Effect of Forced Expirations on Mucus Clearance in Patients with Chronic Airflow Obstruction: Effect of Lung Recoil Pressure

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Forced Expirations on Mucus Clearance in Patients with Chronic Airflow Obstruction: Effect of Lung Recoil Pressure Thorax 1990;45:623-627 623 Effect of forced expirations on mucus clearance in patients with chronic airflow obstruction: effect of lung recoil pressure Thorax: first published as 10.1136/thx.45.8.623 on 1 August 1990. Downloaded from C P van der Schans, D A Piers, H Beekhuis, G H Koeter, Th W van der Mark, D S Postma Abstract spontaneous mucus clearance, the effect of Spontaneous mucus clearance and the forced expirations with an open glottis at effect of forced expirations and coughing different lung volumes, and the effect of on mucus clearance were investigated in coughing in patients with sputum production. eight patients with chronic airflow ob- We studied two groups of patients with struction and low elastic recoil pressure similar degrees of airways obstruction, one (emphysema group: mean FEVy 45% with normal elastic recoil pressure and the predicted) and in seven patients with other with decreased elastic recoil pressure. chronic airflow obstruction and normal For convenience we have labelled the two elastic recoil pressure (chronic bron- groups "chronic bronchitis" and chitis group: mean FEVy 57% predicted). "emphysema." Mucus clearance was measured in a cen- tral and a peripheral lung region by a radioactive aerosol tracer technique. Methods Spontaneous mucus clearance from the MUCUS CLEARANCE MEASUREMENTS peripheral lung region was higher in the Mucus transport in the lungs was measured as patients with emphysema than in those described elsewhere.9 In summary, a radio- with chronic bronchitis. There was no active aerosol was generated by means of an difference in central mucus clearance intermittent positive pressure respirator between the two groups. Mucus clear- (Bennet AP-5); the nebuliser was filled with ance from the peripheral lung region 35-50 MBq (1-15 mCi) technetium-99m increased significantly during forced labelled tin colloid (Amersham; 95% of the expirations and coughing in the patients particles 1-15 gum). In this way, a hetero- with chronic bronchitis but not in those disperse aerosol is produced and 10-15% of http://thorax.bmj.com/ with emphysema. It is concluded that in the tracer would be deposited in the airways patients with chronic airflow obstruction after 40 inhalations. After inhaling the aerosol and regular sputum production sponta- patients were asked to wash their mouth and neous peripheral mucus clearance is drink water to clear their throat and oeso- greater in those with decreased elastic phagus of radioactive tracer. The initial whole recoil pressure. Physiotherapy that in- lung deposition pattern was quantified by cludes forced expirations and coughing expressing the amount of radioactive tracer in can enhance mucus clearance in such the central and peripheral regions as percent- on September 24, 2021 by guest. Protected copyright. patients when elastic recoil pressure is ages of whole lung deposition. In each of the normal but is unlikely to be effective four studies the radiation dose to the lungs when elastic recoil pressure is decreased. with this method is 0-6 mGy (60 mrad) and the effective total body radiation dose 0.1 mGy (10 mrad).'° Division of Physiotherapy, Clearance measurements were made with Department of Physiotherapy is commonly used to treat the patient lying supine. A gamma camera was Rehabilitation mucus retention in patients with chronic air- positioned behind the thorax and linked to a C P van der Schans flow obstruction. These patients often have computer for continuous acquisition of one Department of increased mucus production in addition. Al- minute frames for 35 minutes. For data Nuclear Medicine D A Piers though retention of mucus is a complex analysis an oval central region was determined H Beekhuis problem and due to many different factors visually on the monitor. The size of this Department of physiotherapy is usually given. The forced region was recorded on the basis of the length Pulmonary Diseases expiration technique,l" in which a forced of the x and y axes. The peripheral region was G H Koeter expiration with an open glottis is carried out defined as the total lung region minus the Th W van der Mark D S Postma at different lung volumes, is commonly used central region (fig 1). Thus the sizes of the University Hospital, in an attempt to mobilise mucus by providing central and peripheral regions were indivi- Groningen, The a high expiratory axial airflow velocity in the dually reproducible over the four days of Netherlands airways.' measurement. The total amount of radioactive Address for reprint requests: We wondered whether forced expirations tracer in both lung regions was printed out C P van der Schans, Academisch Ziekenhuis, were less useful in patients with mucus pro- after correction for physical decay. The secr. Fysiotherapie CMC I, duction who have decreased elastic recoil results were expressed as percentages of the Oostersingel 59, 9713 EZ Groningen, The pressure than in patients with mucus produc- starting value, defined as the amount of Netherlands. tion and normal elastic recoil pressure. The radioactive tracer measured in the period 0-1 Accepted 2 April 1990 aim of the present study was to evaluate minute. The decrease of radioactive tracer was 624 van der Schans, Piers, Beekhuis, Koeter, van der Mark, Postma Figure 1 Example ofa total lung region (a); the peripheral region (b) is found by subtracting the central region (c) from the total lung region. Thorax: first published as 10.1136/thx.45.8.623 on 1 August 1990. Downloaded from considered to reflect mucus transport in the Mucus clearance measurements were per- lungs. formed on each study day. The protocols were started after inhalation of the radiolabelled PATIENTS aerosol. After each protocol the patient was Eight patients were selected on the entry visit asked whether the treatment had been effec- on the basis of the following criteria and tive in clearing the lungs. None of the patients categorised as having emphysema: regular had used the forced expiration technique daily expectoration of mucus, airflow obstruc- previously. During each protocol the patients tion with an FEV, below 80% predicted and were required to lie supine for 35 minutes. values below predicted after bronchodilata- Protocols II, III, and IV were used in a tion, static pulmonary compliance above randomised order; protocol I was carried out 110% predicted, total lung capacity above on the first study day. The four protocols 110% predicted or FEV,/FIV, below 60%, were: and circumstantial evidence of emphysema on Protocol I This was used for control the chest radiograph according to the criteria measurements and for measuring spontaneous of Simon et al." Seven patients with chronic mucus clearance. No physiotherapy was per- bronchitis were also selected on an entry visit. formed. These patients had also regular daily expec- Protocol II The patients breathed undis- http://thorax.bmj.com/ toration of mucus, and an FEV1 below 80% turbed for the first 10 minutes. Forced expira- predicted that was not fully reversible. They tions with an open glottis were then perfor- had to have a static lung compliance med from total lung capacity (TLC) every 30 measurement below 90% predicted and had to seconds for a further 10 minutes. Patients show no clinical or radiological symptoms or then coughed as productively as possible signs suggesting emphysema. Spirometry was every 30 seconds for five minutes. The last 10 performed with a water sealed spirometer. minutes again consisted of undisturbed Static lung volumes were assessed with a breathing. on September 24, 2021 by guest. Protected copyright. helium dilution technique. Pulmonary com- Protocol III This was the same as II except pliance was measured as outlined by Cotes."2 that the forced expirations were now perfor- Each patient with emphysema was matched as med at functional residual capacity (FRC). closely as possible for FEVy and smoking Protocol IV This consisted of 10 minutes of habits with a patient with chronic bronchitis. undisturbed breathing followed by a period of On the days of measurement the patients used coughing every 30 seconds for 15 minutes. their regular medication-that is, inhalation The patient then breathed again undisturbed steroids, ipratropium bromide, theophylline, for 10 minutes. and beta agonists. Routine physiotherapy was The patient took a drink of water to clear not performed on the days of measurement. the oesophagus of radioactive tracer after the The study was approved by the medical ethics forced expiration periods and after the cough- committee of the university hospital. All ing period. patients gave written, informed consent. PHYSIOTHERAPY Physiotherapy was always given by the same STATISTICAL ANALYSIS physiotherapist (C P vd S). The patients Differences in radioactive tracer clearance at underwent three different physiotherapy 10, 20, 25, and 35 minutes after starting the protocols (II, III, IV) and one protocol with- clearance measurements were compared with- out treatment (I) on four different days, in the two groups by means of analysis of always between 13.00 and 15.00 hours within variance. Differences between the two groups nine days. Peak expiratory flow (PEF) was were compared by means of Student's un- determined before each mucus clearance paired t test. In both tests a significant dif- measurement. The highest value from three ference was defined as p < 0 05. All calcu- technically correct manoeuvres was taken for lations were performed by using the SPSS analysis. statistical package.'3 Effect offorced expirations on
Recommended publications
  • Peak Flow Measure: an Index of Respiratory Function?
    International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Original Research Article Peak Flow Measure: An Index of Respiratory Function? D. Devadiga, Aiswarya Liz Varghese, J. Bhat, P. Baliga, J. Pahwa Department of Audiology and Speech Language Pathology, Kasturba Medical College (A Unit of Manipal University), Mangalore -575001 Corresponding Author: Aiswarya Liz Varghese Received: 06/12/2014 Revised: 26/12/2014 Accepted: 05/01/2015 ABSTRACT Aerodynamic analysis is interpreted as a reflection of the valving activity of the larynx. It involves measuring changes in air volume, flow and pressure which indicate respiratory function. These measures help in determining the important aspects of lung function. Peak expiratory flow rate is a widely used respiratory measure and is an effective measure of effort dependent airflow. Aim: The aim of the current study was to study the peak flow as an aerodynamic measure in healthy normal individuals Method: The study group was divided into two groups with n= 60(30 males and 30 females) in the age range of 18-22 years. The peak flow was measured using Aerophone II (Voice Function Analyser). The anthropometric measurements such as height, weight and Body Mass Index was calculated for all the participants. Results: The peak airflow was higher in females as compared to that of males. It was also observed that the peak air flow rate was correlating well with height and weight in males. Conclusions: Speech language pathologist should consider peak expiratory airflow, a short sharp exhalation rate as a part of routine aerodynamic evaluation which is easier as compared to the otherwise commonly used measure, the vital capacity.
    [Show full text]
  • Spirometry Basics
    SPIROMETRY BASICS ROSEMARY STINSON MSN, CRNP THE CHILDREN’S HOSPITAL OF PHILADELPHIA DIVISION OF ALLERGY AND IMMUNOLOGY PORTABLE COMPUTERIZED SPIROMETRY WITH BUILT IN INCENTIVES WHAT IS SPIROMETRY? Use to obtain objective measures of lung function Physiological test that measures how an individual inhales or exhales volume of air Primary signal measured–volume or flow Essentially measures airflow into and out of the lungs Invaluable screening tool for respiratory health compared to BP screening CV health Gold standard for diagnosing and measuring airway obstruction. ATS, 2005 SPIROMETRY AND ASTHMA At initial assessment After treatment initiated and symptoms and PEF have stabilized During periods of progressive or prolonged asthma control At least every 1-2 years: more frequently depending on response to therapy WHY NECESSARY? o To evaluate symptoms, signs or abnormal laboratory tests o To measure the effect of disease on pulmonary function o To screen individuals at risk of having pulmonary disease o To assess pre-operative risk o To assess prognosis o To assess health status before beginning strenuous physical activity programs ATS, 2005 SPIROMETRY VERSUS PEAK FLOW Recommended over peak flow meter measurements in clinician’s office. Variability in predicted PEF reference values. Many different brands PEF meters. Peak Flow is NOT a diagnostic tool. Helpful for monitoring control. EPR 3, 2007 WHY MEASURE? o Some patients are “poor perceivers.” o Perception of obstruction variable and spirometry reveals obstruction more severe. o Family members “underestimate” severity of symptoms. o Objective assessment of degree of airflow obstruction. o Pulmonary function measures don’t always correlate with symptoms. o Comprehensive assessment of asthma.
    [Show full text]
  • Epidemiology and Pulmonary Physiology of Severe Asthma
    Epidemiology and Pulmonary Physiology of Severe Asthma a b Jacqueline O’Toole, DO , Lucas Mikulic, MD , c, David A. Kaminsky, MD * KEYWORDS Demographics Phenotype Health care utilization Pulmonary function Lung elastic recoil Ventilation heterogeneity Gas trapping Airway hyperresponsiveness KEY POINTS The definition of severe asthma is still a work in progress. The severity of asthma is predictive of higher health care utilization. Cluster analysis is useful in characterizing severe asthma phenotypes. Airway hyperresponsiveness in severe asthma is a result of abnormal airflow, lung recoil, ventilation, and gas trapping. Patients with severe asthma may have a reduced perception of dyspnea. INTRODUCTION Severe asthma is a characterized by a complex set of clinical, demographic, and physiologic features. In this article, we review both the epidemiology and pulmonary physiology associated with severe asthma. DEMOGRAPHICS OF SEVERE ASTHMA Asthma has long been recognized as a worldwide noncommunicable disease of importance. Within the population of individuals with asthma, there is a subgroup of individuals at high risk for complications, exacerbations, and a poor quality of life. The authors have nothing to disclose. a Department of Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Bur- lington, VT 05401, USA; b Division of Pulmonary and Critical Care Medicine, University of Ver- mont Medical Center, Given D208, 89 Beaumont Avenue, Burlington, VT 05405, USA; c Division of Pulmonary and Critical Care Medicine, University of Vermont College of Medicine, Given D213, 89 Beaumont Avenue, Burlington, VT 05405, USA * Corresponding author. E-mail address: [email protected] Immunol Allergy Clin N Am 36 (2016) 425–438 http://dx.doi.org/10.1016/j.iac.2016.03.001 immunology.theclinics.com 0889-8561/16/$ – see front matter Ó 2016 Elsevier Inc.
    [Show full text]
  • BSL Lesson 13
    Physiology Lessons Lesson 13 for use with the PULMONARY FUNCTION II Biopac Student Lab Pulmonary Flow Rates Forced Expiratory Volume (FEV1,2,3) PC under Windows 95/98/NT 4.0/2000 Maximal Voluntary Ventilation (MVV) or Macintosh Manual Revision 12132000.PL3.6.6-ML3.0.7 Number of cycles in 12 second interval Average Volume Richard Pflanzer, Ph.D. per cycle Associate Professor Indiana University School of Medicine Purdue University School of Science J.C. Uyehara, Ph.D. Biologist Number of cycles/minute = Number of cycles in 12 second interval X 5 MVV = (Average volume per cycle) X (Number of cycles per minute) BIOPAC Systems, Inc. William McMullen Vice President BIOPAC Systems, Inc. BIOPAC Systems, Inc. 42 Aero Camino, Santa Barbara, CA 93117 (805) 685-0066, Fax (805) 685-0067 Email: [email protected] Web Site: http://www.biopac.com Page 2 Lesson 13: Pulmonary Function II Biopac Student Lab V3.0 I. INTRODUCTION The respiratory or pulmonary system performs the important functions of supplying oxygen (O2) during inhalation, removing carbon dioxide (CO2) during exhalation, and adjusting the acid-base balance (pH) of the body by removing acid-forming CO2. Because oxygen is necessary for cellular metabolism, the amount of air that the pulmonary system provides is important in setting the upper limits on work capacities or metabolism. Therefore, the measurement of lung volumes and the rate of air movement (airflow) are important tools in assessing the health and capacities of a person. In this lesson, you will measure: Forced Vital Capacity (FVC), which is the maximal amount of air that a person can forcibly exhale after a maximal inhalation.
    [Show full text]
  • Restrictive Lung Disease
    Downloaded from https://academic.oup.com/ptj/article/48/5/455/4638136 by guest on 29 September 2021 RESTRICTIVE LUNG DISEASE WARREN M. GOLD, M.D. RESTRICTIVE LUNG DISEASE is a These disorders can be divided into two pattern of abnormal lung function defined by groups: extrapulmonary and pulmonary. a decrease in lung volume (Fig. I).1,2 The In extrapulmonary restriction, an abnormal total lung capacity is decreased and, in severe increase in the stiffness of the chest wall (kypho­ restrictive defects, all of the subdivisions of the scoliosis) restricts the lung volumes, as does total lung capacity including vital capacity, respiratory muscle weakness (poliomyelitis or functional residual capacity, and residual vol­ muscular dystrophy). These extrapulmonary ume are decreased. In mild or moderately se­ causes of pulmonary restriction are treated vere restrictive defects, the residual volume may be normal or slightly increased. CLINICAL DISORDERS CAUSING TABLE 1 RESTRICTIVE LUNG DISEASE CAUSES OF RESTRICTIVE LUNG DISEASE Restrictive lung disease is not a specific clin­ I. Extrapulmonary restriction 3 ical entity, but only one of several patterns of A. Chest wall stiffness (kyphoscoliosis) B. Respiratory-muscle weakness (muscular dystrophy)4 abnormal lung function. It is produced by a C. Pleural disease (pneumothorax)5 number of clinical disorders (see Table 1). II. Pulmonary restriction A. Surgical resection (pneumonectomy)6.7 Dr. Gold: Director, Pulmonary Laboratory and Re­ B. Tumor (bronchogenic carcinoma or metastatic tumor)8 search Associate in Cardiology (Pulmonary Physiology), C. Heart disease (hypertensive, arteriosclerotic, rheu­ Children's Hospital Medical Center; Associate in Pedi­ matic, congenital)9 atrics and Tutor in Medical Science, Harvard Medical 10 11 School, Boston, Massachusetts.
    [Show full text]
  • Standardisation of Spirometry
    Eur Respir J 2005; 26: 319–338 DOI: 10.1183/09031936.05.00034805 CopyrightßERS Journals Ltd 2005 SERIES ‘‘ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING’’ Edited by V. Brusasco, R. Crapo and G. Viegi Number 2 in this Series Standardisation of spirometry M.R. Miller, J. Hankinson, V. Brusasco, F. Burgos, R. Casaburi, A. Coates, R. Crapo, P. Enright, C.P.M. van der Grinten, P. Gustafsson, R. Jensen, D.C. Johnson, N. MacIntyre, R. McKay, D. Navajas, O.F. Pedersen, R. Pellegrino, G. Viegi and J. Wanger CONTENTS AFFILIATIONS Background ............................................................... 320 For affiliations, please see Acknowledgements section FEV1 and FVC manoeuvre .................................................... 321 Definitions . 321 CORRESPONDENCE Equipment . 321 V. Brusasco Requirements . 321 Internal Medicine University of Genoa Display . 321 V.le Benedetto XV, 6 Validation . 322 I-16132 Genova Quality control . 322 Italy Quality control for volume-measuring devices . 322 Fax: 39 103537690 E-mail: [email protected] Quality control for flow-measuring devices . 323 Test procedure . 323 Received: Within-manoeuvre evaluation . 324 March 23 2005 Start of test criteria. 324 Accepted after revision: April 05 2005 End of test criteria . 324 Additional criteria . 324 Summary of acceptable blow criteria . 325 Between-manoeuvre evaluation . 325 Manoeuvre repeatability . 325 Maximum number of manoeuvres . 326 Test result selection . 326 Other derived indices . 326 FEVt .................................................................. 326 Standardisation of FEV1 for expired volume, FEV1/FVC and FEV1/VC.................... 326 FEF25–75% .............................................................. 326 PEF.................................................................. 326 Maximal expiratory flow–volume loops . 326 Definitions. 326 Equipment . 327 Test procedure . 327 Within- and between-manoeuvre evaluation . 327 Flow–volume loop examples. 327 Reversibility testing . 327 Method .
    [Show full text]
  • Interrelationship Between Lung Volume, Expiratory Flow, and Lung Transfer Factor in Fibrosing Alveolitis
    Thorax: first published as 10.1136/thx.36.11.858 on 1 November 1981. Downloaded from thorax 1981 ;36:858-862 Interrelationship between lung volume, expiratory flow, and lung transfer factor in fibrosing alveolitis JN PANDE From the Respiratory Laboratory, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India ABSTRACT Fifty patients with fibrosing alveolitis studied on 104 occasions exhibited significant direct correlations between vital capacity (VC), maximum mid-expiratory flow rate (MMFR), and transfer factor for carbon monoxide (TLCO). Forced expired volume in the first second (FEV,)/VC ratio bore a weak negative correlation with VC. Peak expiratory flow, MMFR, and maximum flow rates at 50 % and 25 % of VC were often reduced in patients with severe grades of pulmonary dys- function. It appears that as the severity of the fibrotic process increases, the lung volumes shrink and the transfer factor for CO decreases. The total lung capacity decreases predominantly on account of reduction in VC. With a decrease in lung volume the MMFR also falls. Decrease in flow rates at low lung volumes is greater as compared to the fall in peak flow. The expiratory flow rates how- ever were normal or even increased when related to absolute lung volume. Some patients exhibit disproportionate expiratory slowing as evidenced by a decrease in MMFR which is out of propor- tion to the reduction in VC. These patients also have a reduced FEV1,/VC ratio. These changes are probably the consequence of associated peripheral airway narrowing. copyright. Increased elastic recoil of the lung limiting maximal 33 women. Their age ranged from 16-68 years (mean inflation is considered to be the main abnormality of ± SE 42-1 ± 1-7 years).
    [Show full text]
  • Errors in the Measurement of Vital Capacity a Comparison of Three Methods in Normal Subjects and in Patients with Pulmonary Emphysema
    Thorax: first published as 10.1136/thx.28.5.584 on 1 September 1973. Downloaded from Thorax (1973), 28, 584. Errors in the measurement of vital capacity A comparison of three methods in normal subjects and in patients with pulmonary emphysema D. C. S. HUTCHISON, C. E. BARTER', and N. A. MARTELLI2 Chest Unit, King's College Hospital, London SE5 Hutchison, D. C. S., Barter, C. E., and Martelli, N. A. (1973). Thorax, 28, 584-587. Errors in the measurement of vital capacity: a comparison of three methods in normal subjects and in patients with pulmonary emphysema. Three methods of measuring the vital capacity have been compared in six normal subjects and in six with pulmonary emphysema, according to a randomized design. The methods were (a) the inspiratory vital capacity (IVC), (b) the expiratory vital capacity (EVC), and (c) the forced vital capacity (FVC). In normal subjects, there was a small but significant difference between the methods. The residual standard deviation derived from analysis of variance was 94 ml (coefficient of variation 1.7 %). A slight but significant rise in vital capacity with repeated effort was observed. In emphysematous subjects, there was no significant difference between the IVC and EVC methods. The FVC gave values which were, on average, approximately 0.5 litre less copyright. than those obtained by the other methods. The standard deviation in all three methods was substantially greater than for the normal subjects. The FVC is not a suitable method for the measurement of vital capacity in patients with pulmonary emphysema. The EVC is satisfactory, provided it is used with caution, but in practice the IVC is the preferred method.
    [Show full text]
  • Alternative Methods for Assessing Bronchodilator Reversibility In
    Thorax 2001;56:713–720 713 Alternative methods for assessing bronchodilator Thorax: first published as 10.1136/thx.56.9.713 on 1 September 2001. Downloaded from reversibility in chronic obstructive pulmonary disease J Hadcroft, P M A Calverley Abstract Chronic obstructive pulmonary disease Background—Bronchodilator reversibil- (COPD) is characterised by airflow limitation ity testing is recommended in all patients which varies little over several months of with chronic obstructive pulmonary dis- observation or after treatment.12 The assess- ease (COPD) but does not predict im- ment of airflow limitation usually relies on provements in breathlessness or exercise spirometric testing and, in particular, the performance. Two alternative ways of forced expiratory volume in 1 second (FEV1) assessing lung mechanics—measurement which is the usual outcome measure in of end expiratory lung volume (EELV) diagnostic bronchodilator reversibility testing.3 using the inspiratory capacity manoeuvre Although useful diagnostically and prognosti- and application of negative expiratory cally,4 spirometric abnormalities are poor pressure (NEP) during tidal breathing to descriptors of the severity of breathlessness in detect tidal airflow limitation—do relate 5 COPD. Likewise, significant changes in FEV1 to the degree of breathlessness in COPD. after inhaled bronchodilators are not necessary Their usefulness as end points in broncho- for improvement in exercise performance or dilator reversibility testing has not been dyspnoea to occur.5–7 Two alternative tech- examined. niques of measuring lung mechanics relatively Methods—We studied 20 patients with easily are now available. Both are better corre- clinically stable COPD (mean age 69.9 lates of breathlessness than FEV , but their (1.5) years, 15 men, forced expiratory vol- 1 reproducibility and sensitivity to change in ume in one second (FEV ) 29.5 (1.6)% pre- 1 response to bronchodilator drugs has not been dicted) with tidal flow limitation as assessed—an important consideration if they assessed by their maximum flow-volume loop.
    [Show full text]
  • Respiratory System Chapter 23
    Respiratory System Chapter 23 Pulmonary Volumes and Capacities FIGURE 23.15 1. A spirometer is a device for measuring the volumes of air that move into and out of the respiratory system. Spirometry is the process of taking the measurements. 2. There are four pulmonary volumes. A. Tidal volume is the amount of air that moves in or out of the respiratory system during normal, quiet, at rest breathing. B. Inspiratory reserve is the amount of air that can be taken into the lungs following a normal tidal volume. It is the amount of air "on top" of the tidal volume. C. Expiratory reserve is the amount of air that can be forced out of the lungs following a normal tidal volume. It is the amount of air "below" the tidal volume. D. Residual volume is the amount of air that remains in the lungs after the expiratory reserve. It is the volume of air that cannot be eliminated from the lungs. E. Pulmonary volumes for a young adult male: Tidal volume 500 mL Inspiratory reserve 3000 mL Expiratory reserve 1100 mL Residual volume 1200 mL 3. A pulmonary capacity is two or more pulmonary volumes added together. A. Inspiratory capacity is tidal volume plus inspiratory reserve. This is the amount of air a person can inspire after a normal expiration. B. Functional residual capacity is the expiratory reserve volume plus the residual volume. This is the amount of air in the lungs after a normal expiration. C. Vital capacity is the expiratory reserve plus the tidal volume plus the inspiratory reserve.
    [Show full text]
  • Lung Elastic Recoil and Ventilation Heterogeneity of Diffusion-Dependent Airways in Older People with Asthma and Fixed Airflow Obstruction
    AGORA | RESEARCH LETTER Lung elastic recoil and ventilation heterogeneity of diffusion-dependent airways in older people with asthma and fixed airflow obstruction To the Editor: Small airways are abnormal in asthma [1]. One measurement of small airway function is Sacin, derived from the multiple-breath nitrogen washout (MBNW) test. Sacin reflects ventilation heterogeneity in diffusion-dependent airways, and is correlated with airway hyperresponsiveness [2] and asthma control [3]. Theoretically, heterogeneity of diffusion-dependent ventilation can arise due to the heterogeneity of cross-sectional areas of airway openings in terminal airways and the acini [4]. Therefore, Sacin may be affected by structural changes in those airways. The elastic properties of the lung may also affect Sacin,as the phase III slope, a marker of ventilation heterogeneity derived from the single-breath nitrogen washout, correlates with lung compliance in explanted lungs of smokers and in healthy lungs [5]. Reduced lung elastic recoil makes a large contribution to airflow obstruction in asthma [6], particularly in older individuals who may develop fixed airflow obstruction (FAO). FAO typifies chronic obstructive pulmonary disease (COPD) but can occur in older asthmatics who have never smoked and despite adequate treatment [7, 8]. Since FAO is associated with age and Sacin is more abnormal in older asthmatics compared to younger [2], we hypothesised that the increase in Sacin in older people with asthma was due to loss of lung elastic recoil. Therefore, the aim of this study was to examine the relationships between Sacin and elastic recoil pressure and compliance. We enrolled subjects from tertiary hospital clinics who were >40 years old, had ⩽5-pack-year smoking history and a physician diagnosis of asthma.
    [Show full text]
  • “Children Are Not Small Adults!” Derek S
    4 The Open Inflammation Journal, 2011, 4, (Suppl 1-M2) 4-15 Open Access “Children are not Small Adults!” Derek S. Wheeler*1,2, Hector R. Wong1,2 and Basilia Zingarelli1,2 1Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, The Kindervelt Laboratory for Critical Care Medicine Research, Cincinnati Children’s Research Foundation, USA 2Department of Pediatrics, University of Cincinnati College of Medicine, USA Abstract: The recognition, diagnosis, and management of sepsis remain among the greatest challenges in pediatric critical care medicine. Sepsis remains among the leading causes of death in both developed and underdeveloped countries and has an incidence that is predicted to increase each year. Unfortunately, promising therapies derived from preclinical models have universally failed to significantly reduce the substantial mortality and morbidity associated with sepsis. There are several key developmental differences in the host response to infection and therapy that clearly delineate pediatric sepsis as a separate, albeit related, entity from adult sepsis. Thus, there remains a critical need for well-designed epidemiologic and mechanistic studies of pediatric sepsis in order to gain a better understanding of these unique developmental differences so that we may provide the appropriate treatment. Herein, we will review the important differences in the pediatric host response to sepsis, highlighting key differences at the whole-organism level, organ system level, and cellular and molecular level. Keywords: Pediatrics, sepsis, shock, severe sepsis, septic shock, SIRS, systemic inflammatory response syndrome, critical care. THE PEDIATRIC HOST RESPONSE TO SEPSIS Sepsis is exceedingly more common in children less than 1 year of age, with rates 10-fold higher during infancy Key Differences at the Whole-organism Level compared to childhood and adolescence [2].
    [Show full text]