Euclidean Motion

Total Page:16

File Type:pdf, Size:1020Kb

Euclidean Motion Euclidean Motion Aug. 15, 2017 In the last lecture, we got oriented with orientations of space while you simultaneously got oriented with your first classes at a university. I imagine it was pretty disorienting! As a reminder, tonight there will be office hours and hopefully if you are feeling confused about the first lecture, you will come and ask questions. Tomorrow, your first problem set is due, and it will cover material from today and yesterday so hopefully you have started. 1 One dimension Today we will discuss motion in Euclidean space. We start with one dimensional motion. After all the hubub about vectors and multiple dimensions yesterday, you may feel too sophisticated to go back to the simple world where only scalars exist. However, that would be a mistake, because there is another dimension lurking around that we have not discussed{time! When we speak of one dimensional motion, we mean one spatial dimension. This can mean considering just one axis of a more complicated multiple dimensional motion{a concept we will find useful in later lectures, or motion along a one-dimensional curve. In fact these are not distinct. At the end of your first quarter at UCSB, you will encounter the theory of special relativity. This is the modification of physics when we include time as a dimension along which we may move1 There it will be very useful to think of motion as a one dimensional curve in the time-space (t − x) plane, called a worldline. For that reason, we will learn one dimensional motion from that perspective, and maybe throw in some special relativity. Consider a curve in the t − x plane 1. This curve defines a trajectory in the one-dimensional world. Such a curve describes not only where you ended up, but also the path you took and the speed at which you were travelling at all times. For instance, figure 1 could describe the events that transpired as I left the house this morning (assuming my house is one dimensional). The origin is when I looked at my watch in my kitchen. I start by walking towards my door, when I realize I left my phone on the charger and turn around. After picking up my phone, I walk back to the door only to realize that I left my wallet on the bed and turn around again. When I return to the door, I realize I don't have my keys and have to turn around again. I am now sprinting to get my keys and get out the door so I am not late to class. As you follow my world line, what do you notice? At first, the line is very steep{I am not moving very quickly, so a large amount of time passes as I meander to the door. As I pause at the door, my worldline is vertical{time passes but I do not move in space. Next, my worldline becomes less steep. My speed has picked up as I realize I may be late. By the end of the trip, my worldline is the least steep because I am moving over more space in a given time. How do we phrase this in the language of math? To start, my worldline is a smooth curve that has only one value for each moment of time. Such a curve mathematically is described by a function. We start by writing the worldline as the function x(t). Because of conventions, t is always the vertical axis, but to align with your experiences with functions, you have to turn your head and put it on the horizontal axis. Points on this curve are called events. A simple example of such a worldline is the height of my diaphragm as I breathe 2. If I define the origin as the point where I have fully exhaled, and call the maximum height of my diaphragm h, then the 1Unfortunately, only in one direction. 1 worldline of my diaphragm is h 2πt x (t) = 1 − cos : L 2 T After every period of time T , my diaphragm returns to the same location, and so this defines the period of my breath. A complicated example of a worldline is the height of my diaphragm when I snore. I won't write an equation for this. The relationship between slope and speed in figure 2 should be awakening the part of your brain where you hid all of your calculus knowledge. To begin, the slope of your worldline has the right units to be a speed{ ∆x meters speed ∼ / : (1) ∆t seconds However, there are two ways in which we can define speed. The first is an average speed. Pick two points on the worldline, (t1; x1) and (t2; x2) and calculate x − x v¯ = 2 1 : (2) t2 − t1 This is occasionally a useful quantity in physics, but it doesn't really capture how fast an observer is going at an instant. In fact, because an observer can go backwards and forwards (in the positive and negative x^ direction), the average speed between two events can be zero even if the instantaneous speed never vanishes. Clearly this doesn't capture the nuances of motion that one may hope to describe. In fact, the average speed of my diaphragm when I do and do not snore is very similar. To capture instantaneous speed, one needs to consider points that are very close together x2 − x1 dx v = lim ≡ : (3) (t2−t1)!0 t − t dt 2 1 t=t1 It's calculus time. This v is typically called the velocity, but in one dimension things are simple and it can also be called the speed. In higher dimensions, these will be distinct as velocity will be a vector but speed is a scalar. One can invert the derivative (a.k.a integrate) to find the displacement, or difference in positions of two different events Z t2 Z t2 dx δx = vdt = dt = x(t2) − x(t1): (4) t1 t1 dt The velocity defines how quickly an observer's position changes with time. For my diaphragm, one finds that the velocity is dx (t) πh 2πt v (t) = L = sin : L dt T T Clearly the velocity is not constant and so one can also ask how quickly the velocity changes with time. This defines the acceleration and is found by applying an additional derivative, dv d2x a(t) = = : (5) dt dt2 According to a previous instructor's lecture notes (available online), the third, fourth, and fifth derivatives of position are called the \snap, crackle, and pop," respectively. Typically, these are not discussed, as they are not directly related to forces and energy, which are the main governing concepts of Newtonian mechanics. Assuming the Rice Krispies vanish, then the highest non-zero derivative of the position is the acceleration. Because its derivative vanishes, it is a constant. Thus we can integrate it once to find, Z t v(t) − v0 = adt = at: (6) t=0 2 Here we defined v(0) ≡ v0. We can integrate this again and find Z t 0 0 1 2 x(t) − x0 = v(t )dt = at + v0t: (7) t=0 2 Now, for problem solving, sometimes we are giving quantities appearing in separate equations. Let's say we wanted to find the velocity at which someone would have to jump to beat the world record high jump. This was set in 1993 by Javier Sotomayor from Cuba and was 2.45 meters. As soon as Sotomayor left the ground, there was only one force acting on him, gravity, which gives a constance acceleration of 9.8 m=s2 toward the ground. To find the velocity, we have a distance and an acceleration but no time. In the two equations we have derived, equations 6 and 7, time appears in both. Hence we need to eliminate it. This is easiest in the first equation. Solving for time and inserting into the second equation gives 1 v(t) − v 2 v(t) − v x(t) − x = a 0 + v 0 (8) 0 2 a 0 a 2 2 ) 2a (x(t) − x0) = v(t) − v0 (9) At the top of the jump, Sotomayor was not moving in the vertical direction, so that v(ttop) = 0. Then we find that Sotomayor left the ground at roughly 6.93 m/s or 15.5 mph. 2 More dimensions The equations just derived are sufficient to describe trajectories in one dimension. However, we live in more dimensions, and so how do we describe motion in more than one direction at once. We use vectors! As stated earlier, one way to think about one dimensional motion is to think of motion restricted to one coordinate axis. We can write the one dimensional worldline in terms of a three dimensional worldline as x(t) = ~x(t) · x^ (10) where we defined ~x(t) = (x(t); y(t); z(t)): (11) For motion only along the x-axis, y(t) and z(t) are both zero. However, we know that we can change reference frames by translating and rotating. This means that what we thought of as motion along one direction can be thought of as motion along any of the other directions. For instance, by rotating my coordinate axes about the z-axis by an angle φ, the worldline of my lungs may be written ~xL(t) = xL(t)(cos φ, sin φ, 0): (12) Thinking about higher dimensions in terms of rotating coordinate frames illuminates the higher dimensional versions of velocity and acceleration.
Recommended publications
  • Swimming in Spacetime: Motion by Cyclic Changes in Body Shape
    RESEARCH ARTICLE tation of the two disks can be accomplished without external torques, for example, by fixing Swimming in Spacetime: Motion the distance between the centers by a rigid circu- lar arc and then contracting a tension wire sym- by Cyclic Changes in Body Shape metrically attached to the outer edge of the two caps. Nevertheless, their contributions to the zˆ Jack Wisdom component of the angular momentum are parallel and add to give a nonzero angular momentum. Cyclic changes in the shape of a quasi-rigid body on a curved manifold can lead Other components of the angular momentum are to net translation and/or rotation of the body. The amount of translation zero. The total angular momentum of the system depends on the intrinsic curvature of the manifold. Presuming spacetime is a is zero, so the angular momentum due to twisting curved manifold as portrayed by general relativity, translation in space can be must be balanced by the angular momentum of accomplished simply by cyclic changes in the shape of a body, without any the motion of the system around the sphere. external forces. A net rotation of the system can be ac- complished by taking the internal configura- The motion of a swimmer at low Reynolds of cyclic changes in their shape. Then, presum- tion of the system through a cycle. A cycle number is determined by the geometry of the ing spacetime is a curved manifold as portrayed may be accomplished by increasing ␪ by ⌬␪ sequence of shapes that the swimmer assumes by general relativity, I show that net translations while holding ␾ fixed, then increasing ␾ by (1).
    [Show full text]
  • Foundations of Newtonian Dynamics: an Axiomatic Approach For
    Foundations of Newtonian Dynamics: 1 An Axiomatic Approach for the Thinking Student C. J. Papachristou 2 Department of Physical Sciences, Hellenic Naval Academy, Piraeus 18539, Greece Abstract. Despite its apparent simplicity, Newtonian mechanics contains conceptual subtleties that may cause some confusion to the deep-thinking student. These subtle- ties concern fundamental issues such as, e.g., the number of independent laws needed to formulate the theory, or, the distinction between genuine physical laws and deriva- tive theorems. This article attempts to clarify these issues for the benefit of the stu- dent by revisiting the foundations of Newtonian dynamics and by proposing a rigor- ous axiomatic approach to the subject. This theoretical scheme is built upon two fun- damental postulates, namely, conservation of momentum and superposition property for interactions. Newton’s laws, as well as all familiar theorems of mechanics, are shown to follow from these basic principles. 1. Introduction Teaching introductory mechanics can be a major challenge, especially in a class of students that are not willing to take anything for granted! The problem is that, even some of the most prestigious textbooks on the subject may leave the student with some degree of confusion, which manifests itself in questions like the following: • Is the law of inertia (Newton’s first law) a law of motion (of free bodies) or is it a statement of existence (of inertial reference frames)? • Are the first two of Newton’s laws independent of each other? It appears that
    [Show full text]
  • Phoronomy: Space, Construction, and Mathematizing Motion Marius Stan
    To appear in Bennett McNulty (ed.), Kant’s Metaphysical Foundations of Natural Science: A Critical Guide. Cambridge University Press. Phoronomy: space, construction, and mathematizing motion Marius Stan With his chapter, Phoronomy, Kant defies even the seasoned interpreter of his philosophy of physics.1 Exegetes have given it little attention, and un- derstandably so: his aims are opaque, his turns in argument little motivated, and his context mysterious, which makes his project there look alienating. I seek to illuminate here some of the darker corners in that chapter. Specifi- cally, I aim to clarify three notions in it: his concepts of velocity, of compo- site motion, and of the construction required to compose motions. I defend three theses about Kant. 1) his choice of velocity concept is ul- timately insufficient. 2) he sided with the rationalist faction in the early- modern debate on directed quantities. 3) it remains an open question if his algebra of motion is a priori, though he believed it was. I begin in § 1 by explaining Kant’s notion of phoronomy and its argu- ment structure in his chapter. In § 2, I present four pictures of velocity cur- rent in Kant’s century, and I assess the one he chose. My § 3 is in three parts: a historical account of why algebra of motion became a topic of early modern debate; a synopsis of the two sides that emerged then; and a brief account of his contribution to the debate. Finally, § 4 assesses how general his account of composite motion is, and if it counts as a priori knowledge.
    [Show full text]
  • Central Limit Theorems for the Brownian Motion on Large Unitary Groups
    CENTRAL LIMIT THEOREMS FOR THE BROWNIAN MOTION ON LARGE UNITARY GROUPS FLORENT BENAYCH-GEORGES Abstract. In this paper, we are concerned with the large n limit of the distributions of linear combinations of the entries of a Brownian motion on the group of n × n unitary matrices. We prove that the process of such a linear combination converges to a Gaussian one. Various scales of time and various initial distributions are considered, giving rise to various limit processes, related to the geometric construction of the unitary Brownian motion. As an application, we propose a very short proof of the asymptotic Gaussian feature of the entries of Haar distributed random unitary matrices, a result already proved by Diaconis et al. Abstract. Dans cet article, on consid`erela loi limite, lorsque n tend vers l’infini, de combinaisons lin´eairesdes coefficients d'un mouvement Brownien sur le groupe des matri- ces unitaires n × n. On prouve que le processus d'une telle combinaison lin´eaireconverge vers un processus gaussien. Diff´erentes ´echelles de temps et diff´erentes lois initiales sont consid´er´ees,donnant lieu `aplusieurs processus limites, li´es`ala construction g´eom´etrique du mouvement Brownien unitaire. En application, on propose une preuve tr`escourte du caract`ereasymptotiquement gaussien des coefficients d'une matrice unitaire distribu´ee selon la mesure de Haar, un r´esultatd´ej`aprouv´epar Diaconis et al. Introduction There is a natural definition of Brownian motion on any compact Lie group, whose distribution is sometimes called the heat kernel measure. Mainly due to its relations with the object from free probability theory called the free unitary Brownian motion and with the two-dimentional Yang-Mills theory, the Brownian motion on large unitary groups has appeared in several papers during the last decade.
    [Show full text]
  • Rigid Motion – a Transformation That Preserves Distance and Angle Measure (The Shapes Are Congruent, Angles Are Congruent)
    REVIEW OF TRANSFORMATIONS GEOMETRY Rigid motion – A transformation that preserves distance and angle measure (the shapes are congruent, angles are congruent). Isometry – A transformation that preserves distance (the shapes are congruent). Direct Isometry – A transformation that preserves orientation, the order of the lettering (ABCD) in the figure and the image are the same, either both clockwise or both counterclockwise (the shapes are congruent). Opposite Isometry – A transformation that DOES NOT preserve orientation, the order of the lettering (ABCD) is reversed, either clockwise or counterclockwise becomes clockwise (the shapes are congruent). Composition of transformations – is a combination of 2 or more transformations. In a composition, you perform each transformation on the image of the preceding transformation. Example: rRx axis O,180 , the little circle tells us that this is a composition of transformations, we also execute the transformations from right to left (backwards). If you would like a visual of this information or if you would like to quiz yourself, go to http://www.mathsisfun.com/geometry/transformations.html. Line Reflection Point Reflection Translations (Shift) Rotations (Turn) Glide Reflection Dilations (Multiply) Rigid Motion Rigid Motion Rigid Motion Rigid Motion Rigid Motion Not a rigid motion Opposite isometry Direct isometry Direct isometry Direct isometry Opposite isometry NOT an isometry Reverse orientation Same orientation Same orientation Same orientation Reverse orientation Same orientation Properties preserved: Properties preserved: Properties preserved: Properties preserved: Properties preserved: Properties preserved: 1. Distance 1. Distance 1. Distance 1. Distance 1. Distance 1. Angle measure 2. Angle measure 2. Angle measure 2. Angle measure 2. Angle measure 2. Angle measure 2.
    [Show full text]
  • Physics, Philosophy, and the Foundations of Geometry Michael Friedman
    Ditilogos 19 (2002), pp. 121-143. PHYSICS, PHILOSOPHY, AND THE FOUNDATIONS OF GEOMETRY MICHAEL FRIEDMAN Twentieth century philosophy of geometry is a development and continuation, of sorts, of late nineteenth century work on the mathematical foundations of geometry. Reichenbach, Schlick, a nd Carnap appealed to the earlier work of Riemann, Helmholtz, Poincare, and Hilbert, in particular, in articulating their new view of the nature and character of geometrical knowledge. This view took its starting point from a rejection of Kant's conception of the synthetic a priori status of specifically Euclidean geometry-and, indeed, from a rejection of any role at all for spatial intuition within pure mathematics. We must sharply distinguish, accordingly, between pure or mathematical geometry, which is an essentially uninterpreted axiomatic system making no reference whatsoever to spatial intuition or any other kind of extra­ axiomatic or extra-formal content, and applied or physical geometry, which then attempts to coordinate such an uninterpreted formal sys tern with some domain of physical facts given by experience. Since, however, there is always an optional element of decision in setting up such a coordination in the first place (we may coordinate the uninterpreted terms of purely formal geometry with light rays, stretched strings, rigid bodies, or whatever), the question of the geometry of physical space is not a purely empirical one but rather essentially involves an irreducibly conventional and in some sense arbitrary choice. In the end, there is therefore no fact of the matter whether physical space is E uclidean or non-Euclidean, except relative to one or another essentially arbitrary stipulation coordinating the uninterpreted terms of pure mathematical geometry with some or another empirical physical phenomenon.
    [Show full text]
  • Arxiv:1704.03334V1 [Physics.Gen-Ph] 8 Apr 2017 Oin Ffltsaeadtime
    WHAT DO WE KNOW ABOUT THE GEOMETRY OF SPACE? B. E. EICHINGER Department of Chemistry, University of Washington, Seattle, Washington 98195-1700 Abstract. The belief that three dimensional space is infinite and flat in the absence of matter is a canon of physics that has been in place since the time of Newton. The assumption that space is flat at infinity has guided several modern physical theories. But what do we actually know to support this belief? A simple argument, called the ”Telescope Principle”, asserts that all that we can know about space is bounded by observations. Physical theories are best when they can be verified by observations, and that should also apply to the geometry of space. The Telescope Principle is simple to state, but it leads to very interesting insights into relativity and Yang-Mills theory via projective equivalences of their respective spaces. 1. Newton and the Euclidean Background Newton asserted the existence of an Absolute Space which is infinite, three dimensional, and Euclidean.[1] This is a remarkable statement. How could Newton know anything about the nature of space at infinity? Obviously, he could not know what space is like at infinity, so what motivated this assertion (apart from Newton’s desire to make space the sensorium of an infinite God)? Perhaps it was that the geometric tools available to him at the time were restricted to the principles of Euclidean plane geometry and its extension to three dimensions, in which infinite space is inferred from the parallel postulate. Given these limited mathematical resources, there was really no other choice than Euclid for a description of the geometry of space within which to formulate a theory of motion of material bodies.
    [Show full text]
  • Chapter 1 Rigid Body Kinematics
    Chapter 1 Rigid Body Kinematics 1.1 Introduction This chapter builds up the basic language and tools to describe the motion of a rigid body – this is called rigid body kinematics. This material will be the foundation for describing general mech- anisms consisting of interconnected rigid bodies in various topologies that are the focus of this book. Only the geometric property of the body and its evolution in time will be studied; the re- sponse of the body to externally applied forces is covered in Chapter ?? under the topic of rigid body dynamics. Rigid body kinematics is not only useful in the analysis of robotic mechanisms, but also has many other applications, such as in the analysis of planetary motion, ground, air, and water vehicles, limbs and bodies of humans and animals, and computer graphics and virtual reality. Indeed, in 1765, motivated by the precession of the equinoxes, Leonhard Euler decomposed a rigid body motion to a translation and rotation, parameterized rotation by three principal-axis rotation (Euler angles), and proved the famous Euler’s rotation theorem [?]. A body is rigid if the distance between any two points fixed with respect to the body remains constant. If the body is free to move and rotate in space, it has 6 degree-of-freedom (DOF), 3 trans- lational and 3 rotational, if we consider both translation and rotation. If the body is constrained in a plane, then it is 3-DOF, 2 translational and 1 rotational. We will adopt a coordinate-free ap- proach as in [?, ?] and use geometric, rather than purely algebraic, arguments as much as possible.
    [Show full text]
  • Real-Time Object Motion and 3D Localization from Geometry
    Real-Time Object Motion and 3D Localization from Geometry DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Young Jin Lee Graduate Program in Geodetic Science and Surveying The Ohio State University 2014 Dissertation Committee: Alper Yilmaz, Advisor Alan Saalfeld Ralph R. B. von Frese Copyright by Young Jin Lee 2014 Abstract Knowing the position of an object in real-time has tremendous meaning. The most widely used and well-known positioning system is GPS (Global Positioning System), which is now used widely as invisible infrastructure. However, GPS is only available for outdoor uses. GPS signals are not available for most indoor scenarios. Although much research has focused on vision-based indoor positioning, it is still a challenging problem because of limitations in both the vision sensor itself and processing power. This dissertation focuses on real-time 3D positioning of a moving object using multiple static cameras. A real-time, multiple static camera system for object detection, tracking, and 3D positioning that is run on a single laptop computer was designed and implemented. The system successfully shows less than ±5 mm in real-time 3D positioning accuracy at an update rate of 6 Hz to 10 Hz in a room measuring 8×5×2.5 meters. Implementation and experimental analysis has demonstrated that this system can be used for real-time indoor object positioning. In addition, ‘collinearity condition equations of motion’ were derived that represent the geometric relationship between 2D motions and 3D motion. From these equations, a ‘tracking from geometry’ method was developed that combines these collinearity condition equations of motion with an existing tracking method to simultaneously estimate 3D motion as well as 2D motions directly from the stereo camera system.
    [Show full text]
  • Position and Orientation of Rigid Bodies
    Robotics 1 Position and orientation of rigid bodies Prof. Alessandro De Luca Robotics 1 1 Position and orientation right-handed orthogonal RFB rigid body Reference Frames A 3 • position: pAB (vector ! R ), B expressed in RF (use of coordinates I A RFA other than Cartesian is possible, e.g. pAB cylindrical or spherical) • orientation: orthonormal 3x3 matrix T -1 A B A (R = R " RB RA = I), with det = +1 A A A A RB = [ xB yB zB] • xA yA zA (xB yB zB) are unit vectors (with unitary norm) of frame RFA (RFB) A • components in RB are the direction cosines of the axes of RFB with respect to (w.r.t.) RFA Robotics 1 2 Rotation matrix T T T direction cosine of xA xB xA yB xA zB zB w.r.t. xA AR = y T x y T y y T z orthonormal, B A B A B A B T T T with det = +1 zA xB zA yB zA zB algebraic structure chain rule property of a group SO(3) (neutral element = I; k i k inverse element = RT) Ri ! Rj = Rj orientation of RFi orientation of RFj w.r.t. RFk w.r.t. RFk orientation of RFj w.r.t. RFi NOTE: in general, the product of rotation matrices does not commute! Robotics 1 3 Change of coordinates z0 0 px 0P = 0p = 1p 0x + 1p 0y + 1p 0z z1 • P y x 1 y 1 z 1 0p z 1 px y 1 0 0 0 1 = x1 y1 z1 py 1 pz RF1 y0 = 0R 1P RF0 1 x0 0 the rotation matrix R1 (i.e., the orientation of RF1 w.r.t.
    [Show full text]
  • Math 311: Complex Analysis — Automorphism Groups Lecture
    MATH 311: COMPLEX ANALYSIS | AUTOMORPHISM GROUPS LECTURE 1. Introduction Rather than study individual examples of conformal mappings one at a time, we now want to study families of conformal mappings. Ensembles of conformal mappings naturally carry group structures. 2. Automorphisms of the Plane The automorphism group of the complex plane is Aut(C) = fanalytic bijections f : C −! Cg: Any automorphism of the plane must be conformal, for if f 0(z) = 0 for some z then f takes the value f(z) with multiplicity n > 1, and so by the Local Mapping Theorem it is n-to-1 near z, impossible since f is an automorphism. By a problem on the midterm, we know the form of such automorphisms: they are f(z) = az + b; a; b 2 C; a 6= 0: This description of such functions one at a time loses track of the group structure. If f(z) = az + b and g(z) = a0z + b0 then (f ◦ g)(z) = aa0z + (ab0 + b); f −1(z) = a−1z − a−1b: But these formulas are not very illuminating. For a better picture of the automor- phism group, represent each automorphism by a 2-by-2 complex matrix, a b (1) f(z) = ax + b ! : 0 1 Then the matrix calculations a b a0 b0 aa0 ab0 + b = ; 0 1 0 1 0 1 −1 a b a−1 −a−1b = 0 1 0 1 naturally encode the formulas for composing and inverting automorphisms of the plane. With this in mind, define the parabolic group of 2-by-2 complex matrices, a b P = : a; b 2 ; a 6= 0 : 0 1 C Then the correspondence (1) is a natural group isomorphism, Aut(C) =∼ P: 1 2 MATH 311: COMPLEX ANALYSIS | AUTOMORPHISM GROUPS LECTURE Two subgroups of the parabolic subgroup are its Levi component a 0 M = : a 2 ; a 6= 0 ; 0 1 C describing the dilations f(z) = ax, and its unipotent radical 1 b N = : b 2 ; 0 1 C describing the translations f(z) = z + b.
    [Show full text]
  • Learning Motion Manifolds with Convolutional Autoencoders
    Learning Motion Manifolds with Convolutional Autoencoders Daniel Holden, Jun Saito, Taku Komura, Thomas Joyce Edinburgh University, Marza Animation Planet Figure 1: A set of corrupted motions (orange) fixed by projection onto the motion manifold (blue) and compared to the ground truth (green). Motion corrupted with artificial noise that randomly sets values to zero with a probability of 0.5 (left), motion data from Kinect motion capture system (center), and motion data with missing the wrist marker (right). Abstract Our contribution is the following: We present a technique for learning a manifold of human motion • Unsupervised learning of a human motion manifold by a Con- data using Convolutional Autoencoders. Our approach is capable volutional Autoencoder of learning a manifold on the complete CMU database of human • Application of our manifold in various areas of animation re- motion. This manifold can be treated as a prior probability distri- search. bution over human motion data, which has many applications in animation research, including projecting invalid or corrupt motion onto the manifold for removing error, computing similarity between 2 Related Work motions using geodesic distance along the manifold, and interpola- tion of motion along the manifold for avoiding blending artefacts. In this section we will briefly discuss works aimed at learning a manifold over the space of motion data and then works related to Convolutional Neural Networks. Keywords: deep neural networks, convolutional neural networks, autoencoding, machine learning, motion data, animation, character animation, manifold learning Learning the motion manifold It is of interest to researchers in machine learning and computer graphics to produce motion man- 1 Introduction ifolds from human motion data.
    [Show full text]