Stealth and Equiluminous Materials for Scattering Cancellation and Wave Diffusion

Total Page:16

File Type:pdf, Size:1020Kb

Stealth and Equiluminous Materials for Scattering Cancellation and Wave Diffusion Stealth and equiluminous materials for scattering cancellation and wave diffusion S. Kuznetsova,1, ∗ J.-P. Groby,2 L.M. Garcia-Raffi,3 and V. Romero-García2, y 1Laboratoire d’Acoustique de l’Université du Mans (LAUM), UMR CNRS 6613, Institut d’Acoustique - Graduate School (IA-GS), CNRS, Le Mans Université, France 2Laboratoire d’Acoustique de l’Université du Mans, LAUM - UMR 6613 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 LE MANS CEDEX 9, France 3Instituto de Matemática Pura y Applicada (IUMPA), Universitat Politècnica de València, Camino de vera s/n, 46022, Valencia, Spain. (Dated: September 3, 2020) We report a procedure to design 2-dimensional acoustic structures with prescribed scattering properties. The structures are designed from targeted properties in the reciprocal space so that their structure factors, i.e., their scattering patterns under the Born approximation, exactly follow the desired scattering properties for a set of wavelengths. The structures are made of a distribution of rigid circular cross-sectional cylinders embedded in air. We demonstrate the efficiency of the procedure by designing 2-dimensional stealth acoustic materials with broadband backscattering suppression independent of the angle of incidence and equiluminous acoustic materials exhibiting broadband scattering of equal intensity also independent of the angle of incidence. The scattering intensities are described in terms of both single and multiple scattering formalisms, showing excellent agreement with each other, thus validating the scattering properties of each material. I. INTRODUCTION stealth acoustic materials have been numerically and experimentally designed to provide stealthiness on 24 Scattering of waves by a many-body system is an in- demand robust to losses . A subclass of stealth mate- terdisciplinary topic of interest in several branches of sci- rials is given by the stealth hyperunifom materials for which transparency appears in a subset of wave vectors ence and technology ranging from statistical mechanics 10–14 or condensed matter to wave physics. When such a sys- around the origin . The relevance of hyperuniformity tem is excited by an incident wave, the incoming energy appeared in condensed matter physics when classical is both scattered and absorbed by the obstacle. This re- systems of particles interacting with certain soft long- sults in a scattering pattern that is highly dependent on ranged pair potentials could counterintuitively freeze the geometry and size of the scatterer distribution as well into hyperuniform states. In other words, these systems as on the frequency-dependent properties of the material were counter to the common expectation that liquids of the constituent scatterers. The manipulation of wave freeze into crystal structures with high symmetry. An scattering has long been a topic of discussion in various increasing interest was focused on stealth hyperuniform classical areas of physics including electromagnetism1, materials, or simply on hyperuniform materials, as they photonics2 and acoustics3, but in recent decades signifi- have been used to design networks with complete band cant attention has been paid to artificial structured me- gaps comparable in size to those of a photonic/phononic dia to control waves. Photonic4–6 or phononic7–9 crys- crystal, while at the same time maintain statistical tals, hyperuniform and stealth materials10–14 as well as isotropy, enabling waveguide geometries not possible 15–18 with photonic/phononic crystals as well as high-density metamaterials are just a few examples of many-body 12,25–29 systems to control the scattering of the incident wave. disordered transparent materials. Another 4–6 important class of disordered many-body systems are Ordered structures, such as photonic and 12 7–9,19 equiluminous materials , which scatter waves uniformly phononic crystals, exhibit multiple overlapping in all directions. Such omnidirectional diffusion could Bragg diffraction peaks and thus peculiar dispersion play an important role in improving room acoustics by relations that can serve as efficient tools for the control avoiding unwanted reflections3,30,31. of wave scattering. Metamaterials are complex struc- arXiv:2009.01068v1 [physics.app-ph] 2 Sep 2020 tures that can be tuned and reconfigured to control the Materials with targeted scattering properties are usu- scattering of the incident wave through the resonance ally designed by inverse methods, i.e., their structure of their constituent building blocks9,20,21. Another way parameters are extracted from the scattering data. Al- of manipulating wave scattering is offered by disordered though this approach relies on an ill-posed problem32,33, structures, in which the phase transition between the various material design tools based on targeting the scat- wave diffusion and localization regimes occurs due to tering properties of the structure have been implemented the interference of the waves scattered in the media22,23. in both wave physics and condensed matter. Inverse Among the disordered systems, stealth materials are approach34–36 consists in optimizing the inter-particle in- characterized by the stealthiness, i.e. the suppression of teractions (thus minimizing some energetic characteris- the single scattering of the incident radiation for a given tics) leading to self-assembling from a simpler condition. subset of wave vectors11,12. Recently, one dimensional Optimization methods operating in direct space rely 2 on zero-temperature and near-melting temperature tech- II. SCATTERING IN MANY-BODY SYSTEMS: nique to obtain lattice ground state configurations34,37–41 STRUCTURE FACTOR AND MULTIPLE and collective-coordinates technique for soft matter and SCATTERING THEORY disordered ground states42,43. Usual numerical meth- ods include black-box optimization benchmarking44, We are interested in the scattering of acoustic waves by probabilistic45,46 and genetic algorithms47,48 to name a structures made of a distribution of N rigid cylindrical few. A flat acoustic lens49,50 focusing sound at a pre- scatterers with circular cross-section of identical radius 51 defined point, a photonic-crystal-based structure per- Ri = R0 and located at positions ~ri with i = 1; :::; N. forming requested optical tasks, or a sonic demultiplex- These N scatterers are embedded in a square area Ω of ing device52 spatially separating several wavelengths were the direct space of side L. We assume weak scattering, designed using a genetic algorithm in conjunction with i.e., the amplitude of the scattered field is small compared the multiple scattering theory (MST)53,54 to optimize a to that of the incident field. Under this condition, we as- cluster of scatterers. A 2-dimensional low loss acous- sume that the Born approximation is satisfied. Strictly tic cloak for air-born sound has also been designed by speaking, Born approximation corresponds to the case means of genetic algorithm and simulated annealing55. in which the incident field to the i-th cylinder is only Nonlinear conjugate gradient algorithm has been used composed of the incident wave, i.e. no scattererd waves to optimize a graded porous medium composed of a pe- by the other scatterers impinges the i-th scatterer. For riodic arrangement of ordered unit cells to provide the the geometries considered in this work, the weak scatter- optimal acoustic reflection and transmission56. Recently ing approximation is thus valid for low filling fractions scattering suppression of electromagnetic waves for pre- and when the scatterer radii are small compared to the scribed wavelengths and directions has been achieved by wavelength (see AppendixA for more details). pre-assigning the scattering properties in the reciprocal This discrete system can be characterized by the fol- space and using generalized Hilbert transform57. lowing scalar function defined in the spatial (direct) do- main Ω as N X ρ(~r) = f(~r) ∗ δ(~r − ~ri); (1) i=1 where ∗ is the convolution operator, δ(~x) is the Dirac’s In this work, we design disordered 2-dimensional (2D) delta and f(~r) is the transparency of the scatterer, de- acoustic structures consisting of rigid circular cross- fined without loss of generality as sectional cylinders embedded in air. These structures are designed to present prescribed scattering properties 0 if j~rj > R ; f(~r) = 0 (2) when excited by a plane wave. We target the information 1 if j~rj ≤ R0: on the scattering pattern in the reciprocal space and use an optimization procedure, which optimizes the positions Under these assumptions, the amplitude of the scattered of scatterers to ensure the targeted scattering properties. wave is proportional to the spatial Fourier transform of A weak scattering approach is followed, which allows us ρ(~r), FT (G~ ), where G~ is a vector of the reciprocal space. to characterize the system by its structure factor. This This follows from the well known theory in optics that the factor turns out to be proportional to the scattered in- diffraction pattern of a structure is equal to the product tensity and only depends on the scatterer positions when of the diffraction pattern of the base element and that of they are identical. Therefore, the optimization proce- the array58. Through this work we assume a time har- dure finds the distribution of scatterers producing the monic dependence of the type e−{!t where ! the angular targeted structure factor values by fixing the scattering frequency. With this, we simply end with properties in the reciprocal space and as a consequence N X ~ the desired scattering properties. The polar scattering FT (G~ ) = f(G~ ) × e−{G~ri : (3) pattern of the optimized distribution of scatterers is first i=1 evaluated from the representation of the structure factor in the reciprocal space by using the von Laue formulation. Therefore, the scattered intensity is given by This scattering pattern is then evaluated independently N N X X ~ by the MST, which is a self-consistent method account- I(G~ ) = jf(G~ )j2 × e−{G(~ri−~rj ); (4) ing for all orders of scattering. Comparison of the results i=1 j=1 of the two methods allows us to validate the approxima- tion of weak scattering and consequently the results.
Recommended publications
  • Hyperuniform States of Matter
    Hyperuniform States of Matter Salvatore Torquato Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics,Princeton University,Princeton, New Jersey 08544, USA Abstract Hyperuniform states of matter are correlated systems that are characterized by an anomalous suppression of long- wavelength (i.e., large-length-scale) density fluctuations compared to those found in garden-variety disordered sys- tems, such as ordinary fluids and amorphous solids. All perfect crystals, perfect quasicrystals and special disordered systems are hyperuniform. Thus, the hyperuniformity concept enables a unified framework to classify and structurally characterize crystals, quasicrystals and the exotic disordered varieties. While disordered hyperuniform systems were largely unknown in the scientific community over a decade ago, now there is a realization that such systems arise in a host of contexts across the physical, materials, chemical, mathematical, engineering, and biological sciences, in- cluding disordered ground states, glass formation, jamming, Coulomb systems, spin systems, photonic and electronic band structure, localization of waves and excitations, self-organization, fluid dynamics, number theory, stochastic point processes, integral and stochastic geometry, the immune system, and photoreceptor cells. Such unusual amor- phous states can be obtained via equilibrium or nonequilibrium routes, and come in both quantum-mechanical and classical varieties. The connections of hyperuniform states of matter to many different areas of fundamental science appear to be profound and yet our theoretical understanding of these unusual systems is only in its infancy. The purpose of this review article is to introduce the reader to the theoretical foundations of hyperuniform ordered and disordered systems.
    [Show full text]
  • Arxiv:2103.14989V2 [Cond-Mat.Soft]
    Structural Characterization of Many-Particle Systems on Approach to Hyperuniform States Salvatore Torquato∗ Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA (Dated: April 1, 2021) The study of hyperuniform states of matter is an emerging multidisciplinary field, impinging on topics in the physical sciences, mathematics and biology. The focus of this work is the exploration of quantitative descriptors that herald when a many-particle system in d-dimensional Euclidean space Rd approaches a hyperuniform state as a function of the relevant control parameter. We establish quantitative criteria to ascertain the extent of hyperuniform and nonhyperuniform distance-scaling regimes as well as the crossover point between them in terms of the “volume” coefficient A and “surface-area” coefficient B associated with the local number variance σ2(R) for a spherical window of radius R. The larger the ratio B/A, the larger the hyperuniform scaling regime, which becomes of infinite extent in the limit B/A → ∞. To complement the known direct-space representation of the coefficient B in terms of the total correlation function h(r), we derive its corresponding Fourier representation in terms of the structure factor S(k), which is especially useful when scattering infor- mation is available experimentally or theoretically. We also demonstrate that the free-volume theory of the pressure of equilibrium packings of identical hard spheres that approach a strictly jammed state either along the stable crystal or metastable disordered branch dictates that such end states be exactly hyperuniform.
    [Show full text]
  • Arxiv:1804.04927V2 [Cond-Mat.Dis-Nn] 20 Aug 2018
    Absence of hyperuniformity in amorphous hard-sphere packings of nonvanishing complexity M. J. Godfrey and M. A. Moore School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK (Dated: August 21, 2018) We relate the structure factor S(k ! 0) in a system of jammed hard spheres of number density ρ to its complexity per particle Σ(ρ) by the formula S(k ! 0) = −1=[ρ2Σ00(ρ) + 2ρΣ0(ρ)]. We have verified this formula for the case of jammed disks in a narrow channel, for which it is possible to find Σ(ρ) and S(k) analytically. Hyperuniformity, which is the vanishing of S(k ! 0), will therefore not occur if the complexity is nonzero. An example is given of a jammed state of hard disks in a narrow channel which is hyperuniform when generated by dynamical rules that produce a non-extensive complexity. Systems that are hyperuniform have small long-wavelength in the first place”. In this paper we argue for the correctness density fluctuations. In other words, their structure factor of this view, by showing that at least in the regime where the S(k) vanishes as the wavevector k ! 0. The structure logarithm of the number of jammed states (a quantity usually factor of N spheres whose centers are at rj is defined as referred to as the complexity ΣN;V ) is extensive and propor- 2 S(k) = jρkj =N, where the Fourier transform of the num- tional to N one can derive a simple formula for the finite value PN of S(k ! 0) in terms of derivatives of Σ .
    [Show full text]
  • Disordered Hyperuniform Point Patterns in Physics, Mathematics and Biology
    Disordered Hyperuniform Point Patterns in Physics, Mathematics and Biology Salvatore Torquato Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied & Computational Mathematics Princeton University http://cherrypit.princeton.edu . – p. 1/50 States (Phases) of Matter Source: www.nasa.gov . – p. 2/50 States (Phases) of Matter Source: www.nasa.gov We now know there are a multitude of distinguishable states of matter, e.g., quasicrystals and liquid crystals, which break the continuous translational and rotational symmetries of a liquid differently from a solid crystal. – p. 2/50 What Qualifies as a Distinguishable State of Matter? Traditional Criteria Homogeneous phase in thermodynamic equilibrium Interacting entities are microscopic objects, e.g. atoms, molecules or spins Often, phases are distinguished by symmetry-breaking and/or some qualitative change in some bulk property . – p. 3/50 What Qualifies as a Distinguishable State of Matter? Traditional Criteria Homogeneous phase in thermodynamic equilibrium Interacting entities are microscopic objects, e.g. atoms, molecules or spins Often, phases are distinguished by symmetry-breaking and/or some qualitative change in some bulk property Broader Criteria Reproducible quenched/long-lived metastable or nonequilibrium phases, e.g., spin glasses and structural glasses Interacting entities need not be microscopic, but can include building blocks across a wide range of length scales, e.g., colloids and metamaterials Endowed
    [Show full text]
  • Nonlocal Effective Electromagnetic Wave Characteristics of Composite Media: Beyond the Quasistatic Regime
    PHYSICAL REVIEW X 11, 021002 (2021) Nonlocal Effective Electromagnetic Wave Characteristics of Composite Media: Beyond the Quasistatic Regime Salvatore Torquato * Department of Physics, Princeton University, Princeton, New Jersey 08544, USA; Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA; and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA Jaeuk Kim Department of Physics, Princeton University, Princeton, New Jersey 08544, USA (Received 3 July 2020; revised 29 November 2020; accepted 21 January 2021; published 2 April 2021) We derive exact nonlocal homogenized constitutive relations for the effective electromagnetic wave properties of disordered two-phase composites and metamaterials from first principles. This exact formalism enables us to extend the long-wavelength limitations of conventional homogenization estimates of the effective dynamic dielectric constant tensor εeðkI; ωÞ for arbitrary microstructures so that it can capture spatial dispersion well beyond the quasistatic regime (where ω and kI are the frequency and wave vector of the incident radiation). We accomplish this task by deriving nonlocal strong-contrast expansions that exactly account for complete microstructural information (infinite set of n-point correlation functions) and hence multiple scattering to all orders for the range of wave numbers for which our extended homogenization theory applies, i.e., 0 ≤ jkIjl ≲ 1 (where l is a characteristic heterogeneity length scale). Because of the fast-convergence properties of such expansions, their lower-order truncations yield accurate closed-form approximate formulas for εeðkI; ωÞ that apply for a wide class of microstructures.
    [Show full text]
  • Stealthy Disordered Hyperuniform Spin Chains
    Quantum Phase Transitions in Long-Range Interacting Hyperuniform Spin Chains in a Transverse Field Amartya Bose Department of Chemistry, Princeton University, Princeton, New Jersey 08544 Salvatore Torquato Department of Chemistry, Princeton University, Princeton, New Jersey 08544 Department of Physics, Princeton University, Princeton, New Jersey 08544 Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544 and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544 Hyperuniform states of matter are characterized by anomalous suppression of long-wavelength density fluctuations. While most of the interesting cases of disordered hyperuniformity are provided by complex many-body systems like liquids or amorphous solids, classical spin chains with cer- tain long-range interactions have been shown to demonstrate the same phenomenon. Such systems involving spin chains are ideal models for exploring the effects of quantum mechanics on hyperuni- formity. It is well-known that the transverse field Ising model shows a quantum phase transition (QPT) at zero temperature. Under the quantum effects of a transverse magnetic field, classical hyperuniform spin chains are expected to lose their hyperuniformity. High-precision simulations of these cases are complicated because of the presence of highly nontrivial long-range interactions. We perform extensive analysis of these systems using density matrix renormalization group (DMRG) to study the possibilities of phase transitions and the mechanism by which they lose hyperuniformity. Even for a spin chain of length 30, we see discontinuous changes in properties like the \τ order metric" of the ground state, the measure of hyperuniformity and the second cumulant of the total magnetization along the x-direction, all suggestive of first-order QPTs.
    [Show full text]
  • S. Torquato Random Heterogeneous Materials Microstructure and Macroscopic Properties
    S. Torquato Random Heterogeneous Materials Microstructure and Macroscopic Properties Series: Interdisciplinary Applied Mathematics, Vol. 16 ▶ A unified approach of treating the microstructure and effective properties of heterogeneous media ▶ Written in an accessible style ▶ Sufficiently well-contained for the non-expert wishing to learn the field The study of random heterogeneous materials is an exciting and rapidly growing multidisciplinary endeavor. This field demands a unified rigorous means of characterizing 1st ed. 2001. Corr. 2nd printing 2001, XXI, the microstructures and macroscopic properties of the widely diverse types of 703 p. 111 illus. heterogeneous materials that abound in nature and synthetic products. This book is the first of its kind to provide such an approach. Emphasis is placed on foundational theoretical methods that can simultaneously yield results of practical utility. Printed book The first part of the book deals with the quantitive characterization of the microstructure Hardcover of heterogeneous materials. The second part of the book treats a wide variety of ▶ 129,99 € | £113.00 | $169.00 macroscopic transport, electromagnetic, mechanical, and chemical properties of ▶ *139,09 € (D) | 142,99 € (A) | CHF 167.16 heterogeneous materials and describes how they are linked to the microstructure of model and real materials. Contemporary topics covered include the statistical mechanics eBook of many-partical systems, the canonical n-point correlation function, percolation theory, computer-simulation methods, image analyses and reconstructions of real materials, Available from your bookstore or homogenization theory, exact property predictions, variational bounds, expansion ▶ springer.com/shop techniques, and cross property relations. MyCopy This clear and authoritative volume will be of particular interest to graduate students and Printed eBook for just researchers in applied mathematics, physics, chemistry, material sciences, engineering, geophysics, and biology.
    [Show full text]
  • Advancing Photonic Functionalities
    Advancing photonic functionalities P Professors Paul Steinhardt, Salvatore Torquato and Marian Florescu discuss hyperuniform R OFESSO materials use in the development of hyperuniform disordered solids, garnering better theoretical understanding of the physical properties of non-crystalline materials R S STEINHA photonic integrated successfully recovered additional samples and circuits and other discovered other new mineral phases. applications without R sensitive alignment of ST: Dr Frank Stillinger and I introduced the dt , material, waveguides concept of Hyperuniform Matter, characterised to by unusual suppression of density fluctuations, or cavities, and are RQ much less sensitive in 2003. Specifically, hyperuniform point to fabrication defects (particle) configurations are categorised uato – they contradict by vanishing infinite-wavelength density AND conventional wisdom fluctuations and encompass all crystals, that PBG requires quasicrystals and special disordered many- To begin, could you outline your role within periodicity and anisotropy. Enabling freeform particle systems. This provides a means to flo this project? circuit design and a reduction in defects makes place an umbrella over both crystalline and R them the optimal material for virtually any special non-crystalline materials. HUDS ESCU PS: I am a theoretical physicist in the photonic application. These discoveries have can loosely be regarded as a state that is Department of Physics and Department been enabled by the invention of a universal intermediate between perfect
    [Show full text]
  • Extreme Lattices: Symmetries and Decorrelation
    Home Search Collections Journals About Contact us My IOPscience Extreme lattices: symmetries and decorrelation This content has been downloaded from IOPscience. Please scroll down to see the full text. J. Stat. Mech. (2016) 113301 (http://iopscience.iop.org/1742-5468/2016/11/113301) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 143.248.221.120 This content was downloaded on 14/11/2016 at 01:03 Please note that terms and conditions apply. You may also be interested in: High-dimensional generalizations of the kagome and diamond crystals and the decorrelationprinciple for periodic sphere packings Chase E Zachary and Salvatore Torquato Hyperuniformity in point patterns and two-phase random heterogeneous media Chase E Zachary and Salvatore Torquato Point processes in arbitrary dimension from fermionic gases, random matrix theory, andnumber theory Salvatore Torquato, A Scardicchio and Chase E Zachary CLASSICAL METHODS IN THE THEORY OF LATTICE PACKINGS S S Ryshkov and E P Baranovskii Violation of the fluctuation–dissipation theorem in glassy systems: basic notions and the numerical evidence A Crisanti and F Ritort Fast decoders for qudit topological codes Hussain Anwar, Benjamin J Brown, Earl T Campbell et al. IOP Journal of Statistical Mechanics: Theory and Experiment J. Stat. Mech. 2016 ournal of Statistical Mechanics: Theory and Experiment 2016 J © 2016 IOP Publishing Ltd and SISSA Medialab srl PAPER: Disordered systems, classical and quantum JSMTC6 Extreme lattices: symmetries and 113301 decorrelation A Andreanov et al J. Stat. Mech. Mech. Stat. J. A Andreanov1,2,9, A Scardicchio3,4 and S Torquato5,6,7,8 Extreme lattices: symmetries and decorrelation 1 IBS Center for Theoretical Physics and Complex Systems (PCS) 301, Printed in the UK Faculty Wing, KAIST Munji Campus, 193, Munji-ro, Yuseong-gu, Daejeon, Post Code: 305-732, Korea 2 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str.
    [Show full text]
  • Salvatore Torquato
    Salvatore Torquato SALVATORE TORQUATO Lewis Bernard Professor in Natural Sciences Department of Chemistry, Princeton Center for Theoretical Science, and Princeton Institute for the Science and Technology of Materials Princeton University Princeton, New Jersey 08544 (609) 258-3341 http://chemists.princeton.edu/torquato/ EDUCATION Ph.D. (M.E.) State University of New York at Stony Brook, 1981 M.S. (M.E.) State University of New York at Stony Brook, 1977 B.S. (M.E.) Syracuse University, 1975 PROFESSIONAL EXPERIENCE Lewis Bernard Professor in Natural Sciences, Princeton University, 2018 Professor, Chemistry, Princeton Center for Theoretical Science (Senior Fellow), and Princeton Institute for the Science and Technology of Materials (Associated Fac- ulty in Physics, Program in Applied and Computational Mathematics, Department of Mechanical & Aerospace Engineering, and Department of Chemical Engineering), Princeton University, July 1992 to present. Visitor, School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey (Sabbatical leave from Princeton University), February 2017 - August 2017. Visiting Professor, Department of Physics and Astronomy, University of Penn- sylvania, Philadelphia, Pennsylvania (Sabbatical leave from Princeton University), September 2012 - August 2013. Visitor, School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey, September 2008 to August 2010. Member, School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey (Sabbatical leave from Princeton University), September 2007 - August 2008. Senior Faculty Fellow, Princeton Center for Theoretical Science, Princeton Univer- sity, December 2005 - August 2013. Member, School of Mathematics, Institute for Advanced Study, Princeton, New Jer- sey (Sabbatical leave from Princeton University), September 2003 - August 2004. Visiting Professor, Center for Statistical Mechanics and Complexity, University of Rome, La Sapienza, Rome, Italy, June - July 2003.
    [Show full text]
  • Icerm-Salvatore Torquato
    Continuum Percolation and Duality with Hard-Particle Systems Across Dimensions Salvatore Torquato Department of Chemistry Department of Physics, Program in Applied & Computational Mathematics, & Princeton Institute for the Science and Technology of Materials Princeton University . – p. 1/3 Clustering and Percolation The study of clustering behavior of particles in condensed-phase systems is of importance in a wide variety of phenomena: nucleation condensation of gases gelation and polymerization chemical association structure of liquids metal-insulator transition in liquid metals conduction in dispersions aggregation of colloids flow in porous media spread of diseases wireless communication . – p. 2/3 Clustering and Percolation The study of clustering behavior of particles in condensed-phase systems is of importance in a wide variety of phenomena: nucleation condensation of gases gelation and polymerization chemical association structure of liquids metal-insulator transition in liquid metals conduction in dispersions aggregation of colloids flow in porous media spread of diseases wireless communication Cluster ≡ a connected group of elements (e.g., sites or bonds in lattice or particles). Roughly speaking, as finite-sized clusters grow, the percolation threshold of the system, is the density at which a cluster first spans the system (long-range connectivity). In the thermodynamic limit, the percolation threshold is the point at which a cluster becomes infinite in size. Percolation theory provides a powerful means of understanding such clustering phenomena. – p. 2/3 Overlapping Hyperspheres and Oriented Hypercubes Prototypical continuum (off-lattice) percolation model: Equal-sized overlapping (Poisson distributed) hyperparticles in Rd. S. Torquato, “Effect of dimensionality on the continuum percolation of overlapping hyperspheres and hypercubes,” Journal of Chemical Physics, 136, 054106 (2012).
    [Show full text]
  • 111Th Statistical Mechanics Conference Short Talk Schedule Session A
    111th Statistical Mechanics Conference Short Talk Schedule Session A A01 : Ge Zhang, Princeton University Coauthor(s): Ge Zhang*, Frank H. Stillinger, and Salvatore Torquato Disordered classical ground states of collective coordinate potentials We use a collective-coordinates approach to study disordered classical ground states of particles interacting with certain pair potentials across the first three Euclidean space dimensions. In particular, we characterize their pair statistics in both direct and Fourier spaces as a function of a control parameter that varies the degree of disorder. A02 : Michael A. Klatt, Department of Chemistry and Department of Physics, Princeton University Coauthor(s): Salvatore Torquato Characterizing Maximally Random Jammed Sphere Packings using Minkowski Functionals and Tensors Department of Chemistry and Department of Physics, Princeton UniversityWe characterize the structure of maximally random jammed (MRJ) sphere packings using Minkowski functionals and tensors. The MRJ state is roughly speaking the most disordered sphere packing that is simultaneously jammed (mechanically stable). We construct the Voronoi diagram and characterize the shape of the Voronoi cells using scalar Minkowski functionals, i.e., volume, surface area, and integrated mean curvature, and also their tensorial extensions, e.g., the moment tensor of the normal distribution. A03 : Steven Atkinson, Department of Mechanical and Aerospace Engineering, Princeton University Coauthor(s): S. Atkinson, F. H. Stillinger, and S. Torquato Rattlers in Maximally Random Jammed Packings of Hard-Spheres We use the Torquato-Jiao Sequential Linear Programming algorithm [S. Torquato and Y. Jiao, Phys. Rev. E. 82, 061302 (2010)] to generate exactly isostatic, strictly jammed packings of monodisperse hard-spheres of exquisite numerical fidelity that come closer to the true MRJ state than ever before.
    [Show full text]