research Volcano Monitoring • More than 80 publications • Four professional awards Atmospheric Mapping • Chair of several committees and Ice Dynamics working groups (incl. IEEE Alaska Section GRSS Chapter) Ionospheric Science – Involved in large number of satellite missions IEEE Alaska Section Luncheon, May 23, 2012 F. Meyer et al. 2 Table of Contents • The Importance of Remote Sensing for Alaska • Remote Sensing Assets in the State – The Alaska Satellite Facility – Geographic Information Network of Alaska (GINA) – UAF’s Unmanned Aerial Vehicle Program • Examples of Remote Sensing Applications for Alaska – Remote Sensing of Volcanic hazards – The Alaska Volcano Observatory – High Resolution Radar Data for Alaska – Sea Ice Monitoring – Oil Spill Mapping and Tracking – Topographic Mapping – The Alaska Mapping Initiative – Hazard Assessment through cm-Scale Surface Deformation Mapping • Announcements and Conclusions Polarimetric SAR Image over Sea Ice Image from: http://www.astrium-geo.com 3 Applications of Remote Sensing for Alaska Monitoring of Oil Spills Oil Spills Spaceborne Radar Image of Prestige Spill, 2002Prestigeof Image Radar Spaceborne Oil Spills appear dark in radar imagery of oceans 4 Applications of Remote Sensing for Alaska Monitoring Cryospheric Change Oil Spills Measuring centimeter-scale ice motion from Space Cryospheric Change 5 Applications of Remote Sensing for Alaska Volcanoes Oil Spills Watching Volcanoes “Breath” from Space Cryospheric Change Mt. -
Large-Scale Inflation of Tungurahua Volcano (Ecuador) Revealed by Persistent Scatterers SAR Interferometry J
Large-scale inflation of Tungurahua volcano (Ecuador) revealed by Persistent Scatterers SAR interferometry J. Champenois, V. Pinel, S. Baize, L. Audin, H. Jomard, A. Hooper, A. Alvarado, H. Yepes To cite this version: J. Champenois, V. Pinel, S. Baize, L. Audin, H. Jomard, et al.. Large-scale inflation of Tungurahua vol- cano (Ecuador) revealed by Persistent Scatterers SAR interferometry. Geophysical Research Letters, American Geophysical Union, 2014, 41 (16), pp.5821-5828. 10.1002/2014GL060956. hal-02614039 HAL Id: hal-02614039 https://hal.archives-ouvertes.fr/hal-02614039 Submitted on 20 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GeophysicalResearchLetters RESEARCH LETTER Large-scale inflation of Tungurahua volcano (Ecuador) 10.1002/2014GL060956 revealed by Persistent Scatterers SAR interferometry Key Points: J. Champenois1,2, V. Pinel2, S. Baize1, L. Audin2, H. Jomard1, A. Hooper3, A. Alvarado4, and H. Yepes2,4 • We use PS-InSAR method to detect volcanic deformation at 1Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses,