Txu-Oclc-18393568.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Txu-Oclc-18393568.Pdf CONTROLS ON ORE DEPOSffiON IN THE LAMOITE SANDSTONE, GOOSE CREEK MINE, INDIAN CREEK SUBDISTRICT, SOUTHEAST MISSOURJ TIIlS THESIS IS DEDICATED TO MY PARENTS, ERNEST EARL AND RUTH W. TAYLOR, ANDOSKAR CONTROLS ON ORE DEPOSITION IN THE LAMOTTE SANDSTONE, GOOSE CREEK MINE, INDIAN CREEK SUBDISTRICT, SOUTHEAST MISSOURI BY GAY NELL GUTIERREZ, B.S. THESIS Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of MASTER OF ARTS THE UNlVERSITY OF TEXAS AT AUSTIN AUGUST 1987 ACKNOWLEDGMENTS I would like to thank my supervisor, Dr. J. Richard Kyle for suggesting this thesis and making arrangements with St. Joe Minerals Corporation for access to the Indian Creek mines and drill cores. I am also indebted to him for taking time to visit Goose Creek mine while I was doing field work. Many of his suggestions during this visit proved to be invaluable since the mine was closed and allowed to flood shortly after I finished my field work. Most commendable however, he has remained my supervisor for this extended period of study, when the normal supervisor would have looked for a more energetic student. Ors. Lynton S. Land and Earle F. McBride served as committee members. They read the thesis and made many valuable suggestions. Dr. Harry H. Posey of the Bureau of Economic Geology served as an informal committee member, "cheerleader", and "coach". He read the first draft of the thesis, and his knowledge of the Southeast Missouri lead-zinc district made his corrections and comments extremely useful. I am indebted to St. Joe Minerals Corporation, especially Paul Gerdemann, for permission to study the Goose Creek deposit and for providing access to the Indian Creek mines, drill cores and mine maps. James Pettus, former Indian Creek mine geologist, showed me around the Indian Creek mines and generously shared his knowledge of the local geology. Gary Miller served as my guide while underground. He also helped me carry samples, and kept my camera dry. IV Richard Moralas made many of my polished thin-sections and provided assistance and constructive criticism for those that I made. Oskar Gutierrez and Rick Ozment assisted in computer mapping, and Pat Bobeck and Kitty Milliken helped me use the microprobe. For those illustrations that "look professional", the drafting was done by Kerza Prewitt and Joel Lardon. Partial support for field work was provided by the Geology Foundation. Lastly, I would like to thank Drs. Rob Finley, Steve Fisher, Shirley Dutton, Jon Price, and Ronit Nativ of the Bureau of Economic Geology for providing me with employment and the opportunity to work in different fields of geology while pursuing this degree. This thesis was submitted to the Committee in July 1987. v ABSTRACT The Indian Creek subdistrict is the northernmost mineralized area in the Southeast Missouri district and is unique because ore-grade concentrations of sulfides occur within the Lamotte Sandstone. The Lamotte Sandstone-hosted Goose Creek mine is located on the northern end and the Bonneterre Dolomite-hosted Indian Creek mine on the northwestern side of a N30°E-trending, Precambrian rhyolite ridge. A saddle on the northern end of the ridge separates the Indian Creek subdistrict from another probable high along the same trend to the north. Lamotte deposition was influenced by pre-Lamotte basement topography, and local thickness ranges from 0 where it pinches out again st the ridge to over 100 ft toward the basin. It is comprised of a thin, discontinuous basal cobble conglomerate overlain by a medium-grained, moderately to poorly soned, well-rounded quanzarenite. Fourteen authigenic minerals, plus hydrocarbons cement the Lamotte Sandstone at Goose Creek in the following paragenetic sequence: dolomite - framboidal pyrite - marcasite - cuboctahedral pyrite - bravoite - bladed marcasite - pyrite - quartz dissolution - brecciation - siegenite - marcasite - dolomite - brecciation - chalcopyrite - quartz dissolution - sphalerite - galena (cuboctahedral) - quartz - galena (cubic) - dolomite - gypsum - hydrocarbon - kaolinite - illite - calcite - • hydrocarbon. Primary and secondary porosity in the Lamotte vary between 1 and 20 volume percent and authigenic cements account for up to 35 volume percent of the sandstone. Quartz overgrowths are the most common cement in the Lamotte Sandstone at Goose Creek, comprising from 1 to 11 volume percent of the rock. Galena is the most abundant sulfide and commonly occurs in 1 to 3 mm blebs, V1 averaging 3-4 volume percent. Chalcopyrite averages 0.5 volume percent, but high grade concentrations reach 8-10 volume percent locally. Sulfides in the Lamotte Sandstone in the Indian Creek subdistrict commonly occur within 40 ft of the Bonneterre-Lamotte contact, with the highest concentrations within 20 ft or less of the contact Structure maps of the lead- and copper- bearing-zones mimic the basement topography, suggesting that the Precambrian basement was the major controlling factor on ore deposition in the Indian Creek subdistrict. Vertical tubes of sulfides, which cross-cut bedding near the Lamotte pinchout in the Goose Creek mine, suggest that the ore-bearing fluids moved through the sandstone aquifer until the pinchout forced them into the overlying Bonneterre. There the fluids were channeled through the grainstone-algal reef complex along the N30°E-trending Precambrian ridge. Limited fluid inclusion data for Bonneterre-hosted sphalerite indicate that the mineralizing fluid was a Na-Ca-0 brine with temperatures between 105 and 120° C. Vll TABLE OF CONTENTS ~ INTRODUCTION 1 General Information 1 Location of Study Area 3 History of Southeast Missouri and Indian Creek 3 Purpose of This Study 5 Methods of Study 6 Previous Work 7 REGIONAL GEOLOGY 9 General Information 9 Precambrian Basement Rocks 9 Upper Cambrian Stratigraphy 12 Introduction 12 Lamotte Sandstone 12 Bonneterre Formation 18 Davis Formation 20 Structural Geology 20 INDIAN CREEK STRUCTURE 23 LAMOTTE COMPOSmON AND DEPOSmO~AL HISTORY 28 General Information 28 Basal Cobble Conglomerate 28 Sandstone 32 Detrital composition 32 Introduction 32 Quartz 34 Sedimentary rock fragments 35 Volcanic rock fragments 37 Fossils 39 Grain size, sorting and roundness 39 Lamotte-Bonneterre Transition 40 Structural Influence On Deposition 41 Sedimentary Structures and Depositional Environment 41 Cross-bedding 41 Interbedded shales and carbonates 41 Ripup clasts 42 Soft-sediment deformation 44 Depositional environment 44 Ylll Page DIAGENESIS 46 Sediment Compaction And Pressure Solution 46 Interlocking quartz grains 46 Stylolites 47 Pressure solution associated with phosphorite 49 Authigenic Cements 49 Sulfides 49 Pyrite and marcasite 49 Grue~ 52 Chrucopyrite 54 Siegenite 57 Bravoite 60 Sphruerite 60 Non-sulfides 64 Quartz 64 Dolomite 64 Kaolinite 65 Feldspar 67 Gypsum 67 Illite 68 Calcite 68 Hydrocarbons 68 Quartz Dissolution and Brec.tjanwi 68 Paragenetic Sequence 72 Comparison with other studies in Southeast Missouri 74 Goose Creek mine 7 4 Lamotte Sandstone 76 Southeast Missouri disrrict 78 Comparison with other sandstone -hosted deposits 80 Cement Textures 82 Between cements and sedimentary structures 82 Between cements 82 MINERALIZATION 85 Ore Disrribution 85 Minerruization Controls 86 Introduction 86 Sedimentary structures and locru sulfur sources 86 Lamotte pinchout and Bonneterre permeability 88 Precambrian basement topography 92 Nature of Ore-forming Solutions 100 ix Sources of Metals and Sulfur 102 Lead and sulfur 102 Copper, cobalt, and nickel 104 Transporting Mechanism 105 Timing of Ore Deposition 106 Other Sandstone-hosted Base Metal Deposits 107 CONCLUSIONS 110 REFERENCES 112 VITA 119 x LIST OF TABLES Table Page 1. Scanning electron microscope analyses of phosphorites and calcium phosphate fossil fragments. 38 2. Microprobe analyses of siegenite. 59 3. Microprobe analyses of bravoite. 63 4. Fluid inclusion analyses of sphalerite. 101 5. Characteristics of sandstone-hosted Pb-Zn-Cu and carbonate-hosted Pb-Zn deposits, and the Goose Creek deposit. 108 xi LIST OF FIGURES Figure 1. Generalized geology of the Southeast Missouri district. 2 2. Precambrian basement structure map of the Indian Creek subdistrict with an outline of Indian Creek and Goose Creek mines. 4 3. Basement-rock types in Missouri. 11 4. Generalized stratigraphic column for Upper Cambrian strata in the Southeast Missouri lead district showing schematic position of the ore zone in the Indian Creek subdistrict. 13 5. Location of Precambrian and Lamotte outcrops in the St. Francois Mountains. 14 6. Lamotte isopach map for Missouri and Illinois. 15 7. Precambrian basement structure map for Missouri. 21 8. Precambrian basement structure map for the Indian Creek subdistrict. 24 9. Basement structure on the northern flank of the St. Francois Mountains based on aeromagnetic data. 25 10. Schematic evolution of the Precambrian basement structure and topography in Indian Creek subdistrict 27 I la. lsopach map of the Lamotte Sandstone at Indian Creek. 29 llb. Geologic cross-section A-A' of the Indian Creek ridge showing the relationship between basement structure, Lamotte Formation, and lead mineralization. 30 I le. Geologic cross-section B-B' of the Indian Creek ridge showing the relationship between basement structure, Lamotte Formation, and lead mineralization. 31 12. Plot of quartz, feldspar, and rock fragments in the Lamotte Sandstone at Goose Creek. 33 XU 13. Photomicrograph of a phosphorite and quartz clast in the ~ Lamotte quartzarenite.
Recommended publications
  • Minor Elements in Magnetic Concentrates from the Syenite-Shonkinite Province, Southern Asir, Kingdom of Saudi Arabia
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Minor elements in Magnetic concentrates from the Syenite-Shonkinite Province, Southern Asir, Kingdom of Saudi Arabia I/ I/ I/ I/ W. C. Overstreet, G. W. Day, Theodore Botinelly, and George Van Trump, Jr. Open-File Report 87 r Report prepared by the U.S. Geological Survey in cooperation with the Deputy Ministry for Mineral Resources, Saudi Arabia This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature, I/ USGS, Retired 2/ USGS, Denver, CO 1987 CONTENTS ABSTRACT............................................................ 1 ACKNOWLEDGMENT...................................................... 1 INTRODUCTION........................................................ 1 Areas covered and previous work................................ 1 Syenite plutons........................................... 3 Jabal Fayfa and Jabal Bani Malik..................... 3 Pluton southeast of Suq al Ithnayn................... 3 Shonkinite pluton at Jabal Atwid..................... 3 Mineral potential......................................... 3 Purpose of present investigation............................... 3 PROCEDURES.......................................................... 10 Collection and preparation of detrital magnetite............... 10 Mineralogical analyses......................................... 10 Semiquantitative spectrographic analyses....................... 11 Method...................................................
    [Show full text]
  • Summary of the Mineral Information Package for the Khanneshin Carbonatite Area of Interest
    Chapter 21A. Summary of the Mineral Information Package for the Khanneshin Carbonatite Area of Interest Contribution by Robert D. Tucker, Harvey E. Belkin, Klaus J. Schulz, Stephen G. Peters, and Kim P. Buttleman Abstract The Khanneshin carbonatite is a deeply dissected igneous complex of Quaternary age that rises approximately 700 meters above the flat-lying Neogene sediments of the Registan Desert, Helmand Province, Afghanistan. The complex consists almost exclusively of carbonate-rich intrusive and extrusive igneous rocks, crudely circular in outline, with only three small hypabyssal plugs of leucite phonolite and leucitite outcropping in the southeastern part of the complex. The complex is broadly divisible into a central intrusive vent (or massif), approximately 4 kilometers in diameter, consisting of coarse-grained sövite and brecciated and agglomeratic barite-ankerite alvikite; a thin marginal zone (less than 1 kilometer wide) of outwardly dipping (5°–45°). Neogene sedimentary strata; and a peripheral apron of volcanic and volcaniclastic strata extending another 3–5 kilometers away from the central intrusive massif. Small satellitic intrusions of biotite-calcite carbonatite, no larger than 400 meters in diameter, crop out on the southern and southeastern margin of the central intrusive massif. In the 1970s several teams of Soviet geologists identified prospective areas of interest for uranium, phosphorus, and light rare earth element (LREE) mineralization in four regions of the carbonatite complex. High uranium concentrations are reported in two regions; the greatest concentrations are confined to silicified shear zones in sandy clay approximately 1.1 kilometers southwest of the peripheral part of the central vent. An area of phosphorus enrichment, primarily occurring in apatite, is present in coarse-grained agglomeratic alvikite, with abundant fenite xenoliths, approximately 750 meters south of the periphery of the central vent.
    [Show full text]
  • Controls on Syenite-Hosted Gold Mineralization in the Western Timmins Camp
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 11-24-2014 12:00 AM Controls on Syenite-Hosted Gold Mineralization in the Western Timmins Camp Robert A. Campbell The University of Western Ontario Supervisor Bob Linnen The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Robert A. Campbell 2014 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons Recommended Citation Campbell, Robert A., "Controls on Syenite-Hosted Gold Mineralization in the Western Timmins Camp" (2014). Electronic Thesis and Dissertation Repository. 2636. https://ir.lib.uwo.ca/etd/2636 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. Controls on Syenite-Hosted Gold Mineralization in the Western Timmins Camp (Thesis format: Monograph) by Randy Campbell Graduate Program in Earth Sciences A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Randy Campbell 2014 ABSTRACT The Abitibi granite-greenstone belt has long been known for its’ world-class Archean lode gold deposits. While a spatial relationship between felsic intrusions and gold deposits has been noted for some time, it is not clear whether porphyries are genetically related to gold mineralization or just provided a brittle host for unrelated mineralization.
    [Show full text]
  • Geology of the Saline County Xenolith and Surrounding Area
    A.G.E.S. Brochure Series 005 State of Arkansas Arkansas Geological Survey Bekki White, State Geologist Geology of the Saline County Xenolith and surrounding area By J. Michael Howard Illustrations and photos by Angela Chandler _______________________________________________________ _______________________________________________________ Xenolith – “ a foreign inclusion in an igneous rock.” Glossary of Geology American Geological Institute 1987 (from the Greek words Xenos, meaning guest or stranger, and Lithos, meaning stone.) _______________________________________________________ _______________________________________________________ Introduction Located in Saline County, Arkansas, at the south edge of the community of Bauxite, this natural outcrop of nepheline syenite contains several geologically interesting features, including a xenolith. Sloping west, the outcrop encompasses about one-quarter acre near the center of section 21, Township 2 South, Range 14 West. In early 1990, the Aluminum Company of America (ALCOA) donated the outcrop along with approximately five surrounding acres of land to the Arkansas Geological Commission so that the site can be preserved for educational purposes. Outcrop of nepheline syenite at xenolith locality. History of the site The outcrop and its geologic features were first described by J. Francis Williams in 1891 in The Igneous Rocks of Arkansas, Arkansas Geological Survey Annual Report for 1890, Volume II. Williams discussed the outcrop and xenolith in some detail and included a sketch of the xenolith (see title page). However, for many years the outcrop location remained unknown to most scientists. In the late 2 1960’s employees in the mining division of ALCOA, suspecting that the site was on their property, began a concerted search. Soon afterward the outcrop was rediscovered and was visited by a staff member of the Arkansas Geological Commission, who in turn told Dr.
    [Show full text]
  • The First Record of Siegenite (Ni,Co)3S4 from the Netherlands
    Netherlands Journal of Geosciences / Geologie en Mijnbouw 82 (2): 215-218 (2003) The first record of siegenite (Ni,Co)3S4 from the Netherlands H. Bongaerts Rector van de Boornlaan 13, 6061 AN Posterholt, the Netherlands; e-mail: h.bongaerts@planet.nl Manuscript received: August 2001; accepted: October 2002 G Abstract Epigenetic mineralisations occurring in the former coal-mining district of Limburg predominantly consist of sphalerite, gale­ na, chalcopyrite, quartz, Fe-dolomite/ankerite and calcite. The present note describes siegenite which was collected for the first time from this paragenesis some years ago. Keywords: hydrothermal mineralizations, Limburg, siegenite, Carboniferous Introduction tions was discussed by Krahn et al. (1986), to which reference is made. When collieries in southern Limburg (the Nether­ The mineralisations occurring in the Limburg lands) were still in operation, epigenetic mineralisa­ Westphalian predominantly consist of sphalerite, tions were encountered in sediments of Westphalian galena, chalcopyrite, quartz, Fe-dolomite/ankerite (Late Carboniferous) age, and records of such date and calcite. Less common are pyrite and marcasite back to the earliest days of mining (Leggewie & Jong- while barites is extremely rare. These mineralisations mans, 1931). The first detailed descriptions may be occurred almost exclusively in sandstones and found in Douw & Oorthuis (1945) and in De Wijker- quartzitic sandstones (NITG-TNO, 1999). In addi­ slooth(1949). tion, dickite is common, mainly in pseudobreccias of From the
    [Show full text]
  • The Gersdorffite-Bismuthinite-Native Gold Association and the Skarn
    minerals Article The Gersdorffite-Bismuthinite-Native Gold Association and the Skarn-Porphyry Mineralization in the Kamariza Mining District, Lavrion, Greece † Panagiotis Voudouris 1,* , Constantinos Mavrogonatos 1 , Branko Rieck 2, Uwe Kolitsch 2,3, Paul G. Spry 4 , Christophe Scheffer 5, Alexandre Tarantola 6 , Olivier Vanderhaeghe 7, Emmanouil Galanos 1, Vasilios Melfos 8 , Stefanos Zaimis 9, Konstantinos Soukis 1 and Adonis Photiades 10 1 Department of Geology & Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece; kmavrogon@geol.uoa.gr (C.M.); manosgalanos@gmail.com (E.G.); soukis@geol.uoa.gr (K.S.) 2 Institut für Mineralogie und Kristallographie, Universität Wien, 1090 Wien, Austria; branko.rieck@live.at 3 Mineralogisch-Petrographische Abteilung, Naturhistorisches Museum, 1010 Wien, Austria; uwe.kolitsch@NHM-WIEN.AC.AT 4 Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA; pgspry@iastate.edu 5 Département de Géologie et de Génie Géologique, Université Laval, Québec, QC G1V 0A6, Canada; christophe.scheffer.1@ulaval.ca 6 Université de Lorraine, CNRS, GeoRessources UMR 7359, Faculté des Sciences et Technologies, F-54506 Vandoeuvre-lès-Nancy, France; alexandre.tarantola@univ-lorraine.fr 7 Université de Toulouse, Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, F-31400 Toulouse, France; Olivier.VANDERHAEGHE@Get.omp.eu 8 Department of Mineralogy-Petrology-Economic Geology, Faculty of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; melfosv@geo.auth.gr 9 Institut für Mineralogie, TU Bergakademie Freiberg, 09599 Freiberg, Germany; szaimis@gmail.com 10 Institute of Geology and Mineral Exploration (I.G.M.E.), 13677 Acharnae, Greece; fotiadis@igme.gr * Correspondence: voudouris@geol.uoa.gr; Tel.: +30-210-7274129 † The paper is an extended version of our paper published in 1st International Electronic Conference on Mineral Science.
    [Show full text]
  • Cobalt Mineral Ecology
    American Mineralogist, Volume 102, pages 108–116, 2017 Cobalt mineral ecology ROBERT M. HAZEN1,*, GRETHE HYSTAD2, JOSHUA J. GOLDEN3, DANIEL R. HUMMER1, CHAO LIU1, ROBERT T. DOWNS3, SHAUNNA M. MORRISON3, JOLYON RALPH4, AND EDWARD S. GREW5 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Northwest, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. 4Mindat.org, 128 Mullards Close, Mitcham, Surrey CR4 4FD, U.K. 5School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ABSTRACT Minerals containing cobalt as an essential element display systematic trends in their diversity and distribution. We employ data for 66 approved Co mineral species (as tabulated by the official mineral list of the International Mineralogical Association, http://rruff.info/ima, as of 1 March 2016), represent- ing 3554 mineral species-locality pairs (www.mindat.org and other sources, as of 1 March 2016). We find that cobalt-containing mineral species, for which 20% are known at only one locality and more than half are known from five or fewer localities, conform to a Large Number of Rare Events (LNRE) distribution. Our model predicts that at least 81 Co minerals exist in Earth’s crust today, indicating that at least 15 species have yet to be discovered—a minimum estimate because it assumes that new minerals will be found only using the same methods as in the past. Numerous additional cobalt miner- als likely await discovery using micro-analytical methods.
    [Show full text]
  • Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2016 Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses Jordan Lubbers Michigan Technological University, jelubber@mtu.edu Copyright 2016 Jordan Lubbers Recommended Citation Lubbers, Jordan, "Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses", Open Access Master's Thesis, Michigan Technological University, 2016. https://doi.org/10.37099/mtu.dc.etdr/99 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Geochemistry Commons, and the Geology Commons RHYOLITE AND TRACHYTE FORMATION AT LAKE CITY CALDERA: INSIGHT FROM QUANTITATIVE TEXTURAL AND GEOCHEMICAL ANALYSES By Jordan E. Lubbers A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2016 © 2016 Jordan E. Lubbers This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Geology. Geological and Mining Engineering and Sciences ThesisDepartment Advisor: ofChad Deering Committee Member: Olivier Bachmann Committee Member: William Rose Department Chair: John Gierke Table of Contents Acknowledgements ................................................................................................................................................. 6 Abstract ......................................................................................................................................................................
    [Show full text]
  • Article Is Available On- Bearing Mineralising Event Is Not Possible Because of the Line At
    Eur. J. Mineral., 33, 175–187, 2021 https://doi.org/10.5194/ejm-33-175-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Grimmite, NiCo2S4, a new thiospinel from Príbram,ˇ Czech Republic Pavel Škácha1,2, Jiríˇ Sejkora1, Jakub Plášil3, Zdenekˇ Dolnícekˇ 1, and Jana Ulmanová1 1Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9 – Horní Pocernice,ˇ Czech Republic 2Mining Museum Príbram,ˇ Hynka Klickyˇ place 293, 261 01 Príbramˇ VI, Czech Republic 3Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 182 21 Prague 8, Czech Republic Correspondence: Pavel Škácha (skachap@seznam.cz) Received: 25 December 2020 – Revised: 2 March 2021 – Accepted: 8 March 2021 – Published: 19 April 2021 Abstract. The new mineral grimmite, NiCo2S4, was found in siderite–sphalerite gangue at the dump of shaft no. 9, one of the mines in the abandoned Príbramˇ uranium and base-metal district, central Bohemia, Czech Republic. The new mineral occurs as rare idiomorphic to hypidiomorphic grains up to 200 µm × 70 µm in size or veinlet aggregates. In reflected light, grimmite is creamy grey with a pinkish tint. Pleochroism, polarising colours and internal reflections were not observed. Reflectance values of grimmite in the air (R %) are 42.5 at 470 nm, 45.9 at 546 nm, 47.7 at 589 nm and 50.2 at 650 nm). The empirical formula for grimmite, based on electron-microprobe analyses (n D 13), is Ni1:01(Co1:99Fe0:06Pb0:01Bi0:01/62:07S3:92. The ideal formula is NiCo2S4; requires Ni 19.26, Co 38.67, and S 42.07; and totals 100.00 wt %.
    [Show full text]
  • Spatial Distribution, Geochemistry, and Storage of Mining Sediment In
    STATEMENT OF WORK Spatial distribution, geochemistry, and storage of mining sediment in channel and floodplain deposits of streams draining the Viburnum Trend Mining District of Southeast Missouri, USA Prepared by: Dr. Robert T. Pavlowsky, Ph.D., Principle Investigator Ozarks Environmental and Water Resources Institute Missouri State University 901 South National Avenue Springfield, MO 65897 bobpavlowsky@missouristate.edu Co‐Principle Investigators Dr. Scott Lecce, Ph.D., East Carolina University Marc R. Owen, M.S., Ozarks Environmental and Water Resources Institute Submitted to: John Weber U.S. Fish and Wildlife Service 101 Park DeVille, Suite A Columbia, MO 65203 573‐234‐2132 x 177 john_s_weber@fws.gov July 16, 2012 1 INTRODUCTION The New Lead Belt in southeastern Missouri has been a major producer of lead (Pb) and other metals since 1960 when the first mine opened in Viburnum, Missouri (Seeger, 2008). To date, 10 mines have operated along a north‐south line extending for almost 100 kilometers (km) from from Viburnum to south of Bunker, Missouri. This subdistrict of the Southeast Missouri Lead Mining District is referred to as the Viburnum Trend (VT). Seven mines are presently in operation in the VT: (i) Viburnum #29 Mine in Washington County which uses the Buick Mill; (ii) Casteel or Viburnum #35 Mine in Iron County which uses the Buick and Brushy Creek Mills; (iii) Buick Mine and Mill in Iron and Reynolds Counties; (iv) Fletcher Mine and Mill in Reynolds County which sometimes uses the Brushy Creek Mill; (v) Brushy Creek mine and mill in Reynolds County; (vi) West Fork Mine and Mill in Reynolds County; and (vii) Sweetwater Mine and Mill in Reynolds County (Seeger, 2008).
    [Show full text]
  • Oregon Geologic Digital Compilation Rules for Lithology Merge Information Entry
    State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist OREGON GEOLOGIC DIGITAL COMPILATION RULES FOR LITHOLOGY MERGE INFORMATION ENTRY G E O L O G Y F A N O D T N M I E N M E T R R A A L P I E N D D U N S O T G R E I R E S O 1937 2006 Revisions: Feburary 2, 2005 January 1, 2006 NOTICE The Oregon Department of Geology and Mineral Industries is publishing this paper because the infor- mation furthers the mission of the Department. To facilitate timely distribution of the information, this report is published as received from the authors and has not been edited to our usual standards. Oregon Department of Geology and Mineral Industries Oregon Geologic Digital Compilation Published in conformance with ORS 516.030 For copies of this publication or other information about Oregon’s geology and natural resources, contact: Nature of the Northwest Information Center 800 NE Oregon Street #5 Portland, Oregon 97232 (971) 673-1555 http://www.naturenw.org Oregon Department of Geology and Mineral Industries - Oregon Geologic Digital Compilation i RULES FOR LITHOLOGY MERGE INFORMATION ENTRY The lithology merge unit contains 5 parts, separated by periods: Major characteristic.Lithology.Layering.Crystals/Grains.Engineering Lithology Merge Unit label (Lith_Mrg_U field in GIS polygon file): major_characteristic.LITHOLOGY.Layering.Crystals/Grains.Engineering major characteristic - lower case, places the unit into a general category .LITHOLOGY - in upper case, generally the compositional/common chemical lithologic name(s)
    [Show full text]
  • A ST1W of SILICIC PLUTONIC ROCKS in the ZUNI and FLORIDA Mountaiffs to EVALUATE the POSSIBLE OCCURRENCE of GISSENINATED !!RANIUP? and THORIUR DEPOSITS
    AT THE \ UNIVERSITY OF NEW MEXICO A ST1W OF SILICIC PLUTONIC ROCKS IN THE ZUNI AND FLORIDA MOUNTAIFfS TO EVALUATE THE POSSIBLE OCCURRENCE OF GISSENINATED !!RANIUP? AND THORIUR DEPOSITS URANIUM AND THORIUM ABUNDANCES AND WHOLE ROCK CHEMISTRY OF THE FLORIDA MOUNTAINS, NEW MEXICO: PRELIMINARY STUDY NMEI REPORT NO, 77-1104C DECEMBER 1978 This research was conducted with the support of the New XexicoEnergy and MineralsDepartment (EMD). and the New KexicoEnergy Institute at The University of New Mexico (NMEI at UNM) underContract 77-1104. However, any opin- ions,findings, conclusions, or recommendations expressed within this report are those of the authors and do not necessarily reflect the views of the EMD or of the NMEI at UNM. NMEI Report No. 77-1104C i A STUDY OF SILICIC PLUTONIC ROCKS IN THE ZUNI AND FLORIDA MOUNTAINS TO EVALUTE THE POSSIBLEOCCURRENCE OF DISSEMINATED URANIUM AND THORIUM DEPOSITS Uranium andThorium Abundances and'6he Rock Chemistry of the Florida Mountains, New Mexico: Preliminary Study Final Report August. 15, 1977 - August 14, 1978 Principal Investigators Douglas G. Brookins,Department of Geology, University of New Mexico Christopher E. Rautman, New MexicoBureau of Minesand Mineral Resources L. LeRoy Corbitt, Department of Geology, Eastern New Mexico University Authors Douglas G. Brookins,Department of Geology, University of New Mexico Christopher E. Rautman, New MexicoBureau of Mines and Mineral Resources L. LeRoy Corbitt, Department of Geology,'Eastern New Mexico University NMEI #77-1104C December 1978 1 Uranium and Thorium Abundances and Whole Rock Chemistryof the Florida Mountains, New Mexico: Preliminary Study Douglas G. Brookins, Department of Geology, University of New Mexico Christopher E.
    [Show full text]