Minerals of the Bravoite Villamaninite Series and Cuprian Siegenite from Karniowice, Poland Marek A. Zakrzewski

Total Page:16

File Type:pdf, Size:1020Kb

Minerals of the Bravoite Villamaninite Series and Cuprian Siegenite from Karniowice, Poland Marek A. Zakrzewski Canadion Mineralogist Yol.22, pp. 499-502(1984) MINERALSOF THE BRAVOITE_ VILLAMANINITESERIES AND CUPRIAN SIEGENITEFROM KARNIOWICE,POLAND MAREK A. ZAKRZEWSKI Institute of Earth Sciencs, Free University, De Boelelaan 1085, 1081HV Ansterdam, The Netherlands AssrRAc"r ample of polymetallic mineralization in Paleozoic rocks in close spatial proximity to the Triassic Zn- Copper-bearing Ni-Co-Fe disulfides with a pyrite-type Pb deposits of "Mississippi Valley type" of structureand cuprian siegenitehave beenrecognized in gale- southeastern Silesia. The mineralization occrus as na from 4 min61 occurrence'bf Pb-Cu mineralization in two assemblages:one rich in chalcopyrite, with mar- Permian travertine from Karniowice, Poland. The pyrite- casite, pyrite and products of their oxidation, and phases 6Te occur as minute, optically and compositional- another rich in galena with rare sphalerite, pyrite ly zonedoystals. The composition of individual zones , varies and the cuprian Ni-Co-Fe minerals describedin this from cuprian pyrite with 2.9 wt,tlo Qn thr'engh cuprian bravoite to villamaninite CuojArh.46Co0.1aFeq.0a$2.Cupri- paper. Galena forms crystals and inegular grains up an siegeniteCusjlNi1.a5Col.1sFe0.0sSa probably formed by to 5 mm in diameter in porous, soft calcareous transformation of the disulfides. travertine. All the grains are coveredwith a layer of cerussiteup to 300 pm thick. Anglesite occurs but Keywords: villamaninite, cupriau pyrite, cuprian bra- is rare. Small flakes of covellite commonly occur at voite, cuprian siegenite, electron-microprobe analysis, the contact between galena and cerussite. Cerussite Poland. also occurs with covellite around the cuprian Ni- Co-Fe minerals. The original polished investigatedby Lipi- SoMMarns section arski & Zakrzewski (l9l) contains only a few grains of galena. A second sestion was prepared from a On a d6couvert des disulfues cuprifbres de Ni-Co-Fe a structue du type pyrite et de la siegenitedans ta galbne crushed sample preconcentrated by hand picking. provenant d'un indice de min6ralisation en Pb-Cu dans du Electron-microprobe analyseswere performed with travertin permien de Karniowice (Pologne). Les disulfures a Cambridge Instruments Microscan MK-9. Natur- seprdsentent en grains minusculesqui montrent une zona- al and synthetic compounds were used as standards. tion en propri&6s optiques et en composition. D'une zone Apparent concentrationswere correctedby ZAFwith i une autre, la pynte cuprifbre (2.990 Cu en poids) passe the MK-9 on-line program. d la bravoite cuprifdre et c€lle-ci i la villamaninite Cue3l.{i6.a5Co6.uFfo.oc&. La siegenite,cupriftre elle aussi CUPRIANBRAVoITE - YILIAMANI.ITE (Cu931Ni1.a5Col.lBFfo.05S4), serait le produit d'une trans- formation des disulfures. The cuprian disulfides having the pyrite structure Clraduit par la Rddaction) and compositions in the bravoite-villamaninite gs1- Mots-clds: villamaninite, pyrite cuprifbre, bravoite cupri- ies occur exclusivelyas a idiomorphic zoned crystals fbre, siegenite cuprifOre, analyse par microsonde included in galena. In places, the concentration 6lectronique, Pologne. reaches a few hundred crystals per urm2; isolated crystals were found in almost every grain of galena. IxtnooucnoN The averagesize of the individual crystals is about 10 pm, rarely up to 30 rdn. During ttre course of investigations of trace Pb- The individual zones in the crystals of disulfide Cu mineralization in the Permian travertine of Kar- reach up to 10 pm across,but in most casesthey vary niowice, 20 km west of Krak6w, Poland, anomalous betweenI and 3 pm. Becauseof the small size,differ- Co and Ni contents(0.1-1 wt.9o) were found as a ences in hardness and reflectivity could only be result of the spectrogxaphicanalysis of galena (Lipi characterized qualitatively. Observations on tle arski & Zakzewski l97l). Observations in reflected pyrite - cuprian bravoite - villamaninite solid- Iight showed very small grains of a mineral tenta- solution seriesfrom Karniowice support the conclu- tively identified as linnaeite. Electron-microprobe sions ofVaughan (1969)with regard to the relation- analysis revealedthe mineral to be a member of the ship betweenthe physical properties and the chemi- siegenite-fletcherite isomorphous series.Numerous cal composition in tle pyrite-bravoite series. In small zoned cryst4ls with compositions in the reflected light, the pyrite end-memberis yellow and bravoite-villamaninite series were also observed. hard; increasingNi and Cu contentsr6ult in a lower- The investigated occurrence of sulfides is an ex- ing of hardness,a pinkish grey color and a lowering 499 Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/22/3/499/3713760/499.pdf by guest on 01 October 2021 s00 TTIE CANADIAN MINERALOGIST of reflsctance. The crystals are relatively resistant to member of the CuS2-NiS2series, with a composi- oxidation and generally remain unaltered in cerus- tional range betweenC\Ni2S6 and C\rNiSa,and thus site, but in placesthey are limonitized; their primary between 33 and 50 mol. 9o CuS2.According to this compositional zonality is then reflected by the inten- the "villamaninite" of Ypma et al. (1968)as well as sity of brown internal reflections in individual zones. the copper-rich disulfide from Lubin, Poland (Moh The presenceof copper in pyrite-group minerals & Kucha 1980) should be classified as fukuchilite. is rare and has only been described from a few lo- It is interesting to note that compositions similar to calities, the most imFortant being the Providencia the fukuchilite from Villamanin were not found by mine near Villamanin (L6on, Spain), the type local- Maaskant (1968), who performed 29 analysesand ity of villamaninite. Villamaninite has beeirredefined obtained tle range of compositions indicated by the as a Cu-Ni-Co-Fe mineral having the pyrite struc- dotted field in Figure l. The villamaninite in- ture and sonfaining CbS2 in the range between 25 vestigated by La lelesia et al. (1974) from the same and 75 mol. 9o (Ypma et sl. 1968). Shimazaki & locality also plots within this field. Clark (1970)proposed the name for compositions 1athis paper the Ni-rish disulfide phase with more close to the join CuS2-NiS2,whereas for composi- thaa 25 mol. 9o CuS2 are designated as vil- tions close to the join CuS2-FeS2,the name lamaninite Clable 1, #1,2), those with CuS2 in the fukuchilite was proposed. Moh & Kullerud (1982) range between 25 and 5 9o (arbitrary) as cuprian also designated villamaninite as an intermediate bravoite (#3-11) or cuprian pyrite (#12), and those with lessthan 5 9o as bravoite (#13). The composi- tion of the iron-rich bravoite (#4) is very close to Me 52-type fukuchilite. Considering the results of the electron- microprobe analysesas glven in Table I' it should O lGrniowice be borne in mind that they only approximatethe real ,* composition, as the 3-4 pm diameter of the X-ray ,lf Villomonin spot often exceedsthe thicknessofindividual zones. oo O Lubin The results obtained are projected onto the FeS2-NiS2-CoS2plane, and the CuS2 content is proportions Me, So-type shown by numbers and contours. The of Ni, Fe and Co in the cuprian disulfides from Kar- tr lGrniowice niowice resemblethose from Villamanin; their Cu content, however, reashes only 36 mol. 9o CuS2. DVillomqnin The shape of tle CuS2contours can be interpreted as a result of two trends: firstly, the Cu content is related to the Ni/Fe ratio @ig. l, points 3, 12, L7, 22,?5 and9, 15, 18,30; secondly,for a givenNi/Fe ratio, Cu showsan antipathetic relation to Co (points 3, 11, 18).The sympatheticrelationship between Ni and Cu and tle antipathetic one betweenNi and Fe TABLE 1. RESULTS OF ELECII$-NICR()PR@E A|TALISES OF VILLIIIAIIII{M, CUPRIAII BMVOIN I'{D CUPRIAI{SIEGOITTE FRONUMllIilICE' I'PPERSILESIA Ualght t At@ic PrcPodloc illreral cu fe Co llt S Total Cu F. Co lll S l Vlll@nlnle 18.1 2.0 6.5 21.6 51.4 99.6 0.36 0.04 0.14 0.46 2.01 2 13.4 1.3 15.1 18.5 5t.l 99.4 0.26 0.03 0.32 0.39 1.98 3 Brdvol& 11.t 14.6 18.0 50.7 97.7 0,n 0.0a 0.31 0.39 2.00 4 11.1 n.2 0.7 6.5 52.2 98.7 0.22 0.65 0.01 0.12 2.02 5 9.4 11.9 7.5 19.7 50.5 99.0 0.18 0.26 0.15 0.41 1.91 6 8.9 15.2 17.8 51.5 99.7 0.17 0.14 0.32 0.37 L.97 NiSz 17.9 5.7 14.8 51.4 97.5 0.r5 0.14 0.12 0.32 2.03 Co 52 '/o So 7 7.7 mol Cur I 6.6 4.9 13.6 22.r 49.4 96.6 0.13 0.11 0.29 0.47 1.93 9 6.4 7.9 16.8 tg.o 49.0 98.1 0.12 0.17 0.34 0.37 1.4 Frc. l. Compositions of tle Cu-Ni-Fe-Co disulfides. 10 5.6 12.9 l8.O 52.6 101.0 0.11 0.26 0.26 0.37 1.98 95.8. 0.09 0.69 0.12 0.10 ?.m CuS2content calculat- l1 4.3 5.8 4.6 50.6 Numbers and contours indicate 12 Pyt.le 2.9 42.6 o.t - 53.2 98.8 0.06 0.94 2.05 ed on the basesof Cu + Ni + Fe + Co = I and Ni 13 Brrvolb 1.6 18.6 14.9 52.3 t01.0 0.03 0.29 0.38 0.30 1.94 + Fe + Co : l. Sources:Karniowice: tlis study, Lu- l4 Slegenlte 6.4 1.4 2r.5 25.2 40.9 95.5 0.33 0.08 1.19 1.40 4.15 bin: Moh & Kucha (1980), Villamanin: (dotted field) 0.6 21.9 27.0 O.8 96.4 0.30 0.04 1.19 1.47 4.08 Maaskant (1968), (Y) lpma et al.
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Covered Cinnabar Deposit of El the Polymetallic Pyritic Lenses at the Base of The
    LEIDSE GEOLOGISCHE MEDEDELINGEN, Deel 52, 1-7-1981 Aflevering 1, pp. 23-56, Framework and evolution of Hercynian mineralization in the Iberian Meseta BY L.J. G. Schermerhorn Abstract The Hercynian cycle, starting in Late Precambrian times and terminated at the end ofthe Palaeozoic, is associated in the Iberian Peninsula with the the deposition of a wide variety of metallic and nonmetallic mineral resources. The most famous of these are the base-metal sulphides of Iberian Pyrite Belt (Rio Tinto and other deposits), tin and tungsten (Panasqueira), and mercury (Almadén). The of the the accumulation of depositional stage Hercynian cycle saw syngenetic mineral deposits, resulting from the interplay of palaeogeographical, sedimentary and volcanic controls. During and after the following orogenic stage, epigenetic minerals originated through magmaticactivity, mostly as direct deposits from magmatic-derived fluids and also indirectly through thermal activation of existing rock. In both stages felsic magmatismwas the dominant agent of mineralization, both for the moreimportant volcanogenic and for the plutonic mineral deposits. Framework and evolution of Hercynian mineralization are defined by the geotectonic intraplate — not plate-margin - setting ofthe Meseta and by its palaeogeographicaland structural developmentduring the cycle, modified by regional and local factors, foremost among which are volcanic and plutonic heat and mass transfer. the Metallogeneticprovinces and epochs are distinguished, metallotects outlined, and possible sources for
    [Show full text]
  • The First Record of Siegenite (Ni,Co)3S4 from the Netherlands
    Netherlands Journal of Geosciences / Geologie en Mijnbouw 82 (2): 215-218 (2003) The first record of siegenite (Ni,Co)3S4 from the Netherlands H. Bongaerts Rector van de Boornlaan 13, 6061 AN Posterholt, the Netherlands; e-mail: [email protected] Manuscript received: August 2001; accepted: October 2002 G Abstract Epigenetic mineralisations occurring in the former coal-mining district of Limburg predominantly consist of sphalerite, gale­ na, chalcopyrite, quartz, Fe-dolomite/ankerite and calcite. The present note describes siegenite which was collected for the first time from this paragenesis some years ago. Keywords: hydrothermal mineralizations, Limburg, siegenite, Carboniferous Introduction tions was discussed by Krahn et al. (1986), to which reference is made. When collieries in southern Limburg (the Nether­ The mineralisations occurring in the Limburg lands) were still in operation, epigenetic mineralisa­ Westphalian predominantly consist of sphalerite, tions were encountered in sediments of Westphalian galena, chalcopyrite, quartz, Fe-dolomite/ankerite (Late Carboniferous) age, and records of such date and calcite. Less common are pyrite and marcasite back to the earliest days of mining (Leggewie & Jong- while barites is extremely rare. These mineralisations mans, 1931). The first detailed descriptions may be occurred almost exclusively in sandstones and found in Douw & Oorthuis (1945) and in De Wijker- quartzitic sandstones (NITG-TNO, 1999). In addi­ slooth(1949). tion, dickite is common, mainly in pseudobreccias of From the
    [Show full text]
  • The Gersdorffite-Bismuthinite-Native Gold Association and the Skarn
    minerals Article The Gersdorffite-Bismuthinite-Native Gold Association and the Skarn-Porphyry Mineralization in the Kamariza Mining District, Lavrion, Greece † Panagiotis Voudouris 1,* , Constantinos Mavrogonatos 1 , Branko Rieck 2, Uwe Kolitsch 2,3, Paul G. Spry 4 , Christophe Scheffer 5, Alexandre Tarantola 6 , Olivier Vanderhaeghe 7, Emmanouil Galanos 1, Vasilios Melfos 8 , Stefanos Zaimis 9, Konstantinos Soukis 1 and Adonis Photiades 10 1 Department of Geology & Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece; [email protected] (C.M.); [email protected] (E.G.); [email protected] (K.S.) 2 Institut für Mineralogie und Kristallographie, Universität Wien, 1090 Wien, Austria; [email protected] 3 Mineralogisch-Petrographische Abteilung, Naturhistorisches Museum, 1010 Wien, Austria; [email protected] 4 Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA; [email protected] 5 Département de Géologie et de Génie Géologique, Université Laval, Québec, QC G1V 0A6, Canada; [email protected] 6 Université de Lorraine, CNRS, GeoRessources UMR 7359, Faculté des Sciences et Technologies, F-54506 Vandoeuvre-lès-Nancy, France; [email protected] 7 Université de Toulouse, Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, F-31400 Toulouse, France; [email protected] 8 Department of Mineralogy-Petrology-Economic Geology, Faculty of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 9 Institut für Mineralogie, TU Bergakademie Freiberg, 09599 Freiberg, Germany; [email protected] 10 Institute of Geology and Mineral Exploration (I.G.M.E.), 13677 Acharnae, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-210-7274129 † The paper is an extended version of our paper published in 1st International Electronic Conference on Mineral Science.
    [Show full text]
  • Cobalt Mineral Ecology
    American Mineralogist, Volume 102, pages 108–116, 2017 Cobalt mineral ecology ROBERT M. HAZEN1,*, GRETHE HYSTAD2, JOSHUA J. GOLDEN3, DANIEL R. HUMMER1, CHAO LIU1, ROBERT T. DOWNS3, SHAUNNA M. MORRISON3, JOLYON RALPH4, AND EDWARD S. GREW5 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Northwest, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. 4Mindat.org, 128 Mullards Close, Mitcham, Surrey CR4 4FD, U.K. 5School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ABSTRACT Minerals containing cobalt as an essential element display systematic trends in their diversity and distribution. We employ data for 66 approved Co mineral species (as tabulated by the official mineral list of the International Mineralogical Association, http://rruff.info/ima, as of 1 March 2016), represent- ing 3554 mineral species-locality pairs (www.mindat.org and other sources, as of 1 March 2016). We find that cobalt-containing mineral species, for which 20% are known at only one locality and more than half are known from five or fewer localities, conform to a Large Number of Rare Events (LNRE) distribution. Our model predicts that at least 81 Co minerals exist in Earth’s crust today, indicating that at least 15 species have yet to be discovered—a minimum estimate because it assumes that new minerals will be found only using the same methods as in the past. Numerous additional cobalt miner- als likely await discovery using micro-analytical methods.
    [Show full text]
  • Article Is Available On- Bearing Mineralising Event Is Not Possible Because of the Line At
    Eur. J. Mineral., 33, 175–187, 2021 https://doi.org/10.5194/ejm-33-175-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Grimmite, NiCo2S4, a new thiospinel from Príbram,ˇ Czech Republic Pavel Škácha1,2, Jiríˇ Sejkora1, Jakub Plášil3, Zdenekˇ Dolnícekˇ 1, and Jana Ulmanová1 1Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9 – Horní Pocernice,ˇ Czech Republic 2Mining Museum Príbram,ˇ Hynka Klickyˇ place 293, 261 01 Príbramˇ VI, Czech Republic 3Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 182 21 Prague 8, Czech Republic Correspondence: Pavel Škácha ([email protected]) Received: 25 December 2020 – Revised: 2 March 2021 – Accepted: 8 March 2021 – Published: 19 April 2021 Abstract. The new mineral grimmite, NiCo2S4, was found in siderite–sphalerite gangue at the dump of shaft no. 9, one of the mines in the abandoned Príbramˇ uranium and base-metal district, central Bohemia, Czech Republic. The new mineral occurs as rare idiomorphic to hypidiomorphic grains up to 200 µm × 70 µm in size or veinlet aggregates. In reflected light, grimmite is creamy grey with a pinkish tint. Pleochroism, polarising colours and internal reflections were not observed. Reflectance values of grimmite in the air (R %) are 42.5 at 470 nm, 45.9 at 546 nm, 47.7 at 589 nm and 50.2 at 650 nm). The empirical formula for grimmite, based on electron-microprobe analyses (n D 13), is Ni1:01(Co1:99Fe0:06Pb0:01Bi0:01/62:07S3:92. The ideal formula is NiCo2S4; requires Ni 19.26, Co 38.67, and S 42.07; and totals 100.00 wt %.
    [Show full text]
  • Download the Scanned
    THE AMERICAN MINER.{LOGIST, VOL. 55, SEPTEMBER-OCTOBER, 1970 NEW MINERAL NAN4ES Polarite A. D GnNrrrv, T. L EvsrrcNrEVA, N. V. Tnoxnve, eno L. N. Vver.,sov (1969) polarite, Pd(Pb, Bi) a new mineral from copper-nickel sulfide ores.Zap. Vses.Mined. Obslrch. 98, 708-715 [in Russian]. The mineral was previouslv described but not named by cabri and rraill labstr- Amer. Mineral.52, 1579-1580(1967)lElectronprobeanalyseson3samples(av.of 16, 10,and15 points) gave Pd,32.1,34.2,32 8; Pb 35.2, 38.3,34 0; Bi 31.6, 99.1,334; sum 98 9, 102.8, 100.2 percent corresponding to Pcl (Pb, Bi), ranging from pd1.6 (pb04? Bi0.60)to pdro (PboogBio rs). X-ray powder daLa are close to those of synthetic PbBi. The strongest lines (26 given) are 2 65 (10)(004),2.25 (5)(331),2.16 (9)(124),1.638(5)(144). These are indexed on an orthorhombic cell with a7 l9l, D 8 693, c 10.681A. single crystal study could not be made. In polished section, white with 1'ellowish tint, birefringence not observed. Under crossed polars anisotropic with slight color effects from gray to pale brown Maximum reflectance is given at 16 wave lengths (t140 740 nm) 56.8 percent at 460 nm; 59.2 at 540; 59.6 at 580; 6I.2 at 660. Microhardness (kg/mmr) was measured on 3 grains: 205,232, av 217;168- 199, av 180; 205-232, av 219. The mineral occurs in vein ores of the'r'alnakh deposit amidst chalcopyrite, talnekhite, and cubanite, in grains up to 0.3 mm, intergro.wn with pdspb, Cupd6 (Sn, pb): (stannopal- ladinite), nickeloan platinum, sphalerite, and native Ag The name is for the occurence in the Polar urals.
    [Show full text]
  • Spatial Distribution, Geochemistry, and Storage of Mining Sediment In
    STATEMENT OF WORK Spatial distribution, geochemistry, and storage of mining sediment in channel and floodplain deposits of streams draining the Viburnum Trend Mining District of Southeast Missouri, USA Prepared by: Dr. Robert T. Pavlowsky, Ph.D., Principle Investigator Ozarks Environmental and Water Resources Institute Missouri State University 901 South National Avenue Springfield, MO 65897 [email protected] Co‐Principle Investigators Dr. Scott Lecce, Ph.D., East Carolina University Marc R. Owen, M.S., Ozarks Environmental and Water Resources Institute Submitted to: John Weber U.S. Fish and Wildlife Service 101 Park DeVille, Suite A Columbia, MO 65203 573‐234‐2132 x 177 [email protected] July 16, 2012 1 INTRODUCTION The New Lead Belt in southeastern Missouri has been a major producer of lead (Pb) and other metals since 1960 when the first mine opened in Viburnum, Missouri (Seeger, 2008). To date, 10 mines have operated along a north‐south line extending for almost 100 kilometers (km) from from Viburnum to south of Bunker, Missouri. This subdistrict of the Southeast Missouri Lead Mining District is referred to as the Viburnum Trend (VT). Seven mines are presently in operation in the VT: (i) Viburnum #29 Mine in Washington County which uses the Buick Mill; (ii) Casteel or Viburnum #35 Mine in Iron County which uses the Buick and Brushy Creek Mills; (iii) Buick Mine and Mill in Iron and Reynolds Counties; (iv) Fletcher Mine and Mill in Reynolds County which sometimes uses the Brushy Creek Mill; (v) Brushy Creek mine and mill in Reynolds County; (vi) West Fork Mine and Mill in Reynolds County; and (vii) Sweetwater Mine and Mill in Reynolds County (Seeger, 2008).
    [Show full text]
  • Millerite and Other Nickel Sulfides from the Siderite Deposit „Steirischer Erzberg“, Styria, Austria
    MITT. ÖSTERR. MINER. GES. 164 (2018) MILLERITE AND OTHER NICKEL SULFIDES FROM THE SIDERITE DEPOSIT „STEIRISCHER ERZBERG“, STYRIA, AUSTRIA Eugen Libowitzky*1, Anton Beran1 & Richard Göd2 1Institut für Mineralogie und Kristallographie 2 Department of Lithospheric Research Universität Wien, Althanstrasse 14, 1090 Wien / *[email protected] Abstract Millerite, NiS, has been identified for the first time in cinnabar- and pyrite-bearing siderite ore samples from „Steirischer Erzberg“, Styria, Austria. In addition, the occurrence of other nickel sulfides has been confirmed, such as siegenite-violarite solid-solutions (ss), CoNi2S4- FeNi2S4, and Gersdorffite, Ni[AsS]. Whereas milleri- te and gersdorffite are close to ideal chemistry with only minor Co and Fe contents, siegenite-violarite ss show a wide range of compositions. Almost pure siegenite with Fe below detection limit occurs in separated crystals within cinnabar or mil- lerite. In contrast, small grains (sometimes in equilibrium with millerite) within a pyrite host contain up to ~14.1 wt% Fe and thus plot in the compositional field of violarite. Zusammenfassung Millerit, NiS, wurde zum ersten mal in Zinnober- und Pyrit-führenden Sideriterz- proben vom Steirischen Erzberg, Steiermark, Österreich, nachgewiesen. Zusätzlich wurde auch das Vorkommen weitere Nickelsulfide wie Siegenit-Violarit-Mischkri- stalle (ss), CoNi2S4-FeNi2S4, und Gersdorffit, Ni[AsS], bestätigt. Während Millerit und Gersdorffit nahe der Idealchemie mit nur geringen Co- und Fe-Gehalten sind, zeigen Siegenit-Violarit ss einen weiten Zusammensetzungsbereich. Nahezu reiner Siegenit mit Fe unter der Nachweisgrenze kommt in separaten Kristallen innerhalb von Zinnober und Millerit vor. Im Gegensatz dazu enthalten kleine Einschlüsse (manchmal im Gleichgewicht mit Millerit) im Pyrit bis zu ~14.1 Gew.-% Fe und fallen damit in das Zusammensetzungsfeld von Violarit.
    [Show full text]
  • Platy Galena from the Viburnum Trend, Southeast Missouri: Character, Mine Distribution, Paragenetic Position, Trace Element Cont
    minerals Article Platy Galena from the Viburnum Trend, Southeast Missouri: Character, Mine Distribution, Paragenetic Position, Trace Element Content, Nature of Twinning, and Conditions of Formation Richard D. Hagni Department of Geological Sciences and Geological and Petroleum Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA; [email protected] Received: 15 December 2017; Accepted: 23 February 2018; Published: 2 March 2018 Abstract: The Viburnum Trend of southeast Missouri is one of the world’s largest producers of lead. The lead occurs as galena, predominantly in two crystallographic forms, octahedrons and cubes. Many studies have shown that octahedral galena is paragentically early, the more abundant of the two crystal forms, and is commonly modified in the cube. Those studies also have shown that the cubic form is paragenetically later, less abundant than the octahedrons, and may exhibit minor octahedral modifications. Viburnum Trend galena crystals that exhibit a platy form have received almost no study. The reason for their lack of study is the rarity of their occurrence. This communication discusses their character, mine distribution, paragenetic position, trace element contents, nature of twinning, and speculated conditions of formation. It also compares their character to similar platy galena occurrences in Germany, Bulgaria, Russia, Mexico, and notes their occurrence at the Pine Point District in the Northwest Territories of Canada and at the Black Cloud mine in Colorado. Flat, platy galena crystals have been recognized to occur in very small amounts in the Magmont, Buick, Fletcher, Brushy Creek, and Sweetwater mines in the Viburnum Trend. In contrast, platy galena has never been observed to occur at the Casteel, West Fork, #27, #28, and #29 mines in the Trend.
    [Show full text]
  • Walden P. Pratt, Editor Prepared in Cooperation with the Missouri
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY METALLIC MINERAL-RESOURCE POTENTIAL OF THE ROLLA I°x2° QUADRANGLE, MISSOURI, AS APPRAISED IN SEPTEMBER 1980 Walden P. Pratt, Editor Prepared in cooperation with the Missouri Department of Natural Resources, Division of Geology and Land Survey Open-File Report 81-518 1981 This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards. Tables Page Table 1. Resource potential for Mississippi Valley-type base-metal deposits in Bonneterre Formation and Lamotte Sandstone, September 1980.............................................. 15 2. Estimates of ore "deposits'* in selected areas in the Rolla 1°x2° quadrangle, Missouri.................................. 16 3. Estimated amounts and values of metals in potential ore "deposits" in selected areas of the Rolla I°x2° quadrangle, Missouri.................................................... 19 4. Resource potential for Mississippi Valley-type base-metal and barite deposits in Cambrian and Ordovician formations overlying the Bonneterre Formation, September 1980.......... 22 5. Resource potential for Kiruna-type iron apatite(-copper) deposits, September 1980.................................... 29 6. Spectrographic analyses of hematite and magnetite from the Pilot Knob, Iron Mountain, and Pea Ridge iron deposits...... 31 7. Spectrographic analyses of rocks and minerals from Pilot Knob Mine, Iron County, Missouri............................ 32 8. Spectrographic analyses of ore and gangue minerals from Iron Mountain Mine, Iron County, Missouri................... 33 9* Spectrographic analyses of rocks and minerals from Pea Ridge Iron Mine, Washington County, Missouri............ 34 10. Whole-rock chemical analyses of samples from Avon, Dent Branch, and Bee Fork, Rolla I*x2a quadrangle, Missouri...... 33 11. Spectrographic and chemical analyses of rocks from Dent Branch and Avon diatremes, Rolla I*x2* quadrangle, Missouri...................................................
    [Show full text]
  • Cobalt Resources in Europe and the Potential for New Discoveries
    Ore Geology Reviews 130 (2021) 103915 Contents lists available at ScienceDirect Ore Geology Reviews journal homepage: www.elsevier.com/locate/oregeorev Cobalt resources in Europe and the potential for new discoveries S. Horn a,b,*, A.G. Gunn a, E. Petavratzi a, R.A. Shaw a, P. Eilu c, T. Torm¨ anen¨ d, T. Bjerkgård e, J. S. Sandstad e, E. Jonsson f,g, S. Kountourelis h, F. Wall b a British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, United Kingdom b Camborne School of Mines, University of Exeter, Penryn Campus, Penryn TR10 9FE, United Kingdom c Geological Survey of Finland, PO Box 96, FI-02151 Espoo, Finland d Geological Survey of Finland, PO Box 77, FI-96101 Rovaniemi, Finland e Geological Survey of Norway, Postal Box 6315 Torgarden, NO-7491 Trondheim, Norway f Geological Survey of Sweden, Box 670, SE-751 28 Uppsala, Sweden g Department of Earth Sciences, Uppsala University, Villavagen¨ 16, SE-752 36 Uppsala, Sweden h G.M.M.S.A. LARCO, Northern Greece Mines, Mesopotamia, Kastoria 52050, Greece ARTICLE INFO ABSTRACT Keywords: Global demand for cobalt is increasing rapidly as we transition to a low-carbon economy. In order to ensure Cobalt secure and sustainable supplies of this critical metal there is considerable interest in Europe in understanding the Nickel availability of cobalt from indigenous resources. This study reviews information on cobalt resources in Europe Copper and evaluates the potential for additional discoveries. Europe Based on published information and a survey of national mineral resource agencies, 509 cobalt-bearing de­ Resources UNFC posits and occurrences have been identified in 25 countries in Europe.
    [Show full text]