The Distribution of the Primes

Total Page:16

File Type:pdf, Size:1020Kb

The Distribution of the Primes The Distribution of the Primes Basic Definitions • A natural number is any number in the set {1, 2, 3, 4, 5, … }. Naturals are also called counting numbers. • A prime number is any natural that is only divisible by 1 or itself (e.g. 7 = 1 × 7 is prime). Any natural that is not prime is called a composite number (e.g. 21 = 3 × 7 is composite). Set of primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, … } Note 1: The number 1 is neither prime nor composite. This is a necessary condition for the Fundamental Theorem of Arithmetic (FTA), which states that any natural has a unique prime factorization or, equivalently, that composite numbers can be “broken down” into primes in exactly one way (e.g. 42 = 2 × 3 × 7). If the number 1 were to be considered prime, then this would directly contradict FTA as any composite number could be broken down in 2 distinct ways (e.g. 42 could be factored as 2 × 3 × 7 or as 1 × 2 × 3 × 7). It follows from this that all naturals greater than 1 are either prime or composite. Note 2: The oldest and most famous method for obtaining the set of primes is called the Sieve of Erastothenes, named after the Greek mathematician and astronomer Erastothenes (ca. 350 B.C.E.) who served as chief librarian of the famous library in Alexandria and was Euclid’s mentor. [Read more about this method on p. 342.] • The number “n factorial,” denoted by �!, is the natural defined as follows: �! = 1 × 2 × 3 × … × (� − 1) × � For example, 3! = 1 × 2 × 3 = 6 and 5! = 1 × 2 × 3 × 4 × 5 = 120. Note that (� + 1)! = (� + 1) × �! for any natural �. • A prime desert of length � is any consecutive list of � naturals that includes only composite numbers (i.e. no primes). For example, the list 8, 9, 10 is a prime desert of length 3 because these 3 naturals are consecutive and none of them is a prime. An Infinitude of Primes One of the greatest results in all of mathematics is Euclid’s proof (ca. 300 B.C.) that there are infinitely many primes. Euclid argues this fact by contradiction. First he assumes the very thing he wishes to refute: that there exists a prime larger than any other prime. From that initial assumption he ends up with a contradiction after a sequence of logical steps. As a result, he is forced to conclude that his initial assumption must have been wrong, therefore proving that there cannot be a prime larger than any other prime, or that there must be an infinite number of primes. [Read more about this proof on pp. 342-343] So we know the list of prime numbers never ends: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Where Are the Primes? A natural question to ask is whether we can locate all primes numbers, exactly, on a number line. In other words, is there a formula that yields all the prime numbers? Unfortunately, no such formula exists. Countless mathematicians have cracked their teeth trying to find it... to no avail! However, the situation is not so dire. A lot is actually known about the distribution of the primes if one is to consider their statistical behavior (i.e. how primes behave collectively and not just individually). This leads to the Prime Number Theorem (proved in 1896 by Jacques Hadamard and Jean de la Vallée-Poussin), a cornerstone of modern-day number theory, and to many other remarkable results. In the end, a lot is still not known about the distribution of the primes. Perhaps the most important of all mathematical open questions, the Riemann Hypothesis, is intimately related to this topic. A prize of one million dollars from the Clay Institute awaits anyone who is capable of proving the hypothesis. Note: If you want to see a striking visualization of the distribution of the primes, check out Ulam’s Spiral shown next to the title of this document. This spiral is named after the Polish mathematician Stanislaw Ulam, who came up with it in the 1960’s while he was doodling at a math conference. Prime Deserts In the Excursion at the end of Section 6.5 (pp. 343-344), you are exposed to a striking feature of the elusive distribution of the primes. It turns out that you can produce a prime desert of any finite length! Theoretically then, you can eventually find 10 consecutive composites, 1,000 consecutive composites, or even 10 billion consecutive composites, among the set of naturals (which is infinite). The way to achieve this is by using factorials, as presented in the Prime Desert Theorem below. Prime Desert Theorem (PDT). A prime desert of length � (where � is a natural greater than 2) is given by the following list: (� + 1)! + 2 (� + 1)! + 3 (� + 1)! + 4 ⋮ (� + 1)! + � (� + 1)! + (� + 1) So, for example, a prime desert of length 4 is given by the list (4 + 1)! + 2 = 5! + 2 = 120 + 2 = 122 (4 + 1)! + 3 = 5! + 3 = 120 + 3 = 123 (4 + 1)! + 4 = 5! + 4 = 120 + 4 = 124 (4 + 1)! + 5 = 5! + 5 = 120 + 5 = 125 You can quickly check that none of these 4 naturals is prime. Note: The Prime Desert Theorem, while remarkable from a theoretical perspective, is not particularly well-suited to finding prime deserts in practice. For example, a simpler prime desert of length 4 is 24, 25, 26, 27. .
Recommended publications
  • The History of the Primality of One—A Selection of Sources
    THE HISTORY OF THE PRIMALITY OF ONE|A SELECTION OF SOURCES ANGELA REDDICK, YENG XIONG, AND CHRIS K. CALDWELLy This document, in an altered and updated form, is available online: https:// cs.uwaterloo.ca/journals/JIS/VOL15/Caldwell2/cald6.html. Please use that document instead. The table below is a selection of sources which address the question \is the number one a prime number?" Whether or not one is prime is simply a matter of definition, but definitions follow use, context and tradition. Modern usage dictates that the number one be called a unit and not a prime. We choose sources which made the author's view clear. This is often difficult because of language and typographical barriers (which, when possible, we tried to reproduce for the primary sources below so that the reader could better understand the context). It is also difficult because few addressed the question explicitly. For example, Gauss does not even define prime in his pivotal Disquisitiones Arithmeticae [45], but his statement of the fundamental theorem of arithmetic makes his stand clear. Some (see, for example, V. A. Lebesgue and G. H. Hardy below) seemed ambivalent (or allowed it to depend on the context?)1 The first column, titled `prime,' is yes when the author defined one to be prime. This is just a raw list of sources; for an evaluation of the history see our articles [17] and [110]. Any date before 1200 is an approximation. We would be glad to hear of significant additions or corrections to this list. Date: May 17, 2016. 2010 Mathematics Subject Classification.
    [Show full text]
  • The First 50 Million Prime Numbers*
    7 sin ~F(s) The First 50 Million I - s ; sin -- Prime Numbers* s Don Zagier for the algebraist it is "the characteristic of a finite field" or "a point in Spec ~" or "a non-archimedean valuation"; To my parents the combinatorist defines the prime num- bers inductively by the recursion (I) 1 Pn+1 = [I - log2( ~ + n (-1)r )] r~1 ISil<'~'<irSn 2 pi1"''pir - I ([x] = biggest integer S x); and, finally, the logicians have recent- iv been defininq the primes as the posi- tive values of the polynomial (2) F(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q, r,s,t,u,v,w,x,y,z) = [k + 2] [1 - (wz+h+j-q) 2 - (2n+p+q+z-e) 2 - (a2y2-y2+1-x2)2 - ({e4+2e3}{a+1}2+1-o2) 2 - (16{k+1}3{k+2}{n+1}2+1-f2)2 - ({(a+u~-u2a) 2-1}{n+4dy}2+1-{x+cu}2) 2 - (ai+k+1-l-i) 2 - I would like to tell you today about a ({gk+2g+k+1}{h+j}+h-z) 2 - subject which, although I have not worked (16r2y~{a2-1}+1-u2) 2 - in it myself, has always extraordinarily (p-m+l{a-n-1}+b{2an+2a-n2-2n-2}) 2 - captivated me, and which has fascinated (z-pm+pla-p21+t{2ap-p2-1}) 2 - mathematicians from the earliest times (qTx+y{a-p-1}+s{2ap+2a-p2-2~-2})2 - until the present - namely, the question (a~12-12+1-m2) 2 - (n+l+v-y) ].
    [Show full text]
  • Package 'Numbers'
    Package ‘numbers’ May 14, 2021 Type Package Title Number-Theoretic Functions Version 0.8-2 Date 2021-05-13 Author Hans Werner Borchers Maintainer Hans W. Borchers <[email protected]> Depends R (>= 3.1.0) Suggests gmp (>= 0.5-1) Description Provides number-theoretic functions for factorization, prime numbers, twin primes, primitive roots, modular logarithm and inverses, extended GCD, Farey series and continuous fractions. Includes Legendre and Jacobi symbols, some divisor functions, Euler's Phi function, etc. License GPL (>= 3) NeedsCompilation no Repository CRAN Date/Publication 2021-05-14 18:40:06 UTC R topics documented: numbers-package . .3 agm .............................................5 bell .............................................7 Bernoulli numbers . .7 Carmichael numbers . .9 catalan . 10 cf2num . 11 chinese remainder theorem . 12 collatz . 13 contFrac . 14 coprime . 15 div.............................................. 16 1 2 R topics documented: divisors . 17 dropletPi . 18 egyptian_complete . 19 egyptian_methods . 20 eulersPhi . 21 extGCD . 22 Farey Numbers . 23 fibonacci . 24 GCD, LCM . 25 Hermite normal form . 27 iNthroot . 28 isIntpower . 29 isNatural . 30 isPrime . 31 isPrimroot . 32 legendre_sym . 32 mersenne . 33 miller_rabin . 34 mod............................................. 35 modinv, modsqrt . 37 modlin . 38 modlog . 38 modpower . 39 moebius . 41 necklace . 42 nextPrime . 43 omega............................................ 44 ordpn . 45 Pascal triangle . 45 previousPrime . 46 primeFactors . 47 Primes
    [Show full text]
  • Numbers 1 to 100
    Numbers 1 to 100 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 30 Nov 2010 02:36:24 UTC Contents Articles −1 (number) 1 0 (number) 3 1 (number) 12 2 (number) 17 3 (number) 23 4 (number) 32 5 (number) 42 6 (number) 50 7 (number) 58 8 (number) 73 9 (number) 77 10 (number) 82 11 (number) 88 12 (number) 94 13 (number) 102 14 (number) 107 15 (number) 111 16 (number) 114 17 (number) 118 18 (number) 124 19 (number) 127 20 (number) 132 21 (number) 136 22 (number) 140 23 (number) 144 24 (number) 148 25 (number) 152 26 (number) 155 27 (number) 158 28 (number) 162 29 (number) 165 30 (number) 168 31 (number) 172 32 (number) 175 33 (number) 179 34 (number) 182 35 (number) 185 36 (number) 188 37 (number) 191 38 (number) 193 39 (number) 196 40 (number) 199 41 (number) 204 42 (number) 207 43 (number) 214 44 (number) 217 45 (number) 220 46 (number) 222 47 (number) 225 48 (number) 229 49 (number) 232 50 (number) 235 51 (number) 238 52 (number) 241 53 (number) 243 54 (number) 246 55 (number) 248 56 (number) 251 57 (number) 255 58 (number) 258 59 (number) 260 60 (number) 263 61 (number) 267 62 (number) 270 63 (number) 272 64 (number) 274 66 (number) 277 67 (number) 280 68 (number) 282 69 (number) 284 70 (number) 286 71 (number) 289 72 (number) 292 73 (number) 296 74 (number) 298 75 (number) 301 77 (number) 302 78 (number) 305 79 (number) 307 80 (number) 309 81 (number) 311 82 (number) 313 83 (number) 315 84 (number) 318 85 (number) 320 86 (number) 323 87 (number) 326 88 (number)
    [Show full text]
  • About the Author and This Text
    1 PHUN WITH DIK AND JAYN BREAKING RSA CODES FOR FUN AND PROFIT A supplement to the text CALCULATE PRIMES By James M. McCanney, M.S. RSA-2048 has 617 decimal digits (2,048 bits). It is the largest of the RSA numbers and carried the largest cash prize for its factorization, US$200,000. The largest factored RSA number is 768 bits long (232 decimal digits). According to the RSA Corporation the RSA-2048 may not be factorable for many years to come, unless considerable advances are made in integer factorization or computational power in the near future Your assignment after reading this book (using the Generator Function of the book Calculate Primes) is to find the two prime factors of RSA-2048 (listed below) and mail it to the RSA Corporation explaining that you used the work of Professor James McCanney. RSA-2048 = 25195908475657893494027183240048398571429282126204032027777 13783604366202070759555626401852588078440691829064124951508 21892985591491761845028084891200728449926873928072877767359 71418347270261896375014971824691165077613379859095700097330 45974880842840179742910064245869181719511874612151517265463 22822168699875491824224336372590851418654620435767984233871 84774447920739934236584823824281198163815010674810451660377 30605620161967625613384414360383390441495263443219011465754 44541784240209246165157233507787077498171257724679629263863 56373289912154831438167899885040445364023527381951378636564 391212010397122822120720357 jmccanneyscience.com press - ISBN 978-0-9828520-3-3 $13.95US NOT FOR RESALE Copyrights 2006, 2007, 2011, 2014
    [Show full text]
  • Prime Numbers
    Prime numbers Frans Oort Department of Mathematics University of Utrecht Talk at Dept. of Math., National Taiwan University (NTUmath) Institute of Mathematics, Academia Sinica (IoMAS) 17-XII-2012 ··· prime numbers “grow like weeds among the natural numbers, seeming to obey no other law than that of chance, and nobody can predict where the next one will sprout.” Don Zagier Abstract. In my talk I will pose several questions about prime numbers. We will see that on the one hand some of them allow an answer with a proof of just a few lines, on the other hand, some of them lead to deep questions and conjectures not yet understood. This seems to represent a general pattern in mathematics: your curiosity leads to a study of “easy” questions related with quite deep structures. I will give examples, suggestions and references for further study. This elementary talk was meant for freshman students; it is not an introduction to number theory, but it can be considered as an introduction: “what is mathematics about, and how can you enjoy the fascination of questions and insights?” Introduction In this talk we study prime numbers. Especially we are interested in the question “how many prime numbers are there, and where are they located”? We will make such questions more precise. For notations and definitions see § 2. The essential message of this talk on an elementary level: mathematicians are curious; we like to state problems, find structures and enjoy marvelous new insights. Below we ask several questions, and we will see that for some of them there is an easy an obvious answer, but for others, equally innocent looking, we are completely at loss what the answer should be, what kind of methods should be developed in order to understand possible approaches: fascinating open problems.
    [Show full text]
  • Prime Numbers
    Prime numbers The classical Greek mathematicians were more interested in geometry than in what we would call al- gebra. (One notable exception was Diophantus, whose surviving work is concerned with integer solutions of polynomial equations, and who was the first Western mathematician to develop any sort of algebraic notation.) However, one of the Definition 1. A positive integer n is called prime if it has exactly two factors, namely itself and 1. Notice that 1 is not prime, because it has only one factor, not two. The first several prime numbers are 2, 3, 5, 7, 11, 13, 17, 23, ...., 1999, 2003, 2011, . , 999983, 1000003, 1000033, . Does the sequence of primes ever come to an end? In Book IX of the Elements, Euclid gave an elegant proof that the answer is no: there are infinitely many prime numbers. Euclid did not use the term “infinite”, as the Greeks were not comfortable with the idea of infinity1. Instead, he stated the theorem in the following way. Theorem 2. No finite set of prime numbers can possibly be the complete list of all prime numbers. Proof. Suppose that we have a list of prime numbers: p1; p2; : : : ; pn. Let x = (p1p2 pn) + 1: · · · Then x is a positive integer. Observe that p1 can't be a factor of x (because dividing x by p1 leaves a remainder of 1); • p2 can't be a factor of x (because dividing x by p2 leaves a remainder of 1); • . pn can't be a factor of x (because dividing x by pn leaves a remainder of 1).
    [Show full text]
  • Introduction to Higher Mathematics Unit #4: Number Theory
    Introduction to Higher Mathematics Unit #4: Number Theory Joseph H. Silverman Version Date: January 2, 2020 Contents 1 Number Theory — Lecture #1 1 1.1 What is Number Theory? . .1 1.2 Square Numbers and Triangle Numbers . .5 Exercises . 10 2 Number Theory — Lecture #2 13 2.1 Pythagorean Triples . 13 2.2 Pythagorean Triples and the Unit Circle . 18 Exercises . 20 3 Number Theory — Lecture #3 23 3.1 Divisibility and the Greatest Common Divisor . 23 3.2 Linear Equations and Greatest Common Divisors . 27 Exercises . 32 4 Number Theory — Lecture #4 37 4.1 Primes and Divisibility . 37 4.2 The Fundamental Theorem of Arithmetic . 40 Exercises . 43 5 Number Theory — Lecture #5 45 5.1 Congruences . 45 5.2 Congruences, Powers, and Fermat’s Little Theorem . 49 Exercises . 54 6 Number Theory — Lecture #6 57 6.1 Prime Numbers . 57 6.2 Counting Primes . 61 Exercises . 65 7 Number Theory — Lecture #7 69 7.1 The Fibonacci Sequence . 69 7.2 The Fibonacci Sequence Modulo m ................. 75 7.3 The Fibonacci Sequence: Supplement . 76 Draft: January 2, 2020 2 c 2018, J. Silverman CONTENTS 3 Exercises . 78 8 Number Theory — Lecture #8 83 8.1 Squares Modulo p ........................... 83 Exercises . 88 9 Number Theory — Lecture #9 91 9.1 Is −1 a Square Modulo p? Is 2?................... 91 9.2 Quadratic Reciprocity to the Rescue . 99 −1 (p−1)=2 9.3 Proof that p = (−1) [Supplement] . 102 Exercises . 105 A Class Exercise: Lecture #1: Mix and Match Number Types 107 B Class Exercise: Lecture #2: Pythagorean-Like Triples 108 C Class Exercise: Lecture #3: Least Common Multiples 109 D Class Exercise: Lecture #4: Further Travels in the E-Zone 110 E Class Exercise: Lecture #5: Polynomial Roots Modulo m 111 F Class Exercise: Lecture #6: Sums of Reciprocals 112 G Class Exercise: Lecture #7: The 3n + 1 Problem 113 H Class Exercise: Lecture #8: Cubes Modulo p 115 I Class Exercise: Lecture #9: 116 Draft: January 2, 2020 c 2018, J.
    [Show full text]
  • Prime Numbers List 1-100 Pdf
    Prime numbers list 1-100 pdf Continue Prime figures are positive integers, having only two factors, one and an integer themselves. For example, factors 6 1.2.3 and 6, which are four factors in total. But Factors 7 are only 1 and 7, completely two. So 7 is a simple number, but 6 isn't, instead it's a composite number. But always remember that one is neither simple nor composite. You can also say that the main numbers are the numbers that are divided only into 1 or the number itself. Another way of determining this is a positive number or integrator, which is not the product of any other two positive prices. There is no definite formula to find if the number is prime or not (except for a certain range), except for finding its factors. Content Table: What is a simple number? A simple number is a positive integer having exactly two factors. If p is prime, then it's only factors necessarily one and p itself. Any number that does not follow this is referred to as composite numbers, which means that they can be factored into other positive prices. The first ten prime numbers are the first ten primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. Note: It should be noted that 1 is a non-prime number. Read also: History of prime numbers The first number was discovered by Eratosthenes (275-194 BC, Greece). He took the example of a sieve to filter out prime numbers from a list of natural numbers and drains of composite numbers.
    [Show full text]
  • The Essence of Mathematics Through Elementary Problems
    The Essence of Mathematics Through Elementary Problems ALEXANDRE BOROVIK AND TONY GARDINER To access digital resources including: blog posts videos online appendices and to purchase copies of this book in: hardback paperback ebook editions Go to: https://www.openbookpublishers.com/product/979 Open Book Publishers is a non-profit independent initiative. We rely on sales and donations to continue publishing high-quality academic works. THE ESSENCE OF MATHEMATICS THROUGH ELEMENTARY PROBLEMS The Essence of Mathematics Through Elementary Problems Alexandre Borovik and Tony Gardiner http://www.openbookpublishers.com c 2019 Alexandre Borovik and Tony Gardiner This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the author (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Alexandre Borovik and Tony Gardiner, The Essence of Mathematics through Elementary Problems. Cambridge, UK: Open Book Publishers, 2019. http://dx.doi.org/10.11647/OBP.0168 Further details about CC BY licenses are available at http://creativecommons.org/licenses/by/4.0/ All external links were active on 10/04/2019 and archived via the Internet Archive Wayback Machine: https://archive.org/web/ Every effort has been made to identify and contact copyright holders and any omission or error will
    [Show full text]
  • Finding N Prime Numbers Using Distrusted Computing PVM (Parallel Virtual Machine) Ehab Abdulrazak Al-Asadi College of Science-Kerbala University
    ISSN : 2394-2975 (Online) International Journal of Advanced Research ISSN : 2394-6814 (Print) Vol. 2, Issue 4 (Oct. - Dec. 2015) in Education & Technology (IJARET) Finding N Prime Numbers Using Distrusted Computing PVM (Parallel Virtual Machine) Ehab AbdulRazak Al-Asadi College of Science-Kerbala University Abstract Analysis the feasibility of sequencing as a parallel algorithm for the search for the first N Prime numbers. Design and implement (in C / C ++) program, respectively. Programs in the sequence Algorithm and also a solution based on the transmission of messages between nodes using library system PVM. Both programs must be identical. Distribute the load between nodes so that the computing time A minimum. Find out what is the dependence of acceleration of the implementation and calculation of the number of nodes and the extent of the problem in relation to sequencing program, (insert table and graphs). On the basis of Results estimate: latency communication, for what is the role of the dimension of the architecture (right) Scalable and what is the maximum size when the calculation is available on the architecture more bearable. Discuss in your group about what is the advantage respectively. The efficiency of parallel execution Individual algorithms. If this solution requires the use of input and output files with rows matrix Corresponds to file line and column valuesare ​​ separated by spaces or tabs. Otherwise stated, work with real numbers. Keywords Prime Numbers, Eratosthenes sieve, Parallel Program, Mersenne Prime number. I. Introduction the first 1,000,000 primes this holds true. Checking a million PVM (Parallel Virtual Machine) is a software system that enables primes is certainly energetic, but it is not necessary (and just a collection of heterogeneous computers to be used as a coherent looking at examples.
    [Show full text]
  • Recurrence Relation in Number Theory
    International Journal of Advanced Science and Technology Vol. 29, No.02, (2020), pp. 885-893 RECURRENCE RELATION IN NUMBER THEORY Mannu Arya1 and Vipin Verma2 1,2Department of Mathematics, School of Chemical Engineering and Physical Sciences Lovely Professional University, Phagwara 144411, Punjab (INDIA) ABSTRACT The research is on recurrence relation in number theory, with the sole aim of reviewing subtle and far- ending relationships in selected natural numbers which includes the composite and perfect numbers. Related literature was reviewed on which serves as the basis for critical analysis of the natural numbers. From the findings, it was found that there is a degree of relationship between prime numbers and perfect numbers including composite numbers. The nth composite number (푐푛) can be generated using the Wolfram Language code. This is a machine code. It is very difficult to establish a manual formula to extrapolate far composite numbers, but Dirichlet generating function is used to establish the characteristic function of the composite numbers. Furthermore, the relation in perfect numbers can be addressed thus as follows; (Power of Two) × (Double that Power - 1). The prime number formula is given by(2푛−1). To get the Perfect Number, the formula becomes (2푛−1). (2푛 − 1). Getting the nth sequence of a perfect number is dependent on the equivalent nth sequence of prime numbers. The research finally concludes with the call for researchers to team up to make more explicit, the recurrence relation in composite numbers. Keywords: Number Theory, Recurrence Relation, Perfect numbers, composite numbers, wolfram language code, Dirichlet generating function 1.0. INTRODUCTION The study of subtle and far-reaching relationships of numbers is Number Theory [3].
    [Show full text]