Niigata Minamata Disease: a Revisit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Food Additives Safety and Maximum Use Level
5/10/2017 FOOD ADDITIVES SAFETY & MAXIMUM USE LEVEL Nuri Andarwulan SEAFAST Center, IPB (Southeast Asian Food & Agr. Sci & Tech Center) Departemen Ilmu dan Teknologi Pangan, IPB [email protected] Outline Food additives Chemicals HOW are food additives regulated? Maximum use level of food additive [email protected] 1 5/10/2017 Food Additive is a substance (intentionally) added to food to alter the properties and/or the appearance of the food [email protected] As described by Paracelsus nearly 500 years ago, “All substances are poisons; there is none which is not a poison. The right dose differentiates a poison and a remedy”. This means that any chemical substance is likely to produce some form(s) of harmful effect, if taken in sufficient quantity. More addition of a chemical in food does not itself make food unsafe, but the quantity used in food, quantity of that food consumed and bodyweight will decide the safety. [email protected] 2 5/10/2017 The Codex definition of hazard is “a biological, chemical or physical agent with the potential to cause an adverse health effect”. The likelihood or risk of that hazard actually occurring in humans is dependent upon the quantity of chemical encountered or taken into the body, i.e. the exposure. [email protected] WHY do we need to regulate food additives? These chemicals may be harmful to your health (if consumed above the safety margin level) Benford, D. 2000, ILSI Europe [email protected] 3 5/10/2017 Food Additive (Codex Stan 192-1995) • Any substance not normally consumed as a food by itself and not normally used as a typical ingredient of the food, whether or not it has nutritive value, the intentional addition of which to food for a technological (including organoleptic) purpose in the manufacture, processing, preparation, treatment, packing, packaging and transport. -
CHAPTER 1. Movements During the Pperiod from the Times When the Signs Appeared to May 1956 When Minamata Dsease Was Oficially Dscovered
CHAPTER 1. Movements during the Pperiod from the Times When the Signs Appeared to May 1956 when Minamata Dsease was Oficially Dscovered 1. Background of the times, positioning of Chisso in industrial policy, position of Chisso in economic society of the district, and characteristics of the technological development by Chisso (1) Situation of economy Industrial reconstruction in Japan was proceeded relatively from 1945 onward, early after World War II. Since around 1955, heavy chemical industrialization policy aiming at conversion of energy resources from coal to petroleum has been promoted, and the time when high economic growth of an annual rate of ca. 10% is achieved has arrived. The times of high economic growth lasted until 1973 when the primary oil shock occurred. In the times, Japan pushed on economic growth by the joint efforts of the Government and people with the national aim of increasing international economic competitive force. (2) Position of Chisso in the local economic society A. Location of Chisso in Minamata Minamata situated on the west side of Kyushu faces the Shiranui Sea (Yatsushiro Sea), and the Amakusa Islands are on the opposite shore of the sea. Minamata is adjacent to Kagoshima Prefecture on the most southern tip of Kumamoto Prefecture. The plain at the mouth of the River Minamata running in the center of the city is narrow, and there is a mountain close to the sea. Because of these situations, general traffic means was a sea-based route. In those days of 1898 before the invasion of Chisso, Minamata was a fishing and agrarian village of a total of 2,542 houses. -
Ethnic Differences in Risk from Mercury Among Savannah River Fishermen
Risk Analysis, Vol. 21, No. 3, 2001 Ethnic Differences in Risk from Mercury among Savannah River Fishermen Joanna Burger,1,2* Karen F. Gaines,3 and Michael Gochfeld2,4 Fishing plays an important role in people’s lives and contaminant levels in fish are a public health concern. Many states have issued consumption advisories; South Carolina and Geor- gia have issued them for the Savannah River based on mercury and radionuclide levels. This study examined ethnic differences in risk from mercury exposure among people consuming fish from the Savannah River, based on site-specific consumption patterns and analysis of mercury in fish. Among fish, there were significant interspecies differences in mercury levels, and there were ethnic differences in consumption patterns. Two methods of examining risk are presented: (1) Hazard Index (HI), and (2) estimates of how much and how often people of different body mass can consume different species of fish. Blacks consumed more fish and had higher HIs than Whites. Even at the median consumption, the HI for Blacks exceeded 1.0 for bass and bowfin, and, at the 75th percentile of consumption, the HI exceeded 1.0 for almost all species. At the White male median consumption, noHI exceeded 1, but for the 95th percentile consumer, the HI exceeded 1.0 almost regardless of which species were eaten. Although females consumed about two thirds the quantity of males, HIs exceeded 1 for most Black females and for White females at or above the 75th percentile of consump- tion. Thus, close to half of the Black fishermen were eating enough Savannah River fish to exceed HI 5 1. -
Ec:Rbfc/2010/3
EC:RBFC/2010/3 Food and Agriculture Organization of the United Nations JOINT FAO/WHO EXPERT CONSULTATION ON THE RISKS AND BENEFITS OF FISH CONSUMPTION Rome, Italy, 25 - 29 January 2010 HEALTH RISKS ASSOCIATED WITH FISH CONSUMPTION FOCUS ON METHYLMERCURY, DIOXINS AND DIOXIN-LIKE PCBS Lucio G. Costa Professor, Department of Occupational and Health Sciences University of Washington, Seattle, USA & Vittorio Fattori Nutrition and Consumer Protection Division, FAO, Rome, Italy 2 EC:RBFC/2010/3 TABLE OF CONTENTS 1 INTRODUCTION ......................................................................................... 4 1.1 Objective and Scope of the paper ................................................................ 4 2 CONTAMINANTS IN FISH ........................................................................... 4 3 INTERNATIONAL ADVISORIES ................................................................... 6 3.1 Mercury ....................................................................................................... 6 4 MERCURY ................................................................................................... 8 4.1 Mercury in the environment ....................................................................... 8 4.1.1 The environmental cycle of mercury ............................................................................ 8 4.1.2 Main sources of mercury release into environment ..................................................... 9 4.1.3 Main food sources ....................................................................................................... -
Lessons from an Early-Stage Epidemiological Study of Minamata Disease Takashi Yorifuji
Journal of Epidemiology Special Article J Epidemiol 2020;30(1):12-14 Lessons From an Early-stage Epidemiological Study of Minamata Disease Takashi Yorifuji Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan Received May 7, 2019; accepted September 17, 2019; released online November 2, 2019 Key words: environment and public health; epidemiology; food contamination; methylmercury compounds; Minamata disease Copyright © 2019 Takashi Yorifuji. This is an open access article distributed under the terms of Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Prefectures,5 but it is reported that several tens of thousands of INTRODUCTION residents have neurological signs related with methylmercury The Revisit series in this issue introduced the article by Kitamura poisoning in the exposed area.2,6 The causative factory, located in and colleagues.1 Dr. Shoji Kitamura, born in 1915, was a medical Minamata City, released effluent, which included methylmercury doctor and a professor of Department of Public Health in the as a byproduct of acetaldehyde production and contaminated local Medical School at Kumamoto University when Minamata disease seafood. The acetaldehyde production started in 1932, and it happened. The article summarized findings from a very-early- increased after the World War II, with a peak in 1960, and stopped phase epidemiological study conducted by researchers from in 1968. Along with the increase in production from around 1950, Kumamoto University immediately after the Minamata disease local residents witnessed strange phenomena.7 For example, large incident was officially recognized on May 1, 1956. -
The Acceptable Daily Intake (ADI)
Appendix 1- Definitions and glossary of terms Acceptable Daily Intake (ADI) The Acceptable Daily Intake (ADI) for humans is defined as an estimate of the amount of a chemical that can be ingested daily over a lifetime without appreciable risk to health (WHO 2001). ADIs are set using information obtained from toxicological studies, including data from studies on various laboratory animals. From these studies, a No Observable Effect Level (NOEL) is established. The NOEL is the highest dose level that produces no observable toxic effect in the most sensitive test species and is expressed in milligrams per kilogram of body weight per day (mg/kg bw/day). The ADI is derived by applying a safety factor to the NOEL. The safety factor takes into consideration the nature of the effect, differences between laboratory test animals and humans, and genetic variation in the human population. If any information on exposure in humans is available, usually from short to mid-term studies, this will be used to set the ADI. The unit for the ADI is milligrams per kilogram of body weight per day. Limit of Detection (LOD) The LOD is the lowest concentration of a chemical that can be qualitatively detected using a specified laboratory method and/or item of laboratory equipment (i.e. its presence can be detected but not quantified). For the purposes of this study, analytical results reported as being less than the LOD were assumed to be zero. Limit of Quantification (LOQ) The LOQ is the lowest concentration of a chemical that can be detected and quantified, with an acceptable degree of certainty, using a specified laboratory method and/or item of laboratory equipment. -
An Aspect of Nutrition and Main Food Sweeteners in the Diet
Advances in Obesity, Weight Management & Control Review Article Open Access An aspect of nutrition and main food sweeteners in the diet Abstract Volume 11 Issue 2 - 2021 Food additives are factors in both health reason and food production. Sweeteners are utilized Necla Çağlarırmak in large scale because of biochemistry, production, obesity, food structure, economy, Food Proses Department, Manisa Celal Bayar University, Turkey functional property, and research and development efforts of food industry. Intake of high calorie nutrients such as sugar in the nutrition are important factors against increasing Correspondence: Necla Çağlarırmak, Food Proses trends of obesity, cardiovascular disease and diabetes and some of chronic diseases. In Department, Manisa Celal Bayar University, Saruhanlı College, healthy nutrition, the sufficient calorie intake must be recommended for basal metabolism Saruhanlı-Manisa, Turkey, Email [email protected] and usual daily activities due to individual and environment conditions. Sweeteners are also food additives and using commonly for low calorie nutrition or from other reasons such as Received: April 01, 2021 | Published: April 12, 2021 bulk of foods. natural sweeteners can be suggested such as stevia, together with balanced and low calorie diet including vegetables, and other food types due to diet originality that change in different societies, economies, regions and education levels of people. Traditional nutrition such as Mediterranean diet can be recommended for balanced diet. This topic was reviewed under light of literature. Keywords: biochemistry, foods, JEFCA, sweeteners, obesity, nutrition, food formulas, side effects, health Abbreviations: SSBs, sugar-sweetened beverages; Ace-K, World. Nobody does not forget almost one billion people in border acesulfame potassium; ADI, adequate dietary intake of starvation or suffering the famine against obesity.2 There are lots of factors affected nutrition including economies and development Introduction strategies in the World. -
Knowledge and Power in Occupied Japan: U.S. Censorship of Hiroshima and Nagasaki
Bard College Bard Digital Commons Senior Projects Spring 2018 Bard Undergraduate Senior Projects Spring 2018 Knowledge and Power in Occupied Japan: U.S. Censorship of Hiroshima and Nagasaki May E. Grzybowski Bard College, [email protected] Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2018 Part of the Asian History Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Grzybowski, May E., "Knowledge and Power in Occupied Japan: U.S. Censorship of Hiroshima and Nagasaki" (2018). Senior Projects Spring 2018. 134. https://digitalcommons.bard.edu/senproj_s2018/134 This Open Access work is protected by copyright and/or related rights. It has been provided to you by Bard College's Stevenson Library with permission from the rights-holder(s). You are free to use this work in any way that is permitted by the copyright and related rights. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. For more information, please contact [email protected]. Knowledge and Power in Occupied Japan: U.S. Censorship of Hiroshima and Nagasaki Senior Project Submitted to The Division of Social Studies of Bard College by May Grzybowski Annandale-on-Hudson, New York May 2018 Table of Contents Introduction……………………………………………………………………………………………1 Chapter One: Censorship Under SCAP………………………………………………………………..5 Chapter Two: Censored Texts…………………………………………………………..……….…....20 Chapter Three: Effects of Censorship………………………………………………………………...52 Conclusion…………………………………………………………………………………………….66 Bibliography……………………………………………………………………………………...……69 Acknowledgements I would not have been able to finish this project without the support of many people. -
Glyphosate: Unsafe on Any Plate
GLYPHOSATE: UNSAFE ON ANY PLATE ALARMING LEVELS OF MONSANTO’S GLYPHOSATE FOUND IN POPULAR AMERICAN FOODS “For the first time in the history of the world, every human being is now subjected to contact with dangerous chemicals from the moment of conception until death…These chemicals are now stored in the bodies of the vast majority of human beings, regardless of age. They occur in the mother’s milk, and probably in the tissues of the unborn child.”1 —RACHEL CARSON, SILENT SPRING “Glyphosate was significantly higher in humans [fed] conventional [food] compared with predominantly organic [fed] humans. Also the glyphosate residues in urine were grouped according to the human health status. Chronically ill humans had significantly higher glyphosate residues in urine than healthy humans”2 —MONIKA KRUGER, ENVIRONMENTAL & ANALYTICAL TOXICOLOGY “Analysis of individual tissues demonstrated that bone contained the highest concentration of [14C] glyphosate equivalents (0.3–31ppm). The remaining tissues contained glyphosate equivalents at a concentration of between 0.0003 and 11 ppm. In the bone and some highly perfused tissues, levels were statistically higher in males than in females.”3 —PESTICIDE RESIDUES IN FOOD, JOINT FAO/WHO MEETING 2004 1 Rachel Carson, Silent Spring, (Houghton Mifflin, 1961), Elixirs of Death, 15-16. 2 Krüger M, Schledorn P, Schrödl W, Hoppe HW, Lutz W, et al. (2014) Detection of Glyphosate Residues in Animals and Humans. J Environ Anal Toxicol 4: 210 3 Residues in Food, 2004, Evaluations Part II, Toxicological, Joint FAO/WHO Meeting on Pesticide Residues. http://apps.who.int/iris/ bitstream/10665/43624/1/9241665203_eng.pdf Contents What Is in This Report? Findings: The first ever independent, FDA-registered laboratory food testing results for glyphosate residues in iconic American food brands finds alarming levels of glyphosate contamination and reveal the inadequacy of current food safety regulations relating to allowable pesticide residues. -
Pulp and Paper Industries in Japan and Indonesia
Visiting Research Fellow Monograph Series This series aim at disseminating the results of research done by Visiting Research Fellows at the Institute of Developing Economies. However, no part of this paper may be quoted without the permission of the author, since some of the results may be preliminary. Further, the findings, interpretations and conclusions expressed in this paper are entirely those of the author(s). Paper does not imply endorsement by the Institute of Developing Economies of any of the facts, figures, and views expressed. The Institute of Developing Economies does not guarantee the accuracy of the data included in this paper and accepts no responsibility whatsoever for any consequence of their use. ACKNOWLEDGEMENTS This research was made possible through valuable funding from IDE-JETRO. I am extremely grateful to IDE-JETRO for allowing me to carry out this research in the period August 2006-February 2007. This report has benefited substantially from inputs and insights from certain individuals and Research Institute Library Officers (IDE, OJI Museum, and FFPRI). I would like to thank Prof. FUJITA Masahisa and Dr. YOSHIDA Mikimasa, as President and Executive Vice President of the Institute of Developing Economies (IDE-JETRO), Dr. SATO Yuri (as host scientist), Prof. NAGATA Shin, Prof. INOUE Makoto (The University of Tokyo), Dr. TACHIBANA Satoshi and Dr. ZHANG Yufu (Forestry and Forest Products Research Institute/FFPRI), for their discussion and critical comments upon this paper. I am also grateful to and extend many thanks to all researchers from the Southeast Asian Studies Group 1 (Area Studies Center) and all the kind colleagues in the IDE institute such as SATO Hiroshi, ISHIDA Masami, KOJIMA Michikazu, TERAU Tadayoshi, MATSUI Kazuhisa, IMAI Ken, YOSHIDA Eiichi, HORII Nobohiro AOKI Maki, KITANO Koichi, OKADA Masahiro (Research-Editorial Office), TAKAHASHI Mune, TAKAHASHI Matsushi, HAMADA Miki, HIGASHIKATA Takayuki, Michida MAKINO Kumiko, MOCHIZUKI Katsuya, TAKAHASHI Kazushi and others too numerous to mention. -
Overview of Mercury Issues in Japan
QQUUIIICCKKSSIIILLVVEERR FORUM JAPAN’S MINAMATA LEGACY AND THE NEED TO BAN ITS HG EXPORT Vol.1 No.1 May 2010 Japan and Mercury against the government, Kumamoto Prefecture, As the First UNEP Intergovernmental Negotiating and Chisso. Committee convenes in June 2010 and embarks on a 1987: The Kumamoto district court first recognized the monumental task of controlling mercury globally, an responsibility of the Government and Kumamoto understanding of how Japan, a country intimately linked Prefecture as well as Chisso. to the issue of mercury poisoning, handled the demands 1995: The government offered a “final political of Minamata victims and how it behaves globally on the solution” to address unrecognized victims, but issue of mercury is paramount. Does Japan’s past and did not acknowledge its responsibility. current rhetoric stand up to its responsibilities to the 2004: The Supreme Court of Japan denounced the victims and to the global community? inaction of the government and Kumamoto Prefecture regarding damage control. In 1932, Chisso Corporation opened an acetaldehyde 2005: More unrecognized victims sued Government, plant in Minamata, a small coastal community in Kumamoto Prefecture and Chisso. Kumamoto, Kyushu. Throughout its 36 years of 2009: The Minamata Relief Law was passed. The operation, methylmercury-containing wastewater was controversial law was criticized by some groups freely discharged into the bay, causing serious, for its inadequacies. intergenerational cases of mercury poisoning in 2010: The Kumamoto district court recommended a Minamata. settlement, which many of the victims accepted. The Japanese government has In order to end the half-a-century taken steps to repair the blemish Minamata saga, Government of Minamata over the years. -
AN ANALYSIS of the MINAMATA CONVENTION on MERCURY and ITS IMPLICATIONS for the REGULATION of MERCURY in SOUTH AFRICA by James Co
AN ANALYSIS OF THE MINAMATA CONVENTION ON MERCURY AND ITS IMPLICATIONS FOR THE REGULATION OF MERCURY IN SOUTH AFRICA By James Connor Ross (210533584) Submitted in part fulfilment of the requirements for the degree of Master of Laws in Environmental Law (LLM) in the School of Law at the University of KwaZulu Natal Supervisor: Professor Michael Kidd June 2017 1 DECLARATION I, JAMES CONNOR ROSS, declare that The research reported in this dissertation, except where otherwise indicated, is my original work. This dissertation has not been submitted for any degree or examination at any other university. This dissertation does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: their words have been re-written but the general information attributed to them has been referenced; where their exact words have been used, their writing has been placed inside quotation marks, and referenced. This dissertation does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the dissertation and in the References sections. Signed: ____________________ Date: ____________________ JAMES CONNOR ROSS As the candidate’s Supervisor I agree to the submission of this dissertation. ____________________ Date: ____________________ MICHAEL KIDD Professor, School of Law, University of KwaZulu-Natal, Howard College. 2 CONTENTS TITLE PAGE DECLARATION CHAPTER 1: Introduction and Background