<<

EXPERI ME NTAL OBSERVATI O N OF T HE I NTER ME DIATE VECT OR B OS O NS W + , W - a n d Z 0 .

Nobel lect ure, 8 Dece mber, 1984 b y C A R L O R U B B I A

CE R N, C H-1211 GE NE V A 23, S witzerland

1. I ntrod uctio n I n t his lect ure I s hall descri be t he disco ver y of t he tri plet of ele me ntar y p a r t i c l e s W + , W -- , a n d Z 0 - b y far t he most massi ve ele me ntar y particles pro d uce d with accelerators u p to no w. T he y are als o belie ve d t o be t he pro pagators of the pheno mena. On a cos mological scale, weak interactions play an absol utely f un da mental r ole. F or exa m ple, it is t he wea k pr ocess

2 + H + e + v e t hat co ntrols t he mai n b ur ni n g reactio ns i n t he s u n. T he most stri ki n g feat ure of t hese p he no me na is t heir s mall rate of occ urre nce: at t he te m perat ure a n d de nsit y at t he ce ntre of t he s u n, t his b ur ni n g process pro d uces a heat release per u nit of mass w hic h is o nly l /100 t hat of t he nat ural metabolis m of t he h u m a n b o d y. It is i n d e e d t his sl o w n ess t h at m a k es t h e m s o pr e ci o us, e ns uri n g, for i nsta nce, t he a p pro priate t her mal co n ditio ns t hat are necessary for life o n eart h. T his pro pert y is directl y relate d to t he ver y lar ge mass of t he W-fiel d q ua nta. Si nce t he f u n da me ntal discoveries of He nri Becq uerel a n d of Pierre a n d Marie C urie at t he e n d of t he last ce nt ur y, a lar ge n u m ber of beta- deca y p he no me na have bee n observe d i n n uclei. T hey all a p pear to be relate d to a pair of f un da mental reactions involving transfor mations bet ween an d ne utr o ns:

n → p + e - + v e , ( 1) Follo wi n g Fer mi [1], t hese processes ca n be descri be d pert ur bati vel y as a poi nt i nteractio n i n vol vi n g t he pro d uct of t he fo ur partici pati n g fiel ds. Hig h-e nergy collisio ns ha ve le d to t he obser vatio n of ma ny h u n dre ds of ne w ha dro nic particle states. T hese ne w particles, w hic h are ge nerall y u nstable, a p pear to be j ust as f u n da me ntal as t he ne utro n a n d t he proto n. Most of t hese ne w particle states ex hi bit wea k i nteractio n pro perties w hic h are si milar to t hose of t he n ucleo ns. T he s pectrosco py of t hese states ca n be describe d wit h t he hel p of f u n da me ntal, poi nt-like, s pi n-1 /2 fer mio ns, t he q uarks, wit h frac- tio nal electric c harges +2 /3e a n d -1 /3e a n d t hree differe nt colo ur states. T he u niversality of t he weak p he no me na is t he n well i nter prete d as a Fer mi C. R u b bi a 2 4 1

Fig, I. The neutrino and antineutrino charged-current total cross-section as a function of the n e utri n o e n er g y. D at a ar e fr o m t h e P arti cl e D at a Gr o u p ( R e v. M o d. P h ys. 5 6, N o. 2, P art 2, A pril 1984) reprinted at C E R N. The lines represent the effects of the W propagator. c o u pli n g occ urri n g at t he q uar k le vel [2]. F or i nsta nce, reacti o ns (1) are act uall y d ue to t he processes

+ ( u) ( d) + e + v e , ( 2) w here ( u) is a +2 /3e q uar k a n d ( d) a -l /3e q uar k. ( T he brac kets i n dicate t hat particles are bo u n d.) Cabibbo has s ho w n t hat u niversality of t he weak co u- pli n g t o t h e q u ar k f a mili es is w ell u n d erst o o d, ass u mi n g t h at si g nifi c a nt mi xi n g occ urs i n t he +1 /3e q uar k states [3]. Li ke wise, t he t hree le pto nic fa milies - n a m e l y ( e , v ), ( µ, v ), a n d ( τ, v ) - e x h i b i t i d e n t i c a l w e a k i n t e r a c t i o n e µ τ be ha vi o ur, o nce t he differe nces i n masses are ta ke n i nt o acc o u nt. It is n ot kno wn if, in analogy to the Cabibbo pheno menon, mixing occ urs also a mongst t he ne utri no states ( ne utri no oscillatio ns). T his has le d to a very si m ple pert urbati ve mo del i n w hic h t here are t hree q uar k c urre nts, b uilt u p fr o m t he ( u, d c ), ( c, s c ), a n d (t, b c ) p airs (t he s ubscri pt C i n dicates Cabibbo mixi ng), a n d t hree le pto n c urre nts fro m (e, v e),

( µ, v µ ), a n d (τ, pairs. Eac h of t hese c urre nts has t he sta n dar d vector for m

[ 4] J µ = f 1 ( 1 - γ 5 ) f 2 . A n y of t he pair pro d ucts of c urre nts J µ , j µ , will r el at e t o a basic fo ur-fer mio n i nteractio n occ urri ng at a stre ngt h deter mi ne d by t he universal Fer mi constant G F : 2 4 2 Physics 1984

Fig. 2a. Feyn man diagra m of virtual W exchange mediating the weak process [reaction (2)]

e +

Fi g. 2 b. F e y n m a n di a gr a m f or t h e dir e ct pr o d u cti o n of a W p arti cl e. N ot e t h at t h e q u ar k transfor mation has been replaced by a quark-antiquark annihilation.

- 5 - 2 w h e r e G F =1.16632 x 10 G e V ( h = c = l ) . T his pert ur bati ve, p oi nt-li ke descri pti o n of wea k pr ocesses is i n excelle nt agree me nt wit h ex peri me nts, u p to t he hig hest q 2 experi ments perfor med with the high-energy ne utrino bea ms (Fig. 1). We kno w, ho wever, that s uch a pert urbative calc ulation is inco m plete an d unsatisfactory. Accor ding to q uan- t u m mec ha nics, all hig her-or der ter ms must also be included: they appear, ho wever, as q ua dratically divergent. F urther more, at centre-of- mass energies greater t ha n abo ut 300 Ge V, t he first-or der cross-sectio n violates co nservatio n of pr o b a bilit y. It was Os kar Klei n [5] w ho, i n 1938, first s u g geste d t hat t he wea k i nterac- tio ns co ul d be me diate d by massive, c harge d fiel ds. Alt ho ug h he ma de use of Y uka wa’s i dea of co nstr ucti ng a s hort-ra nge force wit h t he hel p of massive fiel d q ua nta, Klei n’s t heory establis he d also a close co n nectio n bet wee n elec- tro magnetis m an d weak interactions. We no w kno w that his pre monitory visio n is e mbo die d i n t he electro weak t heory of Glas ho w, Wei nberg a n d Sala m [ 6], w hi c h will b e dis c uss e d i n d et ail l at er i n t his l e ct ur e. It is w ort h q u oti n g Kl ei n’s vi e w dir e ctl y: C. R u b bi a 2 4 3

‘ T he r ole of these particles, a nd their properties, bei ng si milar to those of the photo ns, we m a y per h a ps call t he m “electr o- p h ot o ns ” ( n a mel y electric all y c h ar ge d p h ot o ns). ’

I n t he prese nt lect ure I s hall follo w to day’s pre vale nt notatio n of W + a n d W - for t hese particles-fro m ‘ wea k’ [7] - alt ho u g h o ne m ust reco g nize t hat Klei n’s defi nitio n is no w m uc h more perti ne nt. T he basic Fey n ma n diagra ms of reactio n (2) are t he o nes s ho w n i n Fig. 2a. T he ne w, di me nsio nless co u pli ng co nsta nt g is t he n i ntro d uce d, relate d to f o r q 2 < < T h e V - A nat ure of t he Fer mi i nteractio n r e q uir es t h at t h e s pi n J of t h e W p arti cl e b e 1. It is w ort h r e m ar ki n g t h at i n Klei n’s pa per, i n a nal o g y t o t he p h ot o n, J = 1 a n d g = a. T h e a p p a r e n t l y excelle nt tit of t he ne utri n o data t o t he f o ur-fer mi o n p oi nt-li ke i nteracti o n ( Fi g. 1) i n dicates t hat m w is ver y lar ge ( ≥60 Ge V /c 2 ) a n d is c o m pati ble wit h

2. Pr o d ucti o n of W p articles Direct pro d uctio n of W particles follo we d b y t heir deca y i nto t he electro n- ne utri no is s ho w n i n Fig. 2b. T he ce ntreof- mass e nergy i n t he q uark-a nti- q uark collisio n m ust be large e no ug h, na mely T he cross-sectio n aro u n d t he reso na nce will follo w a c haracteristic Breit- Wig ner s ha pe, re mi nis- ce nt of n uclear p hysics ex peri me nts. T he cross-sectio n is easily calc ulate d:

w h er e is t he re d uce d q uark wavele ngt h i n t he ce ntre of mass. Q uark a n d a ntiq uark m ust ha ve i de ntical colo urs. T he i nitial-state wi dt h

- 7 3 4 . 5 x 1 0 m ( Ge V) calc ulate d fro m G F is s ur prisi n gl y wi de: na mel y, for G e V / c 2 as pre dicte d b y S U(2) x U(1) t he or y, Me V. T he t ot al wi dt h de pe n ds o n t he n u mber of q uark a n d le pto n ge neratio ns. Taki ng

N q = 3 a n d a g ai n f or - 1 0 0 G e V, w e fi n d G e V. At t he pea k of t he res o na nce,

w h er e is t h e br a n c hi n g r ati o f or t h e i n c o mi n g c h a n n el. Of co urse q uark-a ntiq uark collisio ns ca n not be realize d directly si nce free q uar ks are n ot a vaila ble. T he cl osest s u bstit ute is t o use c ollisi o ns bet wee n protons an d anti protons. The fraction of n ucleon mo ment u m carrie d by the q uar ks a n d a nti q uar ks i n a proto n is s ho w n i n Fi g. 3. Beca use of t he prese nce of a ntiq uarks, proto n- proto n collisio ns also ca n be efficie ntly use d to pro d uce W particles. Ho we ver, a sig nifica ntly greater bea m e nergy is nee de d a n d t here is n o wa y of i de ntif yi n g t he directi o ns of t he i nc o mi n g q uar k a n d a nti q uar k. As we s hall see, t his a mbig uity will pre ve nt t he obser vatio n of i m porta nt asy m me- tries associate d wit h parity ( P) a n d c harge ( C) violatio n of weak i nteractio ns. T he ce ntre-of- mass e nergy i n t he q uark-a ntiq uark collisio n is r el at e d t o b y t h e w ell- k n o w n f or m ul a, 2 4 4 Physics 1984

2 Fi g. 3. Str u ct ur e f u n cti o ns F 2 , x F 3 , a n d measured in different experi ments, for fixed Q vers us x, pl ott e d ass u mi n g T h e el e ctr o m a g n eti c str u ct ur e f u n cti o n measured by the E M C ( European Muon Collaboration) and the BFP [ Berkeley ( L B L) - F N A L- Princeton] is co mpared wit h t h e c h ar g e d- c urr e nt str u ct ur e f u n cti o n using the 18/5 factor fro m the average charge squared of the quarks. No correction has been applied for the difference bet ween the strange and char m 2 s e a q u ar ks, s o t h e i nt er pr et ati o n is F 2 = x[ q t - 3/ 5(s + - c - C)]. (I n t his Q ra n ge, is d e pl et e d b y a si mil ar a m o u nt d u e t o c h ar m t hr es h ol d eff e cts i n t h e tr a nsiti o n c.) T he a nti q u ar k distri b uti o n m e as ur e d fr o m a nti n e utri n o s c att eri n g is T h e s oli d li n es 0. 5 5 3. 2 8 0. 5 5 ( 1- x) 3. 2 , Relative nor- h a v e t h e f or ms: F 2 = 3 . 9 x ( 1- x) +1.1(1-x) , x F 3 = 3 . 6 x m ali z ati o n f a ct ors h a v e b e e n fitt e d t o o pti mi z e a gr e e m e nt b et w e e n t h e diff er e nt d at a s ets, a n d absolute changes have been arbitrarily chosen as indicated. [ References: C D HS-- H. Abra mo wicz et al., Z. P h ys. C 1 7, 283 (1983); C CF R R-F. Sciulli, private co m munication; E M C-J.J. Aubert et al., P h ys. L ett. 1 0 5 B, 322 (1981); and A. Ed wards, private co m munication; B F P-- A. R. Clark et al., P h ys. R e v. L ett. 5 1, 1 8 2 6 ( 1 9 8 3); and P. Meyers, Ph. D. Thesis, L B L-17108 (1983), Univ. of C alif., B er k el e y. C o urt es y J. C arr, L B L.]

N ote t hat acc or di n g t o Fi g. 3, i n or der t o e ns ure t he c orrect c orrelati o n bet wee n t he q uar k of t he proto n (a n d t he a nti q uar k of t he a nti proto n) t he e n er g y s h o ul d b e s u c h t h at ≥ 0 . 2 5 Therefore there is one broad opti mu m C. R u b bi a 2 4 5

Fig. 4a, b. Production cross-sections of inter mediate vector for - collisions. The mass is para metrized with τ = N ot e i n Fi g. 4 a t h e s m all pr o b a bilit y of wr o n g q u ar k- a nti q u ar k a s si g n m e nt s. T h e pri nt s i n Fi g. 4 b r el at e t o m a s s pr e di cti o n s f or t h e S U(2) x U(1) model. e nergy ra nge for t he proto n-a nti proto n collisio ns for a gi ve n W mass. For

2 m w = 8 0 G e V / c , Ge V. T he pro d uctio n cross-sectio n for t he pr ocess

± ± ± W + X , W → e + v e

( w here X de notes t he frag me ntatio n of s pectator parto ns) ca n be easily e val uate d by fol di ng t he narro w reso na nce wi dt h o ver t he p a n d mo mentu m distri b uti o ns ( Fi g. 4). F or m w = 82 Ge V /c a n d Ge V, o ne fi n ds 1 0 - 3 3 c m 2 .

3. Proto n-a ntiproto n collisio ns T he o nl y practical wa y of ac hie vi n g ce ntre-of- mass e ner gies of t he or der of 500 G e V is t o c olli d e b e a ms of pr ot o ns a n d a nti pr ot o ns [ 8]. F or a l o n g ti m e s u c h a n i dea ha d bee n co nsi dere d as u n practical beca use of t he lo w de nsity of bea ms w he n use d as tar gets. 2 4 6 Physics 1984

b

Fi g. 4 C. R u b bi a 2 4 7

fr o m Ref. [9]. Pr ot o ns (100 Ge V /c) are perio dically extracte d i n s hort b ursts a n d pro d uce 3.5 Ge V /c a nti proto ns, w hic h are acc u m ulate d a n d c o ol e d i n t h e s m all st a c ki n g ri n g. T h e n ar e r ei nj e ct e d i n a n R F b u c k et of t h e m ai n ri n g a n d accelerate d to to p e ner g y. T he y colli de hea d o n a gai nst a b u nc h fille d wit h proto ns of e q ual e ner g y a n d rotati n g i n t he o p posite directio n.

T he rate R of e ve nts of cr oss-secti o n for t wo co u nter-rotati ng bea m

b unches colli ding hea d on, with freq uency a n d n l a n d n 2 p articl es, is

w h er e is t h e ( c o m m o n) b e a m r a di us, a n d t h e n u m eri c al f a ct or l / 4 t a k es i nt o acco u nt t he i ntegratio n over Ga ussia n profiles. For o ur ex peri me nt, ty pically c m a n d c m 2 . T heref ore a n d a ver y l ar g e pro d uct is nee de d to o verco me t he ‘geo metry’ effect. The sche me use d in the present ex peri mental progra m me has been dis- c uss e d b y R u b bi a, Cli n e a n d M cI nt yr e [ 9] a n d is s h o w n i n Fi g. 5. It m a k es us e of the existing 400 Ge V C E R N Proton ( PS) [10], s uitably mo di- fie d i n or der to be able to store co u nter-rotati ng b u nc hes of proto ns a n d a nti proto ns at a n e nergy of 270 Ge V per bea m. A nti proto ns are pro d uce d by c ollisi o ns of 2 6 G e V / c pr ot o ns fr o m t h e P S o nt o a s oli d t ar g et. A c c u m ul ati o n i n a s mall 3.5 Ge V /c st ora ge ri n g is f oll o we d b y st oc hastic c o oli n g [ll] t o co m press p hase s pace. I n Table 1 t he para meters of Ref. [9] are gi ve n. Ta ki n g into acco unt that the original pro posal was for m ulate d for another machine, na mel y t he Fer mila b s y nc hrotro n ( Bata via, Ill.) t he y are q uite close to t he co n ditio ns realise d i n t he S PS co nversio n. Details of t he acc u m ulatio n of anti protons are describe d in the acco m panying lect ure by Si mon van der M e er. The C E R N ex peri ments with proton-anti proton collisions have been the first, a n d so far t he o nl y, exa m ple of usi n g a stora ge ri n g i n w hic h b u nc he d proto ns a n d a nti proto ns colli de hea d o n. Alt ho ug h t he C E R N C olli der uses b u nched b e a ms, as d o t h e colli ders, t he p hase-s pace da m pi ng d ue to synchrotron ra diation is no w absent. F urt her more, si nce a nti proto ns are 2 4 8 Physics 1984

T a bl e 1. List of p ar a m et ers (fr o m R ef. [ 9])

1. M AI N RI N G (Fer milab) - Bea m mo mentu m 2 5 0 ( 4 0 0) G e V/ c - Equivalent laboratory energy for 133 (341) T e V - Accelerating and bunching frequency 5 3. 1 4 M H z - Har monic nu mber 1113 - R F p e a k v olt a g e/t ur n 3. 3x 1 0 6 v - Residual gas pressure < 0 . 5 x 1 0 - 7 T o r r - B et a f u n cti o ns at i nt er a cti o n p oi nt 3. 5 m - M o m e nt u m c o m p a cti o n at i nt. p oi nt - 0 m - 1 2 I n v ari a nt e mitt a n c es ( N p = 1 0 ) - l o n git u di n al 3 e V.s - tra ns verse 5 0 π 1 0 - 6 r a d . m - Bunch length 2. 3 m - D esi g n l u mi n osit y 5 x 1 0 2 9 ( 8 x 1 0") c m - 2 s - 1

2. A N TIP R O T O N S O U R C E ( [11] - N o mi n al st or e d mo mentu m 3. 5 G e V/ c - Circu mference of ring 1 0 0 m - M o m e n t u m a c c e p t a n c e 0. 0 2 - Betatron acceptances 1 0 0 π 1 0 - 6 r a d . m - Band width of mo mentu m stochastic cooling 4 0 0 M H z - Maxi mu m stochastic accelerating RF voltage 3 0 0 0 v - B a n d wi dt h of b et atr o n st o c h asti c c o oli n g 2 0 0 M H z

1 0 Final invariant e mittances ( N p = 3 x 1 0 ) - l o n git u di n al 0. 5 e V.s - tra ns verse 1 0 π 1 0 - 6 r a d . m

scarce, o ne has to o perate t he colli der i n co n ditio ns of relati vel y lar ge bea m- bea m i nteractio ns, w hic h is not t he case for t he co nti n uo us proto n bea ms of the previo usly o perate d Intersecting Storage Rings (IS R) at C E R N [12]. One of t he most re mar ka ble res ults of t he Colli der has probably bee n t he fact t hat it has o perate d at s uc h hi g h l u mi nosit y, w hic h i n t ur n mea ns a lar ge bea m-bea m t u ne s hift. I n t he early days of co nstr uctio n, very serio us co ncer n ha d bee n voice d regar di ng t he i nstability of t he bea ms d ue to bea m-bea m interaction. The bea m-bea m force can be a p proxi mate d as a perio dic s ucces- sio n of extre mel y no n-li near pote ntial kic ks. It is ex pecte d to excite a co nti n- u u m of reso na nces of t he stora ge ri n g w hic h has, i n pri nci ple, t he de nsit y of ratio nal n u mbers. Re d uce d to bare esse ntials, we ca n co nsi der t he case of a weak a nti proto n bea m colli di ng hea d o n wit h a stro ngly b u nc he d proto n bea m. T he i ncre me nt, d ue t o t he a n g ular kic k ∆ x’, of t he acti o n i n varia nt W = of a n a nti pr ot o n is a n d t his c a n b e e x pr ess e d i n t er ms of t h e ‘t u n e s hift’, A Q as If w e n o w ass u me t hat t he s uccessive kicks are ra n do mize d, t he seco n d ter m of ∆ W a vera ges t o zer o, a n d we get =

F o r t h e d e s i g n l u m i n o s i t y w e n e e d A Q - 0 . 0 0 3 , l e a d i n g t o W ) = 7 . 1 x 1 0 - 4 . T his is a ver y lar ge n u m ber i n dee d, gi vi n g a n e-f ol d i n- C. R u b bi a

Fi g. 6. Maxi mu m allo wed bea m-bea m tune-shift para meter, XI- Y, as a function of energy of the el e ctr o n- p ositr o n c olli d er S P E A R. O n e c a n s e e a dr a m ati c dr o p i n t h e all o w e d t u n e s hift at l o w er energies, as a consequence of the reduced synchrotron da mping. Extrapolation to the case of proton-antiproton collisions where the da mping is absent and therefore the da mping ti me is c o nst a nt, is t o b e i d e ntifi e d wit h t h e b e a m lif eti m e, p er mitti n g a n i nfi nit esi m al t u n e s hift a n d therefore to an unpractical lu minosity. cr e as e of W i n o nl y l / 7. 1 x 1 0 - 4 = 1. 4 1 x 1 0 3 kicks! T herefore t he o nly reaso n w h y t he a nti proto n motio n re mai ns sta ble is beca use t hese stro n g kic ks are not r a n d o m b ut p eri o di c, a n d t h e b e a m h as a l o n g ‘ m e m or y’ w hi c h all o ws t h e m t o be a d de d co here ntly rat her t ha n at ra n do m. Off-reso na nce, t he effects of t hese kic ks t he n ca ncel o n t he a vera ge, gi vi n g a n o verall zero a m plit u de gro wt h. T he bea m- bea m effects are ver y diffic ult, if not i m possi ble, to e val uate t heoretical- l y, si n c e t hi s a pri ori p urely deter mi nistic proble m ca n ex hibit stoc hastic be havio ur a n d irreversible diff usio n-like c haracteristics. A meas ure me nt at t he electro n- positro n colli der S P E A R at Sta nfor d ha d f urt her aggravate d t he ge neral co ncer n abo ut t he viability of t he c olli der sc he me. Re d uci n g t he e ner g y of t he electr o n c olli der ( Fi g. 6) res ulte d i n a s maller val ue of t he maxi m u m allo we d t u ne s hift, i nter prete d as bei ng d ue to the re duce d synchrotron ra diation da mping. Equating the nee de d bea m life- ti m e f or t h e colli der ( w here da m pi ng is abse nt) wit h t he extra polate d d a m p i n g t i m e o f a n e + e - colli der gives a maxi m u m allo we d t une shift 1 0 - 5 ÷ 1 0 - 6 , w hic h is catastro p hically lo w. T his bleak pre dictio n was n ot c o nfir me d b y t he ex perie nce at t he c olli der, w here per cr ossi n g, a n d six crossi ngs are ro uti nely ac hieve d wit h a bea m l u mi nosity lifeti me a p proac hi ng o ne day. W hat, t he n, is t he reaso n for s uc h a striki ng co ntra dic- tion bet ween ex peri ments with protons an d those with electrons? The differ- 2 5 0 Physics 1984 e nce is ca use d b y t he prese nce of s y nc hr otr o n ra diati o n i n t he latter case. T he e missio n of sy nc hrotro n p hoto ns is a major so urce of q uick ra n do mizatio n bet wee n crossi ngs a n d lea ds to a ra pi d deterioratio n of t he bea m e mitta nce. Fort unately, the sa me pheno menon also provi des us with an effective da m ping mec ha nis m. T he colli der works beca use bot h t he ra n do mizi ng a n d t he da m ping mechanis ms are absent. This un us ually favo urable co mbination of effects has e ns ure d t hat colli ders ha ve beco me viable de vices. T he y ha ve t he pote ntial for s ubsta ntial i m prove me nts i n t he f ut ure. T he acc u m ulatio n of more a nti proto ns wo ul d per mit us to obtai n a s ubsta ntially larger l u mi nosity, a n d a project is u n der way at C E R N w hic h is ex pecte d to be able to deli ver eno ugh anti protons to acc u m ulate, i n o ne si n gle day, t he i ntegrate d l u mi nosity o n w hic h t he res ults prese nte d i n t his lect ure ha ve bee n base d ( ~ 100 nb - 1 ).

4. The detectio n method T he process we wa nt to obser ve is t he o ne re prese nte d i n Fig. 2b, na mely

± ± ± W + X , W e + v e , ( 3) w here X re prese nts t he s u m of t he debris fro m t he i nteractio ns of t he ot her proto ns (s pectators). Alt ho ug h t he detectio n of hig h-e nergy electro ns is rela- tively straightfor war d, the observation of ne utrino e mission is unco m mon in colli ding-bea m ex peri ments. The probability of secon dary interactions of the ne utri no i n a ny co ncei vable a p parat us is i nfi nitesi mal. We m ust t herefore rely o n ki ne matics i n or der to si g nal its e missio n i n directl y. T his is ac hie ve d wit h a n a p pro priately desig ne d detector [13] w hi c h is u nif or ml y s e nsiti v e, o v er t h e w h ole s oli d a n gle, t o all t he c har ge d or ne utral i nteracti n g de bris pr o d uce d b y t he c ollisi o n. Si nce c ollisi o ns are o bser ve d i n t he ce ntre of mass, a si g nifica nt mo ment u m i mbalance may signal the presence of one or more non-interacting particles, pres u mably ne utrinos. The metho d can be conveniently i m ple mente d with calori meters, since their e nergy res po nse ca n be ma de rat her u nifor m for differe nt i nci de nt particles. Calori metr y is also i deall y s uite d to t he acc urate meas ure me nt of t he e ner g y of the acco m panying high-energy electron for process (3). Energy de positions ( Fi g. 7) i n i n di vi d ual cells, Ei, are co n verte d i nto a n e ner g y flo w vector w here is t h e u nit v e ct or p oi nti n g fr o m t h e c ollisi o n p oi nt t o (t h e ce ntre of) t he cell. T he n, f or relati vistic particles a n d f or a n i deal cal ori meter res po nse pro vi de d no no n-i nteracti ng particle is e mitte d. T he s u m c o v ers t h e w h ol e s oli d a n gl e. I n r e alit y t h er e ar e fi nit e r esi d u es t o t h e s u m: T his q ua ntity is calle d t he ‘ missi ng e nergy’ vector. Ob vio usly i n t he case of a ne utri n o e missi o n, I n t he case of pr ocess (3) t he effect is partic ularl y s pectac ular, si nce i n t he ce ntre of mass of t he W t he neutrino mo mentu m is v er y l ar g e. T he practical realizatio n of s uc h a detector [14] is s ho w n i n Fi g. 8a. After mo ment u m analysis in a large-i mage drift cha mber in a horizontal magnetic fiel d of 7000 G orie nte d nor mal to t he bea m directio ns, six co nce ntric sets of fi nely seg me nte d calori meters (Fig. 8 b) s urro u n d t he collisio n poi nt, do w n to C. R u b bi a 2 5 1

CONSTRUCTION OF ENERGY VECTORS

Fig. 7. Principal diagra m for constructing energy vectors and the missing energy of the event

a n gles of 0.2º wit h res pect to t he bea m directio ns. T he o peratio n of t hese calori meters is s ho w n sc he maticall y i n Fi g. 9a. T he first fo ur se g me nts are sa n d wic hes of lea d a n d sci ntillator, i n w hic h electro ns are ra pi dly absorbe d ( Fi g. 9 b), f oll o w e d b y t w o s e cti o ns of ir o n /s ci ntill at or s a n d wi c h ( w hi c h is als o. t he ret ur n yoke of t he mag netic fiel d). All ha dro ns are co m pletely absorbe d wit hi n t hese calori meters. M uo ns are detecte d by eig ht pla nes of large drift c ha mbers w hic h e nclose t he w hole detector vol u me. If o ne or more m uo ns are detecte d, their mo menta, meas ure d by magnetic c urvat ure, m ust be a d de d ‘by h a n d’ t o t h e e n er g y fl o w v e ct or. The perfor mance of the energy flo w meas ure ment has been teste d with 2 5 2 Physics 1984

b)

MA GNETIC CURVATURE ELE MENTARY S OLID AN GLE CR OSSIN G I C. R u b bi a 2 5 3

FRACTION OF ENERGY DEPOSITED Fi g. 9. a) S c h e m a of a n el e m e nt ar y s oli d- a n gl e c ell. Aft er f o ur s e g m e nts of l e a d/s ci ntill at or s a n d wi c h, t h er e ar e t w o el e m e nts of ir o n/s ci ntill at or s a n d wi c h, w hi c h is als o t h e m a g n eti c fi el d return loop. b) Energy depositions for high-energy pions and electrons. The nature of the particle c a n b e dis cri mi n at e d l o o ki n g at t h e tr a nsiti o n c ur v e.

sta n dar d collisio ns ( mi ni m u m bias). Fig. 10 s ho ws ho w well t he vertical co m ponent of the missing-energy vector is observe d for mini m u m bias events. T he missi ng e nergy resol utio n for eac h tra nsverse co m po ne nt ca n be para metrize d as w here , i n u nits of G e V, is t h e s c al ar s u m of t he tra ns verse co m po ne nts of t he e nergy flo w T he sa me para metri- zatio n also hol ds for e ve nts w hic h co ntai n hig h tra ns verse mo me nt u m jets, a n d for w hic h t he detector no n- u nifor mities are more critical si nce e nergy de posi- ti o n is hi g hl y l o c ali z e d ( Fi g. 1 1). T h e r es ol uti o n f u n cti o n is s h o w n i n Fi g. 1 2, w here t he missi n g e ner g y for t wo-jet e ve nts is s ho w n alo n g wit h a Mo nte Carlo calc ulatio n of t he ex pecte d distrib utio n base d o n t he ex pecte d be ha vio ur of t he calori meters as deter mine d by test-bea m data an d the meas ure d frag mentation f u ncti o ns of jets. F or a t y pi c al e v e nt wit h G e V, we meas ure the transverse co m po- n e nts of t o a b o ut 4 The longitudinal co mponent of the mo mentu m b al a n c e will n ot b e us e d i n t h e pr es e nt a n al ysis si n c e, i n s pit e of t h e s m all n ess of t h e wi n d o w t hr o u g h w hi c h t h e b e a m pi p es p ass e ner getic particles q uite ofte n esca pe t hro ug h t he a pert ure. 2 5 4 Physics 1984

Fi g. 1 0. Scatter-plot of the vertical co mponent of missing transverse energy versus the total transverse energy observed in all calori meter cells.

5. Observatio n of t he e + v si g nal T h e observation by t he U Al Collaboratio n [15] of t he c harge d i nter me diate vector was re porte d in a pa per p ublishe d in Febr uary 1983, follo we d s hortly by a parallel pa per fro m t he U A2 Collaboratio n [16]. Mass val ues were g i v e n : m 2 2 w = ( 8 0 ± 5 ) G e V / c ( U A1) a n d G e V / c ( U A2). Si nce t he n, t he ex peri me ntal sa m ples have bee n co nsi derably i ncrease d, a n d o ne ca n no w procee d much further in un derstan ding the pheno menon. In particular, t he assig n me nt of t he eve nts to reactio n (3) ca n no w be prove d rat her t ha n post ulate d. We s hall follo w here t he a nal ysis of t he U Al e ve nts [17]. O ur res ults are base d o n a n i nte grate d l u mi nosit y of 0.136 p b - 1 . W e first perfor me d a n i ncl usive searc h for hig h-e nergy isolate d electro ns. T he trigger selectio n re q uire d t he prese nce of a n e nergy de positio n cl uster i n t he electro- ma g netic cal ori meters at a n gles lar ger t ha n wit h tra ns verse e ner g y i n excess of 1 0 G e V. I n t h e e v e nt r e c o nstr u cti o n t his t hr es h ol d w as i n cr e as e d t o 1 5 G e V, lea di n g to abo ut 1. 5 x 1 0 5 bea m-bea m collision events. B y re q uiri n g t he prese nce of a n ass ociate d, is olate d trac k wit h Ge V/c i n t he ce ntral detect or, we re d uce d t he sa m ple b y a fact or of a b o ut 100. Next, a maxi m u m energy de position (leakage) of 600 Me V was allo we d in the ha dron calori meter cells after t he electro ma g netic co u nters, lea di n g to a sa m ple of 346 C. R u b bi a 2 5 5

Fi g. 1 1. Missing-energy resolution for mini mu m-bias and jet events e ve nts. We t he n classifie d e ve nts accor di ng to w het her t here was pro mi ne nt jet a cti vit y. We f o u n d t hat i n 291 e ve nts t here was a clearl y visi ble jet wit hi n a n azi m ut hal a ngle co ne o p posite to t he ‘electro n’ trac k. T hese e ve nts were str o n gl y c o nta mi nate d b y jet-jet e ve nts i n w hic h o ne jet fa ke d t he electro n si g nat ure a n d ha d to be rejecte d. We were left wit h 55 e ve nts wit ho ut a ny jet, or wit h a jet not back-to-back wit h t he ‘electro n’ wit hi n 30”. T hese eve nts ha d a very clea n electro n sig nat ure (Fig. 13) a n d a perfect matc hi ng bet wee n t he poi nt of electro n i nci de nce a n d t he ce ntroi d i n t he s ho wer detec- 2 5 6 Physics 1984

Fig. 12. Transverse energy balance observed for a sa mple of t wo-jet events. To convert the h ori z o nt al s c al e t o t h e n u m b er of st a n d ar d d e vi ati o ns ( n), us e t h e r el ati o ns hi p Variables have been chosen in such a way as to transfor m a Gaussian basic response of the calori meters into a li n e ar pl ot. T h e c o nti n u o us li n e is t h e r es ult of a c al c ul ati o n b as e d o n t h e e x p e ct e d c al ori m et er responses, as measured with test-bea m particles. C. R u b bi a 2 5 7

b)

Fi g. 1 3. Distrib utio ns s ho wi ng t he q uality of t he electro n sig nat ure: a) The energy de position in the ha dron calori meter cells behin d the 27 ra diation lengths (r. l.) of t he e. m. s ho wer detector. b) T h e fr a cti o n of t h e el e ctr o n e n er g y d e p osit e d i n t h e f o urt h s a m pli n g ( 6 r.l. d e e p, aft er 1 8 r.l. co n verter) of t he e. m. s ho wer detector. T he c ur ve is t he ex pecte d distrib utio n fro m test-bea m data. c) As distrib utio n (b) b ut for t he first sa m pli ng of t he e. m. s ho wer detector (first 6 r.l.). 2 5 8 Physics 1984

Fi g. 1 4. T h e distri b uti o n of t h e missi n g tr a ns v ers e e n er g y f or t h os e e v e nts i n w hi c h t h er e is a si n gl e electr o n wit h E T > 1 5 G e V, a n d n o c o pl a n ar jet a cti vit y. T h e c ur v e r e pr es e nts t h e r es ol uti o n f u nctio n for no missi ng e nergy nor malize d to t he t hree lo west missi ng-e nergy eve nts. tors, f urt her s u p porti ng t he abse nce of co m posite overla ps of a c harge d track a n d ne utral ex pecte d fr o m jets. T he b ulk of t hese e ve nts was c haracterize d by t he prese nce of ne utri no e missio n, si g nalle d b y a si g nifica nt missi n g e ner g y (see Fi g. 14). Accor di n g to the ex peri mental energy resol utions, at most the three lo west missing-energy eve nts were co m patible wit h no ne utri no e missio n. T hey were excl u de d by t he c ut >15 Ge V. We were t he n left wit h 52 e ve nts. I n or der to e ns ure t he best acc uracy i n t he electro n e nergy deter mi natio n, o nl y t hose e ve nts were retai ne d i n w hic h t he electro n trac k hit t he electro ma g- C. R u b bi a 2 5 9

Fi g. 15a. Missing transverse energy squared versus T for all verified events which have m or e t h a n 4 St. d e v. fr o m z er o f or all e v e nts wit h e + v decays re moved. The events are l a b ell e d a c c or di n g t o t h eir t o p ol o g y. netic detectors more than ±15° a way fro m their to p an d botto m e dges. The sa m ple was t he n re d uce d to 43 e ve nts. A n alter nati ve selecti o n was carrie d o ut, base d o n t he i ncl usi ve prese nce of a si g nifi c a nt mi s si n g e n er g y [ 1 8]. T hi s i s ill u str at e d i n Fi g. 1 5 a, w h er e all e v e nt s wit h missi n g e ner g y i n excess of 4 sta n dar d de viatio ns are s ho w n. O ne ca n see t hat pre vio usly selecte d electro n e ve nts are fo u n d as a s ubset of t he sa m ple. Ho wever, a significant n u mber of a d ditional events (t wenty-seven) were also recor de d, i n w hic h t here was eit her a jet or a n electro ma g netic cl uster i nstea d of t he is olate d electr o ns ( Fi g. 15 b). E vi de ntl y t he i ncl usi ve missi n g-e ner g y defi nitio n i m plies a broa der class of p hysical p he no me na (Fig. 16 c) t ha n t he si m ple e + v deca y ( Fi gs. 16a, b). As t he st u d y of t hese e ve nts [19] is be y o n d t he sc o pe of t his lect ure, it will n ot be p urs ue d a n y f urt her. We pr ocee de d t o a detaile d i n vesti gati o n of t he e ve nts i n or der t o el uci date t heir p hysical origi n. T he large missi ng e nergy observe d i n all of t he m was i nter prete d as bei ng d ue to t he e missio n of o ne or se veral no n-i nteracti ng ne utri nos. A very stro ng correlatio n i n a ngle a n d e nergy was obser ve d (i n t he pla ne nor mal to t he colli di ng bea ms, w here it co ul d be deter mi ne d acc urately), 2 6 0 Physics 1984

A

A

Fi g. 1 5 b.

wit h t he corres po n di ng electro n q ua ntities, i n a c haracteristic back-to-back c o nfi g ur ati o n e x p e ct e d fr o m t h e d e c a y of a m assi v e, sl o w p arti cl e ( Fi gs. 1 7 a, b) . T his s u g g est e d a c o m m o n p h ysi c al ori gi n f or t h e el e ctr o n a n d f or o n e or s e v er al ne utri n os. I n or der to ha ve a better u n dersta n di n g of t he tra ns verse motio n of t he electro n- ne utri no(s) syste m, we st u die d t he ex peri me ntal distrib utio n of t he resultant transverse mo mentu m obtaine d by a d ding the ne utrino(s) an d electro n mo me nta (Fig. 18). T he average val ue was Ge V /c. Five e ve nts w hic h ha d a visi ble jet ha d als o t he hi g hest val ues of Tra nsverse mo ment u m balance was al most exactly restore d when the vector mo ment u m of t he jet was a d de d. T he ex peri me ntal distrib utio n was i n goo d agree me nt wit h the many theoretical expectations fro m quantu m chro modyna mics ( Q C D) for t he pro d uctio n of a massive state via t he Drell- Ya n q uark-a ntiq uark a n ni hila- ti o n [ 2 0]. T h e s m all fr a cti o n ( 1 0 %) of e v e nts wit h a j et w er e t h e n e x pl ai n e d as har d gl uo n bre msstra hl u n g i n t he i nitial state. Se veral differe nt h y pot heses o n t he p h ysical ori gi n of t he e ve nts were teste d by looki ng at ki ne matical q ua ntities co nstr ucte d fro m t he tra nsverse variables of t he electro n a n d t he ne utri no(s). We retai ne d t wo possibilities, na mely: i) t he t wo-bo dy decay of a massive particle i nto t he electro n a n d o ne ne utri no, C. R u b bi a 2 6 1

Fi g. 1 6 b. T h e s a m e a s pi ct ur e ( a), e x c e pt t h at n o w o nl y p arti cl e s wit h Ge V/c and c al ori m et ers wit h E T >1 Ge V are sho wn. 2 6 2 Physics 1984

Fi g. 1 6 c. E v e nt of t h e t y p e, j et + missi n g e n er g y. O nl y tr a c ks wit h p T > 1. 5 G e V/ c a n d c ells wit h

E T > 1.0 Ge V are displayed.

e + v e ; a n d ii) t he t hree-bo dy decay i nto t wo, or possibly more, ne utri nos a n d t h e el e ctr o n. It c a n b e s e e n fr o m Fi gs. 1 9 a a n d 1 9 b t h at h y p ot h esis (i) is stro ngly favo ure d. At t his stage, t he ex peri me nt co ul d not disti ng uis h bet wee n o ne or se veral closel y s pace d massi ve states. Wit h t he hel p of a sa m ple of isolate d ha dro ns at lar ge tra ns verse mo me nta, we esti mate d i n detail t he possible so urces of backgro u n d co mi ng fro m or di- nary ha dro nic i nteractio ns, a n d we co ncl u de d t hat t hey were negligible ( C O.5 e ve nts). ( For more details o n bac k gro u n d, we refer t he rea der to Ref. 20.) Ho wever, we ex pect to get so me backgro u n d eve nts fro m ot her decays of t he W, n a m el y:

or C. R u b bi a 2 6 3

Fi g. 17a. T wo-di mensional plot of the transverse co mponents of the missing energy (neutrino m o m e nt u m). E v e nts h a v e b e e n r ot at e d t o bri n g t h e el e ctr o n dir e cti o n t o p oi nt al o n g t h e v erti c al axis. The striking back-to-back configuration of the electron-neutrino syste m is apparent.

T hese e ve nts were ex pecte d to co ntrib ute at o nly t he lo w- p T p a rt of t h e electro n s pectr u m, a n d co ul d e ve n be eli mi nate d i n a more restricti ve sa m ple. A val ue of t he W mass ca n be extracte d fr o m t he data i n a n u m ber of wa ys: i) It can be obtaine d fro m the incl usive transverse mo ment u m distrib ution of t h e el e ctr o ns ( Fi g. 1 9 a), b ut t h e dr a w b a c k of t his t e c h ni q u e is t h at t h e transverse mo ment u m of the W particle m ust be kno wn. Taking the Q C D pre dictio ns [21], in reasonable agree ment with experi ment, we obtaine d m w=(80.5±0.5) Ge V/c 2 . ii) We ca n defi ne a tra ns verse mass variable, ( 1 wit h

t he pro perty m T ≤ m w , w here t he eq uality wo ul d hol d for o nly t hose eve nts wit h no lo ngit u di nal mo me nt u m co m po ne nts. Fitti ng Fig. 19b to a Physics 1984

Electr o n tra nsverse e ner gy ( Ge V)

Fi g. 1 7 b. Correlation bet ween the electron and neutrino transverse energies. The neutrino co mpo- n e nt al o n g t h e el e ctr o n dir e cti o n is pl ott e d a g ai nst t h e el e ctr o n tr a ns v ers e ener g y.

co m mon val ue of the mass was done al most in de pen dently of the trans-

2 verse m oti o n of t he W particles, m w Ge V/c . It s h o ul d b e n ot e d t hat t he l o wer part of t he distri b uti o n i n was sli g htl y affecte d b y decays an d other backgro un ds. iii) We ca n defi ne a n e n ha nce d tra nsverse mass distrib utio n, selecti ng o nly eve nts i n w hic h t he decay ki ne matics is largely do mi nate d by t he tra ns- verse varia ble wit h t he si m ple c uts Ge V /c. T he res ulta nt distrib utio n (Fig. 19c) t he n s ho we d a relatively narro w peak at a p proxi- mately 76 Ge V /c 2 . Mo del- depen dent corrections no w only contrib ute d to

t he differe nce bet wee n t his average mass val ue a n d t he fitte d m w v al u e, 2 m w = (80.9±1.5) Ge V /c . A n i nt er esti n g u p p er li mit t o t h e wi dt h of t h e W was also deri ve d fro m t he distrib utio n, na mely Ge V/c 2 ( 9 0 % co nfi de nce le vel). C. R u b bi a 2 6 5

Fi g. 1 8. T he tra nsverse mo me nt u m distrib utio n of t he W derive d fro m o ur eve nts usi ng t he electro n a n d missi ng tra nsverse e nergy vectors. T he hig hest e v e nts h a v e a visi bl e jet (s h o w n i n bl a c k i n t he fi g ure). T he data are co m pare d wit h t he t heoretical pre dictio ns for W pro d uctio n base d o n Q C D ( R ef. [ 2 1]). 2 6 6 Physics 1984

Fi g. 1 9 a. T he electr o n tra ns verse e ner g y distri b uti o n. T he t w o c ur ves s h o w t he res ults of a lit of t he e n ha nce d tra nsverse mass distrib utio n to t he hy pot heses a n d T h e first h y p ot hesis is clearl y preferre d.

The three mass deter minations gave very si milar res ults. We preferre d to r et ai n t h e r es ult of m et h o d (iii), si n c e w e b eli e v e d it t o b e t h e l e ast aff e ct e d b y s yste matic effects, e ve n if it ga ve t he lar gest statistical error. T wo i m porta nt co ntri b utio ns ha d to be a d de d to t he statistical errors: i) Co u nter-to-co u nter calibratio ns. T h e y w er e esti m at e d t o b e 4 % r. m.s. I n t h e deter mi natio n of t he W mass t his effect was greatl y atte n uate d to a ne gli gible le vel, si nce ma n y differe nt ele me nts co ntrib ute d to t he e ve nt s a m pl e. ii) C ali br ati o n of t he a bs ol ute e ner g y sc ale. T his was esti mate d t o be %, a n d of co urse affects bot h t he Z 0 an d the W sa m ples by the sa me m ulti plicative f act or. O nce t he decay reactio n was establis he d, t he lo ngit u di nal mo- me nt u m of t he electro n- ne utri no syste m was deter mi ne d wit h a t wofol d a mbig uity for the un meas ure d longit u dinal co m ponent of the ne utrino mo men- t u m. The overall infor mation of the event was use d to establish mo ment u m a n d e nergy co nservatio n bo u n ds i n or der to resolve t his a mbig uity i n 70 % of t he cases. Most of t he re mai ni ng e ve nts ha d sol utio ns w hic h were q uite close, C:. R u b bi a 2 6 7

Fi g. 1 9 b. The distribution of the transverse mass derived fro m the measured electron and neutrino vectors. The t wo curves sho w the results of a lit to the hypotheses e + v a n d e +v +v.

Fi g. 1 9 c. The enhanced electron-neutrino transverse mass distribution (see text). The t wo curves sho w the results of a fit to the hypotheses W e + v a n d X e + v + v . 2 6 8 P hysics 1984

Fi g. 2 0 a. T h e fr a cti o n al b e a m e n er g y x w carried by the W. The curve is the prediction obtained by assu ming that the W has been produced by f usi o n. N ote t hat i n ge neral t here are t w o

kine matic solutions for x w (see text), which are resolved in 70 % of the events by consideration of the energy flo w in the rest of the event. Where this a mbiguity has been resolved, the preferred

kine matic solution has been the one with the lo west x w . In the 30 % of the events where the

a mbiguity is not resolved, the lo west x w solution has therefore been chosen. a n d t he p hysical co ncl usio ns were nearly t he sa me for bot h sol utio ns. T he fractional bea m energy x w c arri e d b y t h e W p arti cl e is s h o w n i n Fi g. 2 0 a, a n d it a p pears to be i n excelle nt a gree me nt wit h t he h y pot hesis of W pro d uctio n i n a n ni hilatio n [22]. Usi ng t he well-k no w n relatio ns a n d we deter mi ne d t he releva nt parto n distrib utio ns i n t he proto n a n d a nti pr ot o n. It ca n be see n t hat t he distri b uti o ns are i n excelle nt a gree me nt wit h t he ex pecte d x distrib utio ns for q uarks a n d a nti q uarks i n t he proto n a n d a nti proto n, res pecti vely (Figs. 20b a n d 20c). Co ntrib utio ns of t he u a n d d q uarks were also neatly se parate d by looki ng at t he c harges of pro d uce d W e ve nts, si nce W + a n d W - ( Fi gs. 20 d a n d 20e).

6. Observatio n of the parity (charge co nj ugatio n) violatio n, a nd deter mi natio n of t he s pi n of t he W p article O ne of t he m ost rele va nt pr o perties of wea k i nteracti o ns is t he vi olati o n of parity a n d c harge co nj ugatio n. Evi de ntly t he W particle, i n or der to me diate C. R u b bi a

ANTIPROTON ANTIQUARKS

Fi g. 2 0 6. The x-distribution of the proton quarks producing the W by qq fusion. The curve is the pr e di cti o n a s s u mi n g q q f u si o n. Fi g. 2 0c. T he sa me as Fi g. 2 0 b f or t he a nti pr ot o n q uar ks.

wea k processes, m ust also ex hibit t hese pro perties. F urt her more, as alrea dy me ntio ne d, t he V- A nat ure of t he fo ur-fer mio n i nteractio n i m plies t he assig n- me nt J = 1 f or its s pi n. B ot h of t hese pr o perties m ust be verifie d ex peri me ntall y. A c c or di n g t o t h e V- A t h e or y, weak i nteractio ns s ho ul d act as a lo ngit u di nal polarizer of t he W particles, si nce q uar ks (a nti q uar ks) are pro vi de d b y t he proto n (a nti proto n) bea m. Like wise, decay a ng ular distrib utio ns fro m a polar- izer are ex pecte d to ha ve a large asy m metry, w hic h acts as a polarizatio n analyser. A strong back war d-for war d asy m metry is therefore ex pecte d, in w hic h electro ns ( positro ns) prefer to be e mitte d i n t he directio n of t he proto n (a nti proto n). I n or der to st u dy t his effect i n de pe n de ntly of W- pro d uctio n mec ha nis ms, we have looke d at t he a ng ular distrib utio n of t he e missio n a ngle of t he electro n ( positro n) wit h res pect to t he proto n (a nti proto n) directio n i n t he W ce ntre of mass. O nly e ve nts wit h no reco nstr uctio n a mbig uity ca n be us e d. W e v erifi e d t h at t his d o es n ot bi as t h e distri b uti o n i n t h e v ari a bl e c os Accor di ng to t he ex pectatio ns of V- A t heory t he distrib utio n s ho ul d be of t he t y p e i n excelle nt agree me nt wit h t he ex peri me ntal data (Fig. 21). T he parit y violatio n para meters a n d t he s pi n of t he W particle ca n be 2 7 0 P hysics 1984

Fi g. 2 0 d. T h e s a m e as Fi g. 2 0 b b ut f or quarks in the proton (antiproton). Fi g. 2 0e. T he sa me as Fi g. 2 0 b b ut f or d(ii) q uar ks i n t he pr ot o n (a nti pr ot o n). deter mi ne d directl y. It has bee n s h o w n b y Jac o b [23] t hat f or a particle of ar bitrar y s pi n J, o ne ex pects = w here ( µ) a n d are t he gl o bal helicit y of t he pr o d ucti o n s yste m ( u d) a n d of t he decay syste m (e v), res pecti vely. For V- A, we t he n ha ve = = - 1, J = 1, l e a di n g t o t h e m a xi m al v al u e 〈c os F or J = O it is o b vi o us t h at ( c os a n d for a n y ot her s pi n v a l u e 〈c o s θ * ≤ l /6. Ex peri me ntally we fi n d 〈c o s =0.5±0.1, w hic h s u p ports b ot h t he J = 1 assi g n me nt a n d maxi mal helicit y states at pro d uctio n a n d d e c a y. N ot e t h at t h e c h oi c e of si g n = ( h) = ± 1 c a n n ot b e s e p ar at e d, i. e. rig ht- a n d left- ha n de d c urre nts, bot h at pro d uctio n a n d decay, ca n not be resolve d witho ut a polarization meas ure ment.

7. T ot al cr oss-secti o n a n d li mits t o hi g her m ass W’s The integrate d l u minosity of the ex peri ment was 136 nb - 1 , a n d it is k n o w n t o a b o ut ± 15 % u ncertai nt y. I n or der t o get a clea n W e v e sa m ple we selecte d 47 e ve nts wit h Ge V /c. T he conta mination in the sa m ple was esti mate d to be 2±2 events. The event acce ptance was co m p ute d to be 0.65, pri maril y beca use of i) t he Ge V /cc ut (0.80); ii) t he jet vet o re q uire- C. R u b bi a 2 7 1

Fi g. 2 1. The angular distribution of the electron e mission angle i n t h e r est fr a m e of t h e W aft er correction for experi mental acceptance. Only those events have been used in which the electron charge is deter mined and the kine matic a mbiguity (see text) has been resolved. The latter require ment has been corrected for in the acceptance calculation.

me nt wit hi n (0.96 ±0.02); iii) t he electro n-trac k isolatio n re q uire- me nt (0.90±0.07); a n d i v) t he acce pta nce of e ve nts d ue to geo metry (0.94±0.03). T he cross-sectio n was t he n

= 0.53 ±0.08 ( ±0.09) n b, w here t he last err or ta kes i nt o acc o u nt s yste matic err ors. T his val ue is i n excelle nt agree me nt wit h t he ex pectatio ns for t he Sta n dar d Mo del [22]: n b. N o e ve nt wit h or i n excess of t he ex pecte d distri b utio n for e ve nts was o bser ve d. T his res ult ca n be use d t o set a li mit t o t he p ossi ble existe nce of very massive W-like objects ( W’) decayi ng i nto electro n- ne utri no p air s. W e f o u n d B) pb at 90 % co nfi de nce le vel, corres po n di ng to 170 Ge V /c 2 , when stan dar d co u plings an d q uark distrib utions were use d to e val uate t he cross-sectio ns. 2 7 2 P hysics 1984

Fi g. 22. Exa mples of decay modes of the W particle: a ) b) c) d) t + b F o r t h e e v e n t s o f t y p e (d), one can reconstruct the invariant masses of the W particle and of the decaying t-quark jet ( Fi g. 2 2 e).

8. U ni vers alit y of t he W c o u pli n g T h e W fi el d s h o ul d e x hi bit a u ni v ers al c o u pli n g str e n gt h f or all t h e f u n d a m e n- t al l e pt o n d o u bl ets a n d all t h e q u ar k d o u bl ets. T his i m pli es - a p art fr o m s m all p hase-s pace correctio ns - e q uality of t he bra nc hi ng ratios of t he decay pro- cesses ( 4 a) ( 4 b) ( 4c)

Li ke wise, i n t he case of t he q uar k deca y c ha n nels ( 4 d)

c s C , ( 4 e)

t b C , ( 4f)

w here t is t he sixt h q uar k (t o p q uar k) pr o vi de d it exists wit hi n t he ki ne matic ra nge of reactio n (4f). Neglecti ng p hase-s pace correctio ns, w hic h are probably C. R u b bi a 2 7 3

Fi g. 2 2 6. i m porta nt for reactio n (4f), we ex pect e q ualit y of t he bra nc hi n g ratios, wit h a n o verall factor of 3 of e n ha nce me nt wit h res pect to le pto nic c ha n nels [(4a) to ( 4 c)] d u e t o c ol o u r c o u nti n g. T he s u bscri pt C i n c ha n nels (4 d) t o (4f) i n dicates t he prese nce of t he Cabibbo mixi ng. Reactio ns (4a) a n d (4 d) are i m plie d b y t he res ults of Sectio n 5. Reactio ns (4 b), (4c), a n d (4e) ha ve bee n observe d, a n d wit hi n abo ut ±20 % t hey a p pear to have t he correct bra nc hi ng ratios. So me e ve nts w hic h are belie ve d to be e vi de nce for t he process (4f) ha ve also bee n re porte d [24]. T he y are i nter prete d for t he reactio n

(l electro n or m uo n).

T h e a n d b c q uar ks are ‘ ha dro nize d’ i nto jets. Data are ro u g hl y co nsiste nt wit h G e V / c 2 . E xa m ples of reacti o ns (4 b), (4 c), (4 e), a n d (4f) are s h o w n i n Fi gs. 2 2 a- d, r es p e cti v el y. T heref ore, wit hi n t he li mite d statistics t here is e vi de nce f or u ni versalit y. 2 7 4 P hysics 1984

Fi g. 2 2 c.

9. Ca n we derive weak i nteractio ns fro m W-particle observatio ns? A n u mber of pro perties of weak i nteractio ns as deter mi ne d by lo w-e nergy ex peri me nts ca n no w be ex plai ne d as a co nseq ue nce of t he ex peri me ntally observe d pro perties of t he W particles. I n dee d we k no w t hat W ± m ust co u ple to vale nce q uarks at pro d uctio n a n d to (e v ) p airs at d e c a y, w hi c h i m pli es t h e existe nce of t he beta- deca y processes a n d

T he mass val ue m w a n d t he cross-sectio n meas ure me nt ca n t he n be use d to - 5 - 2 calc ulate G F , t h e F e r m i c o u p l i n g c o n s t a n t : G F = ( 1 . 2 ± 0 . 1 ) x 1 0 G e V . T h us t he W- pole sat urates t he observe d weak i nteractio n rate. T he i nteractio n m ust be vect or si nce J = 1, a n d parit y is maxi mall y vi olate d si nce = ± 1. T he o nly missi ng ele me nt is t he se paratio n bet wee n V + A a n d V- A alter nati ves. For t his p ur pose a polarizatio n meas ure me nt is nee de d. It may be a c c o m plis h e d i n t h e n e ar f ut ur e b y st u d yi n g, f or i nst a n c e, t h e d e c a y W a n d u si n g t h e τ decay as t he polarizatio n a nalyzer or pro d uci ng i nter me diate vector bosons (I V Bs) with longit u dinally polarize d protons. T he u ni versality of co u pli ngs a n d t he decay mo des of particles of differe nt fla v o urs i nt o differe nt le pt o n fa milies ca n als o be ex pecte d o n t he basis of t he obser vatio ns of t he ot her decay mo des of t he W particles.

1 0. Observatio n of the ne utral boso n Z 0 We exte n de d o ur searc h to t he ne utral part ner Z 0 , res po nsi ble for ne utral c urre nts. As i n o ur previo us work, pro d uctio n of I V Bs was ac hieve d wit h pr ot o n-a nti pr ot o n c ollisi o ns at Ge V i n t he U Al detector, exce pt C. R u b bi a 2 7 5

Fi g. 2 2 d. 276 P hysics 1984

t hat we no w searc he d for electro n a n d m uo n pairs rat her t ha n for electro n- -ne utrino coinci dence. The process is then

Z 0 + X , Z 0 → e + + e - or µ + µ -.

T his reacti o n is a p pr oxi matel y a fact or of 10 less fre q ue nt t ha n t he c orres p o n d- i ng W ± le pto nic decay c ha n nels. A fe w eve nts of t his ty pe were t herefore ex pecte d i n o ur m uo n or electro n sa m ples. E vi de nce for t he existe nce of t he Z 0 i n t he ra nge of masses accessible to t he U Al ex peri me nt has also bee n deri ve d fro m weak-electro magnetic interference experi ments at the highest P E T R A e nergies, w here deviatio ns fro m poi nt-like ex pectatio ns have bee n re porte d ( Fi g. 2 3). We first l o o ke d at e ve nts of t he t y pe [ 2 5, 2 6]. As i n t h e c as e of t h e W ± searc h, a n electro n sig nat ure was defi ne d as a localize d e nergy de positio n i n t wo co nti g uo us cells of t he electro ma g netic detectors wit h Er >25 Ge V, a n d a s mall (or no) e nergy de positio n Me V) i n t he C. R u b bi a 2 7 7

Fi g. 2 3. Experi mental evidence for a weak-electro magnetic interference effect in the process e + e - + at hi g h-e ner g y c olli di n g bea ms. It ca n be see n t hat data are better fitte d if t he presence of a finite mass m Z propagator is assu med. ha dron calori meters i m me diately behin d the m. The isolation req uire ment was define d as the absence of charge d tracks with mo menta a d ding u p to more than 3 Ge V /c of transverse mo ment u m an d pointing to war ds the electron cl uster cells. T he effects of t he s uccessi ve c uts o n t he i n varia nt electro n-elec- tr o n mass are s h o w n i n Fi g. 24. F o ur e + e - eve nts s urvive d c uts, co nsiste nt wit h a co m mo n val ue of (e + e -) i nvaria nt mass. O ne of t hese eve nts is s ho w n i n Fi gs. 25 a n d 26. As ca n be see n fr o m t he e ner g y de p ositi o n pl ots ( Fi g. 27), t he do mi na nt feat ure of t he fo ur eve nts is t wo very pro mi ne nt electro mag netic e nergy de positio ns. All eve nts a p pear to bala nce t he visible total tra nsverse e nergy co m po ne nts; na mely, t here is no evi de nce for t he e missio n of e nergetic ne utri nos. Exce pt for t he o ne trac k of e ve nt D w hic h tra vels at less t ha n 15” parallel t o t he ma g netic fiel d, all trac ks are s h o w n i n Fi g. 28, w here t he mo menta meas ure d in the central detector are co m pare d with the energy de positio n i n t he electro ma g netic calori meters. All trac ks b ut o ne ha ve co nsist- ent energy an d mo mentu m measure ments. The negative track of event C sho ws a val ue of (9±1) Ge V /c, m uch s maller than the corres pon ding de posi- tio n of (49±2) Ge V. T his e ve nt ca n be i nter prete d as t he li kel y e missio n of a har d ‘ ’ acco m panying the electron. T he sa me feat ures are a p pare nt also fro m t he e ve nts i n w hic h a pair of m uo ns [27] were e mitte d. A s har p peak (Fig. 29) is visible for hig h- mass di m uo ns. Wit hi n t he statistical acc uracy t he eve nts are i nco m patible wit h a d ditional ne utrino e mission. They are all co mpatible with a co m mon mass v al u e:

( = Physics 1984

G e V; b) as a b o v e, a n d a tr a c k wit h Ge V /c a n d projectio n le n gt h of more t ha n 1 c m p oi nti n g t o t h e cl ust er. I n a d diti o n, a s m all e n er g y d e p ositi o n i n t h e h a dr o n c al ori m et ers i m m e di at el y b e hi n d ( < 0. 8 G e V) e ns ur es t h e el e ctr o n si g n at ur e. Is ol ati o n is r e q uir e d wit h Ge V /c for all ot her tracks poi nti ng to t he cl uster. c) T he seco n d cl uster also has a n isolate d track. co nsiste nt wit h t he val ue meas ure d for Z 0 → e + e -:

w here t he first err or acc o u nts f or t he statistical err or a n d t he sec o n d f or t he u ncertai nty of t he o verall e nergy scale of t he calori meters. T he a verage val ue f or t h e ni n e Z 0 eve nts fo u n d i n t he U Al ex peri me nt is Ge V/c 2 , w here t he error i ncl u des syste matic u ncertai nties. C. R u b bi a 2 7 9

Fi g. 25. E ve nt dis pla y. All reco nstr ucte d vertex-associate d trac ks a n d all calori meter hits are dis pla ye d.

Fi g. 2 6 T h e s a m e as Fi g. 2 5, b ut t hr es h ol ds ar e r ais e d t o Ge V /c for c harge d tracks a n d G e V f or c al ori m et er hits. W e r e m ar k t h at o nl y t h e el e ctr o n p air s ur vi v es t h es e mil d c uts. P hysics 1984

Fig. 27. Electro magnetic energy depositions at angles wit h r es p e ct t o t h e b e a m dir e cti o n f or t h e f o ur el e ctr o n p air s.

Negative tracks Positive tracks

Fig. 28. Magnetic deflection in 1/p units co mpared with the inverse of the energy deposited in the electro magnetic calori meters. Ideally, all electrons should lie on the l/ E = 1/p line. C. R u b bi a 2 8 1

Fig. 29. Invariant mass distribution of dilepton events fro m U Al and U A2 experi ments. A clear peak is visible at a mass of about 95 Ge V/c 2 .

T he i ntegrate d l u mi nosity for t he prese nt data sa m ple is 108 nb - 1 , wit h a n esti mate d u ncertai nty of 15 %. Wit h t he geo metrical acce pta nce of 0.37, t he cross-sectio n, calc ulate d usi n g t he fo ur e ve nts, is

w h er e t h e l ast err or i n cl u d es t h e s yst e m ati cs fr o m t h e a c c e pt a n c e a n d fr o m t h e l u mi nosity. T his val ue is i n goo d agree me nt bot h wit h Sta n dar d Mo del p r e d i c t i o n s [ 2 2 ] a n d w i t h o u r r e s u l t s f o r Z 0 + e +e - , n a m e l y pb. Fro m t he electro n a n d t he m uo n c ha n nels we obtai n t he a verage cross-sectio n of

5 8 ± 2 1( ± 9) p b.

1 1. Co mpari ng theory with experi me nt T he ex peri me nts disc usse d i n t he previo us sectio n have s ho w n t hat t he W particle has m ost of t he pr o perties re q uire d i n or der t o be t he carrier of wea k i nteractio ns. T he prese nce of a narro w dile pto n peak has bee n see n aro u n d 95 Ge V /c 2 . Rates a n d feat ures of t he e ve nts are co nsiste nt wit h t he hy pot hesis 2 8 2 P hysics 1984

T a b l e 2 . W ± a n d Z 0 para meters fro m the U Al and U A2 experi ments

U A I U A 2

e v) 5 2 ” 3 7 b 2 8 0 . 9 ± 1 . 5 ± 2 . 4 8 3 . 1 ± 1 . 9 ± 1 . 3 m w ( G e V / c ) (90 % C L) G e V ( n b ) 0 . 5 3 ± 0 . 0 8 ± 0 . 0 9 0 . 5 3 ± 0 . 1 0 ± 0 . 1 0

µ v) 1 4

2 + 6 m w ( G e V / c ) 8 1. 0 - 7 ( n b ) 0 . 6 7 ± 0 . 1 7 ± 0 . 1 5

N ( Z 0 + e + e - ) 2 9 2 . 7 ± 1 . 7 ± 1 . 4 m z 0 ( G e V / c ) 9 5 . 6 ± 1 . 4 ± 2 . 9 ( 9 0 % C L) S 8 . 5 G e V S 6 . 5 G e V ( n b ) 0 . 0 5 ± 0 . 0 2 ± 0 . 0 0 9 0 . 1 1 + 0 . 0 4 + 0 . 0 2

8 5 . 6 ± 6 . 3 ( n b ) 0 . 1 0 5 + 0 . 0 5 + 0 . 1 5 0.226±0.015 0.216±0.010±0.007

c os 0.968±0.045 1.02 ±0.06

1 5 G e V / c G e V / c c ( E , > 2 0 G e V )

t hat t he ne utral part ner of t he W ± has i n dee d bee n obser ve d. At prese nt t he statistics are not s ufficie nt to test t he for m of t he i nteractio n ex peri me ntall y; neit her has parity violatio n bee n detecte d. Ho we ver, t he precise val ues of t he masses of Z 0 a n d W ± n o w a vaila ble c o nstit ute a critical test of t he i dea of u nificatio n bet wee n weak a n d electro mag netic forces, a n d i n partic ular of t he pre dicti o ns of t he S U(2) X U(1) t heory of Glas ho w, Wei nberg a n d Sala m [6]. A caref ul acco u nt of s yste matic errors is nee de d i n or der to e val uate a n a vera ge bet ween the mass deter mination for the t wo colli der ex peri ments, U A1 an d U A2 [28]. Table 2 s u m marizes all ex peri me ntal i nfor matio n relate d to W ± a n d Z 0 . T he c harge d vector boso n mass is

= ( 8 0. 9 ± 1. 5) G e V / c 2 (statistical err ors o nl y),

t o w hic h a 3 % e ner g y scale u ncertai nt y m ust be a d de d. I n t his re p ort a val ue f or t h e Z 0 m a s s, Ge V/c 2 , has been given. Neglecting syste m- atic errors, a mass val ue is fo u n d wit h so me w hat s maller errors:

= ( 9 5. 6 ± 1. 4) G e V / c 2 (statistical err ors o nl y),

to w hic h t he sa me scale u ncertai nty as t hat for t he W ± a p plies. The q uote d err ors i n cl u d e: i) t h e n e utr al wi dt h of t h e Z 0 p e a k, w hi c h is f o u n d t o b e G e V / c 2 (90 % co nfi de nce le vel); ii) t he ex peri me ntal resol utio n of co u nters; a n d iii) t he r. m.s. s prea d bet wee n calibratio n co nsta nts of i n di vi d ual ele me nts. A l l o w e d a t o n e l o o p l e v e l - /

Fi g. 30. Co mparison bet ween the and the experi mental results ( U A1 and U A2 co mbined). Theory is fro m Ref. [29].

It s ho ul d be re marke d t hat t he masses of t he I V Bs ha ve t he follo wi ng pr e di cti o n:

m w = = w here t he val ue Ar re prese nts t he effect of t he hi g her-or der ra diati ve correc- tio ns, a n d t he seco n d eq uatio n ca n be use d as a defi nitio n of t he Wei nberg a n g l e Si nce G F a n d a are k n o w n, c a n b e e l i m i n a t e d b e t w e e n e q uatio ns:

1

A = (37.2810±0.0003) Ge V.

Ra diati ve correctio ns are q uite lar ge [29] a n d detecta ble at t he prese nt le vel of acc urac y. Calc ulati o ns of or der l n m) gi v e t h e f oll o wi n g r es ult:

∆ r = 0.0696±0.0020, 2 8 4 P hysics 1984 w hic h is i nse nsiti ve to t he para meters

= 0. 2 1 7,

2 2 = 40 Ge V /c , m b = 5 Ge V /c .

T he mai n effect ca n be u n derstoo d as bei ng a r u n ni ng co u pli ng co nsta nt, n a m el y:

a = 1 /137.035962, at q 2 = 0,

a = 1 / 1 3 7. 5, at q 2 =

I n Fi g. 30 we ha ve plotte d m Z a gai nst m w . T he elli ptical s ha pe of t he err ors r efl e cts t h e u n c ert ai nt y i n t h e e n er g y s c al e. It c a n b e s e e n t h at t h er e is e x c ell e nt agree me nt wit h t he ex pectatio ns of t he S U(2)x U(1) Sta n dar d Mo del [29].

2 We ca n t he n extract t he re nor malize d val ue of si n at mass scale m w .

I nserti ng t he val ue of m w o ne fi n ds = 0.220 ±0.009,

I n excelle nt agree me nt wit h t he re nor malize d val ue of de d uce d fro m ne utral-c urre nt ex peri me nts. Usi ng t he i nfor matio n of t he Z 0 mass, o ne ca n deter mi ne t he para meter r el at e d i m m e di at el y t o t h e is os pi n of t h e Hi g gs p arti cl e:

Usi ng t he ex peri me ntal val ues, o ne fi n ds

= 1.000±0.036, i n perfect agree me nt wit h t he pre dictio n of 1 f or a Hi g gs d o u blet. Let us p oi nt o ut t hat 9 de viates fr o m 1 at m ost b y 3 %, o wi n g t o ra diati ve c orrecti o ns i nvolvi ng possible ne w fer mio n ge neratio ns. T he prese nt val ue see ms to i n di- c at e n o s u c h n e w f er mi o n f a mili es. We co ncl u de t hat, wit hi n errors, t he observe d ex peri me ntal val ues are co m pletely co m patible with the S U(2)x U(1) mo del, th us s u p porting the hy pot hesis of a u nifie d electro weak i nteractio n.

A C K N O W L E D G E M E N T S

T his l e ct ur e is b as e d o n t h e w or k of t h e U Al C oll a b or ati o n t e a m, a n d I w o ul d like to ex press my a p preciation of their re markable achieve ments which have le d to so ma ny exciti ng res ults. At prese nt t he follo wi ng perso ns are me mbers of t he collaboratio n: G. Ar niso n, A. Astb ur y, B. A ubert, C. Bacci, A. Beza g uet, R. K. B o c k, T. J. V. B o w c o c k, M. C al v etti, P. C at z, P. C e n ni ni, S. C e ntr o, F. Cera di ni, S. Citt oli n, D. Cli ne, C. C oc het, J. C olas, M. C or de n, D. Dall ma n, C. R u b bi a 2 8 5

D. D a u, M. D e B e er, M. D ell a N e gr a, M. D e m o uli n, D. D e n e gri, A. Di ci a c ci o, D. Di Bito nto, L. Dobrzy nski, J. D. Do well, K. Eggert, E. Eise n ha n dler, N. Ellis, P. Er h ar d, H. F aiss n er, M. Fi n c k e, G. F o nt ai n e, R. Fr e y, R. Fr ü h wirt h, J. G ar v e y, S. G e er, C. G h e s q ui er e, P. G h e z, K. L. Gi b o ni, W. R. Gi b s o n, Y. Gira u d- Hera u d, A. Giverna u d, A. Goni dec, G. Grayer, T. Hansl- Kozanecka, W. J. Haynes, L. O. Hertzberger, C. Ho dges, D. Hoff mann, H. Hoff mann, D. J. H olt h ui z e n, R. J. H o m er, A. H o n m a, W. J a n k, G. J or at, P. I. P. K al m us, V. Kari maki, R. Keeler, I. Ke nyo n, A. Ker na n, R. Ki n n u ne n, W. Koza necki, D. Kr y n, F. Laca va, J. P. La u gier, J. P. Lees, H. Le h ma n n, R. Le uc hs, A. Le ve q ue, D. Li n gli n, E. Locci, J. J. Malosse, T. Mar kie wicz, G. Ma uri n, T. Mc Mahon, J. P. Men dib ur u, M. N. Minar d, M. Moha m ma di, M. Moricca, K. Morga n, H. M uir hea d, F. M uller, A. K. Na n di, L. Na u ma n n, A. Norto n, A. Or ki n- L e c o urt ois, L. P a ol u zi, F. P a uss, G. Pi a n o M ort ari, E. Pi et ari n e n, M. Pi mi ä, J. P. P ort e, E. R a d er m a c h er, J. R a n s d ell, H. R eit hl er, J. P. R e v o 1, J. Ric h, M. Rijsse n bee k, C. R o berts, J. R o hlf, P. R ossi, C. R u b bia, B. Sa d o ulet, G. Saj ot, G. Sal vi, G. Sal vi ni, J. Sass, J. Sa u draix, A. Sa v o y- Na varr o, D. S c hi n z el, W. S c ott, T. P. S h a h, D. S mit h, M. S pir o, J. Str a u s s, J. Str e et s, K. S u morok, F. Szo ncso, C. Tao, G. T ho m pso n, J. Ti m mer, E. Tsc heslog, J. T u o mi ni e mi, B. V a n Eij k, J. P. Vi all e, J. Vr a n a, V. V uill e mi n, H. D. W a hl, P. Wat ki ns, J. Wils o n, R. Wils o n, C. E. W ulz, Y. G. Xie, M. Y vert a n d E. Z urfl u h.

R E F E R E N C E S

1. E. F er mi, Ri c. S ci. 4 ( 2), 4 9 1 ( 1 9 3 3), r e p ri nt e d i n E. Fer mi, Collected Papers (eds. E. Segré et al.) ( U ni v ersit y of C hi c a g o Pr ess, C hi c a g o, Ill., 1 9 6 2), V ol. 1, p. 5 3 8; Z. P h ys. 8 8, 1 6 1 ( 1 9 3 4); English translation: F. L. Wilson, A m. J. Phys. 36 1150 (1968). 2. M. Gell- Mann and M. Levy, Nuovo Ci mento 16, 705 (1960). 3. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963). M. K o b a y a s hi a n d K. M a s k a w a, Pr o gr. T h e or. P h y s. 4 9, 6 5 2 ( 1 9 7 3). 4. S. S. G ers c ht ei n a n d J. R. Z el d o vi c h, Z. E ks p. T e or. Fi z. 2 9, 6 9 8 ( 1 9 5 5). R. P. Feyn man and M. Gell- Mann, Phys. Rev. 109, 193 (1958). E. C. G. Sudarshan and R. E. Marshak, Phys. Rev. 109, 1860 (1958). J. J. Sakurai, Nuovo Ci mento 7, 649 (1958). 5. O. Klein, in Proc. Sy mp. on Les Nouvelles Theories de la Physique, Warsa w, 1938 (Institut International de Coopération Intellectuelle, Paris, 1939), p.6. O. Klein, Nature 161, 897 (1948). 6. S. L. Glasho w, Nucl. Phys. 22, 579 (1961). S. Weinberg, Phys. Rev. Lett. 29, 1264 (1967). A. S al a m, Pr o c. 8th Nobel Sy mposiu m (ed. N. Svarthol m) ( Al mqvist and Wiksell, Stockhol m, 1 9 6 8), p. 3 6 7. 7. T. D. L e e a n d C. N. Y a n g, P h ys. R e v. 1 1 9, 1 4 1 0 ( 1 9 6 0). 8. The first realistic sche me for colliding bea ms was discussed by D. W. Kerst et al., Phys. Rev. 202, 590 (1956). The first suggestion for proton-antiproton intersecting bea ms was given by G. I. Budker, Proc. Int. Sy mp. on Electron and Positron Storage Rings, Saclay, 1966 (eds. H. Zyngier and E. Cré mieu- Alcan) ( P U F, Paris, 1966), p. II-l-l. G. I. Budker, At. Energ. 22, 346 ( 1 9 6 7). 9. C. Rubbia, P. McIntyre and D. Cline, Proc. Int. Neutrino Conf., Aachen, 1976 (eds. H. Faissner, H. Reithler and P. Zer was) ( Vie weg, Braunsch weig, 1977), p. 683. 10. The 300 Ge V progra m me, C E R N/1050 (14 January 1972). 2 8 6 P hysics 1984

11. S. van der Meer, Internal Report C E R N I S R- P O/72-31 (1972). D. Möhl, G. Petrucci, L. Thorndahl and S. van der Meer, Phys. Rep. 58, 73 (1980). 12. Design study of intersecting storage rings (I S R) for the C E R N Proton Synchrotron, C E R N A R/Int. S G/64-9 (1964). 1 3. A. Ast b ur y et al., A 4 x s oli d-a n gle detect or f or t he S P S use d as a pr ot o n-a nti pr ot o n c olli der at a centre-of- mass energy of 540 Ge V, Proposal, C E R N-SPS C 78-6/P92 (1978). 14. The U Al Collaboration is preparing a large and co mprehensive report on the detector (1984). F or details see: M. Barranco Luque et al., Nucl. Instru m. Methods 176, 175 (1980). M. Calvetti et al., Nucl. Instru m. Methods 176, 255 (1980). M. Calvetti et al., Proc. Int. Conf. on Instru mentation for Colliding Bea m Physics, Stanford, 1982 ( S L A C-250, Stanford, 1982), p. 16. M. Calvetti et al., I E E E Trans. Nucl. Sci. N S-30, 71 (1983). J. Ti m mer, The U Al detector, Antiproton proton physics and the W discovery, presented at the 3rd Moriond Workshop, La Plagne, France, March 1983 ( Ed. Tran Thanh Van) ( Editions Frontierès, Gif-sur- Yvette, France), p. 593. E. Locci, Thèse de doctorat ès sciences, Paris, 1984, unpublished. M. J. C or de n et al., P h ys. Scr. 2 5, 5 a n d 1 1 ( 1 9 8 2). M. J, Corden et al., Rutherford preprint R L-83-116 (1983). K. Eggert et al., Nucl. Instru m. Methods 176, 217 (1980). J. C. Santiard, C E R N E P Internal Report 80-04 (1980). K. E g gert et al., N ucl. I nstr u m. Met h o ds 1 7 6, 223 (1980) and 188, 463 (1981). G. Ar nis o n et al., P h ys. L ett. 121 B 77 (1983). G. Ar nis o n et al., P h ys. L ett. 128 B 336 (1983). The U A2 Collaboration have described their detector, which ho wever makes a more li mited use of the missing-energy concept, in Proc. 2 n d Int. Conf. on Physics in Collisions, Stockhol m, 1982 ( Plenu m Press, Ne w York, 1983), p. 67. A. G. Clark, Proc. Int. Conf. on Instru mentation for Colliding Bea m Physics, Stanford, 1982 (S L A G-250, Stanford, 1982), p. 169. B. Mansoulié, The U A2 apparatus at the C E R N Collider, Antiproton proton physics and the W discovery, presented at the 3rd Moriond Workshop, La Plagne, France, March 1983 ( Ed. Tran Thanh Van) ( Editions Frontières, Gif-sur- Yvette, France), p. 609. 1 5. G. Ar nis o n et al., P h ys. L ett. 1 2 2 B, 103 (1983). 1 6. M. B a n n er et al., P h ys. L ett. 122 B, 476 (1983). 1 7. G. Ar nis o n et al., P h ys. L ett. 129 B, 273 (1983). C. Rubbia, Proc. Int. Europhysics Conf. on High- Energy Physics, Brighton, 1983 (eds. J. Guy and C. Costain) ( Rutherford Appleton Lab., Didcot, 1983), p. 860. 1 8. G. Ar nis o n et al., P h ys. L ett. 1 3 9 B, 115 (1984). 19. C. Rubbia, Physics results of the U Al Collaboration at the C E R N proton-antiproton collider, Proc. Int. Conf. on Neutrino Physics and Astrophysics, Dort mund, 1984 (ed. K. Kleinknecht), p. 1. 2 0. J, F. O w e ns a n d E. R e y a, P h ys. R e v. D 1 7, 3 0 0 3 (1978). F. Halzen and W. Scott, Phys. Lett. 78 B, 318 (1978). F. H al z e n, A. D. M arti n a n d D. M. S c ott, P h ys. R e v. D 2 5 , 7 5 4 (1982). P. Aurenche and R. Kinnunen, Annecy preprint L APP- T H-78 (1983). A. Naka mura, G. Pancheri and Y. Srivastava, Frascati preprint L N F-83-44 (1983). 2 1. G. Altarelli, R. K. Ellis, M. Grec o a n d G. Marti nelli, N ucl. P h ys. B 2 4 6 , 1 2 ( 1 9 8 4). G. Altarelli, G. Parisi a n d R. Petr o nzi o, P h ys. Lett. 7 6 B, 3 5 1 a n d 3 5 6 ( 1 9 7 8). 22. F. E. Paige, in Proc. Topical Workshop on the Production of Ne w Particles in Super High Energy Collisions, Madison, 1979 (eds. V. Barger and F. Halzen) ( AI P, Ne w York, 1979). F. E. Paige and S. D. Protopopescu, IS AJ E T progra m, B N L 29777 (1981). G. Alt ar elli, R. K. Ellis a n d G. M arti n elli, N u cl. P h ys. Bl 4 3, 5 2 1 ( 1 9 7 8); ( E) B 1 9 6, 5 4 4 (1978); B 1 5 7, 4 6 1 ( 1 9 7 9). J. Kubar- Andre and F. E. Paige, Phys. Rev. D 1 9 , 221 (1979). C. R u b bi a 2 8 7

23. M. Jacob, Nuovo Ci mento 9, 826 (1958). M. Jacob, unpublished (see, for instance, in C. Rubbia, Proc. 9 t h Topical Conf. on , Honolulu, 1983). 2 4. G. Ar nis o n et al., P h ys. L ett. 147 B, 493 (1984). 2 5. G. Ar nis o n et al., P h ys. L ett. 126 B, 398 (1983). 2 6. P. B a g n ai a et al., P h ys. L ett. 2 2 9 8 , 1 5 0 ( 1 9 8 3). 2 7. G. Ar nis o n et al., P h ys. L ett. 1 4 7 B, 241 (1984). 28. C. Rubbia, Proc. Int. Europhysics Conf. on High- Energy Physics, Brighton, 1983 (eds. J. Guy and C. Costain) ( Rutherford Appleton Lab., Didcot, 1983), p. 860. 29. M. Consoli, Proc. Third Topical Workshop on Collider Physics, Ro me, 1983 (eds. C. Bacci and G. Salvini) ( C E R N 83-04, Geneva, 1983), p. 478. M. Consoli, S. L. Presti and L. Maiani, Univ. Catania preprint P P/738-14/1/1983. M. Velt man, Proc. Int. Europhysics Conf. on High- Energy Physics, Brighton, 1983 (eds. J. Guy and C. Costain) ( Rutherford Appleton Lab., Didcot, 1983), p. 880. W. Marciano, B N L preprint 33819 (1983).