Fungal Evolution: Cellular, Genomic and Metabolic Complexity

Total Page:16

File Type:pdf, Size:1020Kb

Fungal Evolution: Cellular, Genomic and Metabolic Complexity Biol. Rev. (2020), 95, pp. 1198–1232. 1198 doi: 10.1111/brv.12605 Fungal evolution: cellular, genomic and metabolic complexity † Miguel A. Naranjo-Ortiz1* and Toni Gabaldón1,2,3 * 1Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain 2Department of Experimental Sciences, Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain ABSTRACT The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adap- tations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi. Key words: fungi, complexity, multicellularity, secondary metabolism, genome evolution CONTENTS I. Introduction ......................................................................1198 II. Cellular complexity .................................................................1199 (1) Unicellular fungi ................................................................1199 (2) The hyphal cell as a living pipe .....................................................1200 (3) The mycelium as a living network ...................................................1203 (4) Complex multicellularity ..........................................................1205 III. Genome complexity ................................................................1207 (1) Hybridization ..................................................................1207 (2) Heterokaryosis ..................................................................1208 (3) Aneuploidy ....................................................................1210 (4) Polyploidy .....................................................................1211 IV. Metabolic complexity ...............................................................1211 (1) Secondary metabolites in fungal biology ..............................................1213 (2) Metabolic gene clusters ...........................................................1213 * Address for correspondence (Tel:+34 933160281; E-mail: [email protected]). *Present address: Clark University, Biology Department, Cathy ’83 and Marc ’81 Lasry Center for Biosciences, 15 Maywood Street, 01610 Worcester, Massachussets, U.S.A. † Present address: Barcelona Supercomputing Centre (BSC-CNS) and Institute for Research in Biomedicine (IRB), Barcelona, Spain Biological Reviews 95 (2020) 1198–1232 © 2020 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. Evolution of fungal complexity 1199 (3) Genes on the move: horizontal gene transfer in Fungi ....................................1216 (4) From genomes to pangenomes .....................................................1217 V. Concluding remarks ................................................................1219 VI. Conclusions .......................................................................1220 Acknowledgements .................................................................1220 VII. References ........................................................................1220 I. INTRODUCTION metabolites and opens up a wide array of phenotypes in their interactions with other organisms. Although less often considered than animals or plants, the This cellular and biochemical diversity is ultimately ecological success of Fungi is equally impressive, and com- reflected in the highly dynamic nature of fungal genomes. prises a broad diversity of lineages and life styles that popu- Fungi are ideal subjects for genomic studies, since they tend late every corner of our planet (Naranjo-Ortiz & Gabaldón, to have highly compact genomes [theyrarely reach genome 2019a,b), with most estimates predicting millions of extant sizes of giga base pairs (Gbp)], are usually haploid, and can fungal species (Hawksworth, 2001; Blackwell, 2011; Aime & often be grown in axenic conditions. Consequently, the num- Brearley, 2012; Hawksworth & Lücking, 2017). At the heart ber of fully sequenced fungal genomes is now in the order of of this success lies a series of interwoven cellular and bio- thousands. Hence, in combination with decades of studies in chemical traits, which are ultimately determined by the genetics, biochemistry and cell biology, fungal genomics is genome. The question of how phenotypic complexity is revolutionizing our understanding of this group related to genomic complexity, and how these change during (Scazzocchio, 2014). The study of the genetic repertoire of evolution, historically has been approached from the per- a growing diversity of fungi is unveiling a metabolic land- spective of animals and plants. However, in recent years scape far wider and intriguing than we could have imagined fungi have increasingly been the focus of research aiming to two decades ago. In addition, evolutionary genomic analyses understand the origin and evolution of genomic and mor- are not only helping us to identify the components in the phological complexity. Fungi originated from a flagellated mycelial and multicellular fungal machinery, but also are ancestor, but most current diversity encompasses non- uncovering what processes may drive the evolution of fungal flagellated cells that often grow in a form of simple multicel- genomes. In this respect, fungi have recently challenged evo- lularity called the mycelium, a true cellular network that lutionary paradigms adopted from the study of animals and sometimes extends over large areas. From this mycelial plants. For instance, non-vertical evolutionary processes such growth, many fungal organisms can switch to a unicellular as horizontal gene transfer or hybridization seem to be far growth form (e.g. yeast), often depending on the environmen- more common in fungi than previously anticipated, and pro- tal conditions or on the stage of their life cycle. In several lin- karyotic paradigms such as that of pangenomes seem also to eages throughout the fungal tree of life, mycelial growth has be applicable to fungi. In this review, we discuss recent been abandoned, often completely but sometimes only to be advances in our understanding of the evolution of phenotypic recovered later. Some other lineages have taken multicellu- and genomic complexity within the fungal kingdom, focusing larity one step further, originating complex fruiting bodies on the cellular and biochemical traits that have driven the whose macroscopic morphologies compete in intricacy and success of fungi in the biosphere. In so doing we emphasize, beauty with those of plants and animals. Complex multicellu- when known, the genomic features that underlie those traits larity implies coordination of different cell types to form tis- as well as their evolution. sues and the existence of a tightly regulated developmental program. To achieve such levels of complexity, fungi have developed specific structural and regulatory systems that are still not fully understood. From a biochemical perspec- II. CELLULAR COMPLEXITY tive, fungi present a truly vast diversity, with levels of com- plexity that are comparable or surpass those of other The last fungal common ancestor was likely a flagellated, uni- eukaryotic clades. Fungal organisms are osmotrophs and cellular organism with a saprotrophic or parasitoid lifestyle their cells are generally in contact with the surrounding envi- (James, Porter & Martin, 2014; Karpov et al., 2014a; Powell & ronment. The relationship of a fungus with its immediate Letcher, 2014; Naranjo-Ortiz & Gabaldón, 2019b). How- environment is defined by an array of secreted proteins and ever, very early in the evolution of fungi, a shift towards more metabolites. The origin and diversification of these secreted complex forms of cellular organization occurred. This shift metabolites is of great practical interest, given the often pow- made possible the conquest of non-aquatic environments, erful effects they have on other organisms. Furthermore, pro- leading to loss of the flagellum in several
Recommended publications
  • Phylogeny of the Pluteaceae (Agaricales, Basidiomycota): Taxonomy and Character Evolution
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino Phylogeny of the Pluteaceae (Agaricales, Basidiomycota): taxonomy and character evolution This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/74776 since 2016-10-06T16:59:44Z Published version: DOI:10.1016/j.funbio.2010.09.012 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 23 September 2021 This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and the University of Turin. Changes resulting from the publishing process - such as editing, corrections, structural formatting, and other quality control mechanisms - may not be reflected in this version of the text. The definitive version of the text was subsequently published in FUNGAL BIOLOGY, 115(1), 2011, 10.1016/j.funbio.2010.09.012. You may download, copy and otherwise use the AAM for non-commercial purposes provided that your license is limited by the following restrictions: (1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND license. (2) The integrity of the work and identification of the author, copyright owner, and publisher must be preserved in any copy.
    [Show full text]
  • Positioning of Introns in Different Laccase Genes, a Relevant Tool For
    Positioning of introns in different laccase genes, a relevant tool for solving phylogenetic position ambiguity of Volvariella volvacea laccase genes Om Parkash Ahlawat, Christophe Billette To cite this version: Om Parkash Ahlawat, Christophe Billette. Positioning of introns in different laccase genes, a relevant tool for solving phylogenetic position ambiguity of Volvariella volvacea laccase genes. 7. Interna- tional Conference on Mushroom Biology and Mushroom Products, Institut National de Recherche Agronomique (INRA). UR Unité de recherche Mycologie et Sécurité des Aliments (1264)., Oct 2011, Arcachon, France. hal-02745456 HAL Id: hal-02745456 https://hal.inrae.fr/hal-02745456 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7) 2011 POSITIONING OF INTRONS IN DIFFERENT LACCASE GENES, A RELEVANT TOOL FOR SOLVING PHYLOGENETIC POSITION AMBIGUITY OF VOLVARIELLA VOLVACEA LACCASE GENES Om Parkash Ahlawat1, Christophe Billette2 1 Directorate of Mushroom Research, ICAR Solan – 173 213 (HP) India 2 INRA, UR1264 Mycologie et Sécurité des Aliments, F-33883 Villenave d’Ornon, France [email protected] ABSTRACT Volvariella volvacea (paddy straw mushroom) is a high temperature-loving mushroom with the shortest cropping cycle in the basidiomycete family Pluteaceae.
    [Show full text]
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • Justo Et Al 2010 Pluteaceae.Pdf
    ARTICLE IN PRESS fungal biology xxx (2010) 1e20 journal homepage: www.elsevier.com/locate/funbio Phylogeny of the Pluteaceae (Agaricales, Basidiomycota): taxonomy and character evolution Alfredo JUSTOa,*,1, Alfredo VIZZINIb,1, Andrew M. MINNISc, Nelson MENOLLI Jr.d,e, Marina CAPELARId, Olivia RODRıGUEZf, Ekaterina MALYSHEVAg, Marco CONTUh, Stefano GHIGNONEi, David S. HIBBETTa aBiology Department, Clark University, 950 Main St., Worcester, MA 01610, USA bDipartimento di Biologia Vegetale, Universita di Torino, Viale Mattioli 25, I-10125 Torino, Italy cSystematic Mycology & Microbiology Laboratory, USDA-ARS, B011A, 10300 Baltimore Ave., Beltsville, MD 20705, USA dNucleo de Pesquisa em Micologia, Instituto de Botanica,^ Caixa Postal 3005, Sao~ Paulo, SP 010631 970, Brazil eInstituto Federal de Educac¸ao,~ Ciencia^ e Tecnologia de Sao~ Paulo, Rua Pedro Vicente 625, Sao~ Paulo, SP 01109 010, Brazil fDepartamento de Botanica y Zoologıa, Universidad de Guadalajara, Apartado Postal 1-139, Zapopan, Jal. 45101, Mexico gKomarov Botanical Institute, 2 Popov St., St. Petersburg RUS-197376, Russia hVia Marmilla 12, I-07026 Olbia (OT), Italy iInstituto per la Protezione delle Piante, CNR Sezione di Torino, Viale Mattioli 25, I-10125 Torino, Italy article info abstract Article history: The phylogeny of the genera traditionally classified in the family Pluteaceae (Agaricales, Received 17 June 2010 Basidiomycota) was investigated using molecular data from nuclear ribosomal genes Received in revised form (nSSU, ITS, nLSU) and consequences for taxonomy and character evolution were evaluated. 16 September 2010 The genus Volvariella is polyphyletic, as most of its representatives fall outside the Pluteoid Accepted 26 September 2010 clade and shows affinities to some hygrophoroid genera (Camarophyllus, Cantharocybe). Corresponding Editor: Volvariella gloiocephala and allies are placed in a different clade, which represents the sister Joseph W.
    [Show full text]
  • Evolution of Complex Fruiting-Body Morphologies in Homobasidiomycetes
    Received 18April 2002 Accepted 26 June 2002 Publishedonline 12September 2002 Evolutionof complexfruiting-bo dymorpholog ies inhomobasidi omycetes David S.Hibbett * and Manfred Binder BiologyDepartment, Clark University, 950Main Street,Worcester, MA 01610,USA The fruiting bodiesof homobasidiomycetes include some of the most complex formsthat have evolved in thefungi, such as gilled mushrooms,bracket fungi andpuffballs (‘pileate-erect’) forms.Homobasidio- mycetesalso includerelatively simple crust-like‘ resupinate’forms, however, which accountfor ca. 13– 15% ofthedescribed species in thegroup. Resupinatehomobasidiomycetes have beeninterpreted either asa paraphyletic grade ofplesiomorphic formsor apolyphyletic assemblage ofreducedforms. The former view suggeststhat morphological evolutionin homobasidiomyceteshas beenmarked byindependentelab- oration in many clades,whereas the latter view suggeststhat parallel simplication has beena common modeof evolution.To infer patternsof morphological evolution in homobasidiomycetes,we constructed phylogenetic treesfrom adatasetof 481 speciesand performed ancestral statereconstruction (ASR) using parsimony andmaximum likelihood (ML)methods. ASR with both parsimony andML implies that the ancestorof the homobasidiomycetes was resupinate, and that therehave beenmultiple gains andlosses ofcomplex formsin thehomobasidiomycetes. We also usedML toaddresswhether there is anasymmetry in therate oftransformations betweensimple andcomplex forms.Models of morphological evolution inferredwith MLindicate that therate
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]
  • Freshwater Fungi from the River Nile, Egypt
    Mycosphere 7 (5): 741–756 (2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/7/6/4 Copyright © Guizhou Academy of Agricultural Sciences Freshwater fungi from the River Nile, Egypt Abdel-Aziz FA Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag 82524, Egypt Abdel-Aziz FA 2016 – Freshwater fungi from the River Nile, Egypt. Mycosphere 7(6), 741–756, Doi 10.5943/mycosphere/7/6/4 Abstract This study represents the first published data of freshwater fungi from the River Nile in Egypt. Knowledge concerning the geographic distribution of freshwater ascomycetes and their asexual morphs in Egypt and in the Middle East is limited. Ninety-nine taxa representing 42 sexual ascomycetes, 55 asexual taxa and two basidiomycetes were identified from 959 fungal collections recorded from 400 submerged samples. Samples were randomly collected from the River Nile, in Sohag, Egypt in the winter and summer between December 2010 and August 2014. Fifty-eight taxa (22 sexual ascomycetes and 36 asexual taxa) were collected during winter, while 60 taxa (25 sexual ascomycetes, 33 asexual taxa and two basidiomycetes) were collected in summer season. Of the 99 taxa recorded, 50 are new records for Egypt, including five new genera and 30 new species., Three new genera and ten new species were described in previous articles. Fungi recorded from the two seasons were markedly different, with only 19 species common to both winter and summer collections. Asexual fungi dominated the fungal community during the two seasons. Taxonomical placements of 33 species were confirmed by molecular data based on LSU and SSU rDNA genes.
    [Show full text]
  • Calabon MS, Hyde KD, Jones EBG, Chandrasiri S, Dong W, Fryar SC, Yang J, Luo ZL, Lu YZ, Bao DF, Boonmee S
    Asian Journal of Mycology 3(1): 419–445 (2020) ISSN 2651-1339 www.asianjournalofmycology.org Article Doi 10.5943/ajom/3/1/14 www.freshwaterfungi.org, an online platform for the taxonomic classification of freshwater fungi Calabon MS1,2,3, Hyde KD1,2,3, Jones EBG3,5,6, Chandrasiri S1,2,3, Dong W1,3,4, Fryar SC7, Yang J1,2,3, Luo ZL8, Lu YZ9, Bao DF1,4 and Boonmee S1,2* 1Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 2School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 3Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand 4Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 5Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Kingdom of Saudi Arabia 633B St Edwards Road, Southsea, Hants., PO53DH, UK 7College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide SA 5001, Australia 8College of Agriculture and Biological Sciences, Dali University, Dali 671003, People’s Republic of China 9School of Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, Guizhou, People’s Republic of China Calabon MS, Hyde KD, Jones EBG, Chandrasiri S, Dong W, Fryar SC, Yang J, Luo ZL, Lu YZ, Bao DF, Boonmee S. 2020 – www.freshwaterfungi.org, an online platform for the taxonomic classification of freshwater fungi. Asian Journal of Mycology 3(1), 419–445, Doi 10.5943/ajom/3/1/14 Abstract The number of extant freshwater fungi is rapidly increasing, and the published information of taxonomic data are scattered among different online journal archives.
    [Show full text]
  • Howard Clinton Whisler—University of Washington
    North American Fungi Volume 3, Number 3, Pages 1-11 Published April 2, 2008 Formerly Pacific Northwest Fungi Howard Clinton Whisler—University of Washington J. F. Ammirati Department of Biology, 351330, University of Washington, Seattle, WA 98195 Ammirati, J. F. 2008. Howard Clinton Whisler—University of Washington. North American Fungi 3(3): 1-11. doi: 10.2509/naf2008.003.003 Corresponding author: J. F. Ammirati, [email protected]. Accepted for publication March 9, 2008. http://pnwfungi.org Copyright © 2008 Pacific Northwest Fungi Project. All rights reserved. Howard Whisler began his journey in Oakland, Aviano, Italy. He returned to UC Berkeley in California in 1931. He spent his early years 1956 and completed his Doctoral Degree with exploring nature in the natural areas and parks Ralph Emerson in 1960. In 1959-1960 he held a of the region. He attended Berkeley schools and NIH pre-doctoral fellowship, and after the then Palo Alto High School. Howard spent the completion of his work with Emerson was on a next two years at Oregon State College post doctoral NATO-NSF Fellowship in France, (University) as an undergraduate having at the Université de Montpellier, 1960-1961. received a tuition scholarship. He then went to Howard was appointed assistant professor of the University of California, Berkeley, where he Botany at McGill University in 1961 where he completed a Bachelor of Science degree in plant shared research interests with Charles M. pathology in 1954. From 1954 to 1956 Howard Wilson, at that time a Professor and newly was in the United States Air Force, stationed at appointed chair of the Botany Department there.
    [Show full text]
  • Molecular Taxonomy, Origins and Evolution of Freshwater Ascomycetes
    Fungal Diversity Molecular taxonomy, origins and evolution of freshwater ascomycetes Dhanasekaran Vijaykrishna*#, Rajesh Jeewon and Kevin D. Hyde* Centre for Research in Fungal Diversity, Department of Ecology & Biodiversity, University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China Vijaykrishna, D., Jeewon, R. and Hyde, K.D. (2006). Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Diversity 23: 351-390. Fungi are the most diverse and ecologically important group of eukaryotes with the majority occurring in terrestrial habitats. Even though fewer numbers have been isolated from freshwater habitats, fungi growing on submerged substrates exhibit great diversity, belonging to widely differing lineages. Fungal biodiversity surveys in the tropics have resulted in a marked increase in the numbers of fungi known from aquatic habitats. Furthermore, dominant fungi from aquatic habitats have been isolated only from this milieu. This paper reviews research that has been carried out on tropical lignicolous freshwater ascomycetes over the past decade. It illustrates their diversity and discusses their role in freshwater habitats. This review also questions, why certain ascomycetes are better adapted to freshwater habitats. Their ability to degrade waterlogged wood and superior dispersal/ attachment strategies give freshwater ascomycetes a competitive advantage in freshwater environments over their terrestrial counterparts. Theories regarding the origin of freshwater ascomycetes have largely been based on ecological findings. In this study, phylogenetic analysis is used to establish their evolutionary origins. Phylogenetic analysis of the small subunit ribosomal DNA (18S rDNA) sequences coupled with bayesian relaxed-clock methods are used to date the origin of freshwater fungi and also test their relationships with their terrestrial counterparts.
    [Show full text]
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153­ Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • Morphological and Molecular Characterization of Selected Macrofungi in Northern Areas of Khyber Pakhtunkhwa, Pakistan
    MORPHOLOGICAL AND MOLECULAR CHARACTERIZATION OF SELECTED MACROFUNGI IN NORTHERN AREAS OF KHYBER PAKHTUNKHWA, PAKISTAN PhD (Botany) Junaid Khan CENTER FOR PLANT SCIENCES AND BIODIVERSITY UNIVERSITY OF SWAT 2018 MORPHOLOGICAL AND MOLECULAR CHARACTERIZATION OF SELECTED MACROFUNGI IN NORTHERN AREAS OF KHYBER PAKHTUNKHWA, PAKISTAN PhD (Botany) Submitted by Junaid Khan Roll No. 120851 Supervised by Dr. Hassan Sher Co supervisor Dr. Abdul Nasir Khalid CENTER FOR PLANT SCIENCES AND BIODIVERSITY UNIVERSITY OF SWAT 2018 TABLE OF CONTENTS CONTENTS Page Number Acknowledgements i Abstract ii Chapter 1. Introduction 1 Aims and Objectives 08 2. Materials and Methods 10 Study area 10 Field visits and collection of fruiting bodies 12 Morphological and anatomical characterization 13 Specimen identification and deposition 14 Molecular characterization 14 DNA extraction 14 PCR amplification, Visualization and sequencing 15 Editing of Sequences and BLAST Analysis of ITS sequences 16 3. Results 18 4. Discussion 382 5. Conclusions and Recommendations 419 6. References 421 7. Annexure-A 451 LIST OF FIGURES No. TITLE Page No. 1. Map of the study area……………………………………………………... 11 2. Macroscopic and microscopic characters of Chlorophyllum hortense…… 22 3. Molecular Phylogenetic analysis by of Chlorophyllum hortense and associated taxa inferred from nITS data by using Maximum Likelihood method……………………………………………………………………… 23 4. Macroscopic and microscopic characters of Echinoderma asperum………. 26 5. Macroscopic and microscopic structures of Lepiota cristata………………. 29 6. Molecular Phylogenetic analysis of Lepiota cristata and associated taxa by 30 Maximum Likelihood method inferred from nITS data using MEGA6…….. 7. Basidiomata of Leucoagaricus campestris………………………………… 34 8. Microscopic structures of Leucoagaricus campestris……………………… 35 9. Molecular Phylogenetic analysis of Leucoagaricus campestris and associated 36 taxa by Maximum Likelihood method using MEGA6 software…………….
    [Show full text]