Investigated Was the Feasibility of Presnting Proof Materials to College-Capable Sixth-Grade Students

Total Page:16

File Type:pdf, Size:1020Kb

Investigated Was the Feasibility of Presnting Proof Materials to College-Capable Sixth-Grade Students DOCUMENT RESUME ED 040 876 24 SE 008 988 AUTHOR King, Irvin L. TITLE A Formative Development of a Unit on Proof for Use in the Elementary School (Parts 1,2 and 3). INSTITUTION Wisconsin Univ., Madison. Research and Development Center for Cognitive Learning. SPONS AGENCY Office of Education (DHEW), Washington, D.C. Bureau of Research. REPORT NO TR-111 BUREAU NO BR-5-0216 PUB DATE Jan 70 CONTRACT OEC-5-10-154 NOTE 401p. EDRS PRICE EDRS Price ME -$1.50 HC-$20.15 DESCRIPTORS *Concept Formation, Doctoral Theses, *Elementary School Mathematics, Grade 6, *Instruction, *Mathematical Concepts, *Mathematics Education ABSTRACT Investigated was the feasibility of presnting proof materials to college-capable sixth-grade students. A unit on mathematical proof was developed using an iterative procedure. Formative evaluation procedures were used to improve various components of the unit, Included in the unit are terminal student behaviors, cartoon stories, and several classroom activities which use a desk computer. Results indicated that the iterative developmental procedures employed were highly successful. (Author/FL) A FORMATIVE DEVELOPMENT OF A UNITON PROOF FOR USE IN THE ELEMENTARY SCHOOL PART I Report from the Projecton Analysis of Mathematics Instruction U.S. DiPARIMENT OF HEALTH. EDUCATIONaWELFARE OFFICE OF EDUCATION , THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINION STATED DO NO NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR IICY. bo os O 0 1#) U.S.Office of Education Center No. C-03 Contract OE 5-10-154 N- OD 0 Technical Report No. 111 4e; A FORMATIVE DEVELOPMENT OF A UNITON PROOF FOR USE IN THE ELEMENTARYSCHOOL PART I Report from the Projecton Analysis of Mathematics Instruction By Irvin L. King Thomas A. Romberg, AssistantProfessor of Curriculum andInstruction and of Mathematics Chairman of the Examining Committee,andPrincipal Investigator Wisconsin Research and Development Center for Cognitive Learning The University of Wisconsin Janyary 1970 This Technical Report isa doctoral disse.ation reporting research supportedby the-Wisconsin Research and Development Center,for Cognitive Learning. Sinceit has been approved bya Uni- versity Examining Committee, it hasnot been reviewed by the Center.Itis published by the Center as a record ofsome of the Center's activities andas a service to the student. The bound original is in The University ofWisconsin Memorial Library. Published by the Wisconsin Researchand Development Center forCognitive Learning, supported in part as a research and developmentcenter by funds from the United StatesOffice of Education, Department of Health, Education, andWelfare. The opinions expressedherein do not necessarily reflect the positionor policy of the Office of Education andno official endorsement by the Office of Education should be inferred. Center No. C-03 / Contract OE 5-10-154 NATIONAL EVALUATION COMMITTEE Samuel Brownell Henry Chauncey Elizabeth Koontz Patrick Suppes Notessor of Utban Education Plesident Plesident (Andante School Educational testing S(tviro Professor Yale University National Eilhattion Association Department of Mathematics Stanton' University Launor F. Carter Martin Deutsch Roderick McPhee Serum Vice Plesident on *Benton J. Underwood ()hector. Institute LI Puniile-nt Professor fechnolog. and Development Developmental Studies System Development Corpotation Punahou School, Honolulu Vow tomtit of Psychology New Yolk Medical College f Jot thwesto in Univotilly Francis S. Chase Jack Edling G. Wesley Sowards Professor Director, Teaching Research Director, Elementary Education Department of Education Division Florida State University University of Chicago Oregon State System of Higher Education UNIVERSITY POLICY REVIEW BOARD Leonard Berkowitz John Guy Fowlkes Herbert J. Klausmeier M. Crawford Young Chairman Director Director, R & D Center Department of Psychology Associate Dean Wisconsin Improvement Program Professor of Educational The Graduate School Psychology Archie A. Buchmiller Robert E. Grinder Donald J. McCarty Deputy State Superintendent Chairman Dean Department of Public Instruction Department of Educational School of Education Psychology *James W. Cleary H. Clifton Hutchins ha Sharkansky Vice Chancellor for Academic Chairman Associate Professor of Political Affairs Department of Curriculum and Science Instruction Leon D. Epstein Clauston Jenkins Henry C. Weinlick Dean Assistant Director Executive Secretary College of letters and Science Coordinating Committee for Wisconsin Education Association Higher Education EXECUTIVE COMMITTEE Edgar F. Borgatta Russell J. Hosier Wayne Otto Richard L. Venezky Brittingham Professor of Professor of Curriculum and Professor of Curriculum and Assistant Professor of English Sociology Instruction and of Business Instruction (Reading) and of Computer Sciences Max R. Goodson *Herbert J. Klausmeier Robert G. Petzold Professor of Educational Policy Director, R & D Center Associate Dean of the School Studies Professor of Educational of Education Psychology Professor of Curriculum and Instruction and of Music FACULTY OF PRINCIPAL INVESTIGATORS Ronald R. Allen Gary A. Davis Max R. Goodson Richard G. Morrow Associate Professor of Speech Associate Professor of Professor of Educational Policy Assistant Professor of and of Curriculum and Educational Psychology Studies Instruction Educational Administration Vernon L. Allen M. Vere DeVault Warren 0. Hagstrom Wayne Otto Associate Professor of Psychology Professor of Curriculum and Professor of Sociology Professor cf Curriculum and (On leave 1968-69) Instruction (Mathematics) Instruction (Reading) Nathan S. Blount Frank H. Farley John G. Harvey Milton 0. Pella Associate Professor of English Assistant Professor of Associate Professor of Professor of Curriculum and and of Curriculum and Educational Psychology Mathematics and Curriculum Instruction (Science) Instruction and Instruction Robert C. Calfee John Guy Fowlkes (Advisor) Herbert J. Klausmeier Thomas A. Romberg Associate Professor of Psychology Professor of Educational Director, R & 0 Center Assistant Professor of Administration Professor of Educational Mathematics and of Dire-tor of the Wisconsin Psychology Curriculum and Instruction Improvement Program Robert E. Davidson Lester S. Golub Burton W. Kreitlow Richard L. Venezky Assistant Professor of Lecturer in Curriculum and Professor of Educational Policy Assistant Professor of English Educational Psychology Instruction and in English Studies and of Agricultural and of Computer Sciences and Extension Education MANAGEMENT COUNCIL *Herbert J. Klausmeier Thomas A. Romberg James E. Walter Dan G. Woolpert Director, R & D Center Director Director Director Acting Director, Program I Programs 2 and 3 Dissemination Section Operations and Business Mary R. Quilling Director Technical Section * COMMITTEE CHAIRMAN STATEMENT OF FOCUS The Wisconsin Research and DevelopmentCenter for Cognitive Learning focuses on contributing toa better understanding of cognitive learning by children and youth andto the improvement of relatededucational prac- tices. The strategy for research anddevelopment is comprehensive. It includes basic research togenerate new knowledge about the conditions and processes of learning and aboutthe processes of instruction, and the subsequent development ofresearch-based instructional materials, many of which are designed for use by teachersand others foruse by students. These materials are tested and refinedin school settings. Throughout these operations behavioralscientists, curriculum experts, academic scholars, and school peopleinteract, insuring that the results of Center activitiesare based soundly on knowledge of subjectmatter and cognitive learning and that theyare applied to the improvement of educational practice. This Technical Report is from Phase 2of the Project on Prototypic Instructional Systems in Elementary Mathematicsin Program 2. General objectives of the Programare to establish rationale and strategy for developing instructional systems,to identify sequences of concepts and cognitive skills, to developassessment procedures for those concepts and skills, to identifyor develop instructional materials associated with the concepts and cognitive skills,and to generate new knowledge about instructional procedures. Contributing to the Program objectives, the Mathematics Project, Phase 1, isdeveloping and testinga televised course in arithmetic for Grades 1-6 which providesnot only a complete program of instruction for the pupils but alsoinservice training for teachers. Phase 2 has a long-term goal of providingan individually guided instructionalprogram in elementary mathematics. Preliminary activities include identifying instructionalobjectives, student activities, teacher activities materials,and assessment procedures for integration intoa total mathematics curriculum. The third phase focuses on the developmentof a computer system for managing individually guided instruction inmathematics and on a laterex- tension of the system's applicability. iii ACKNOWLEDGEMENTS I wish to expressmy sincere thanks and gratitude to Professor Thomas A. Romberg for his help,encouragement, and patience during my years of graduate study. I also wish to thank ProfessorJohn G. '4. Harvey for his penetratinganalysis of many of the problemsencoun- tered during thecourse of this study. In addition, my sincere appreciationgoes to Professors Gary A. Davis, J. Marshall Osborn,and J. Fred Weaver for servingon my committee.
Recommended publications
  • The History of the Primality of One—A Selection of Sources
    THE HISTORY OF THE PRIMALITY OF ONE|A SELECTION OF SOURCES ANGELA REDDICK, YENG XIONG, AND CHRIS K. CALDWELLy This document, in an altered and updated form, is available online: https:// cs.uwaterloo.ca/journals/JIS/VOL15/Caldwell2/cald6.html. Please use that document instead. The table below is a selection of sources which address the question \is the number one a prime number?" Whether or not one is prime is simply a matter of definition, but definitions follow use, context and tradition. Modern usage dictates that the number one be called a unit and not a prime. We choose sources which made the author's view clear. This is often difficult because of language and typographical barriers (which, when possible, we tried to reproduce for the primary sources below so that the reader could better understand the context). It is also difficult because few addressed the question explicitly. For example, Gauss does not even define prime in his pivotal Disquisitiones Arithmeticae [45], but his statement of the fundamental theorem of arithmetic makes his stand clear. Some (see, for example, V. A. Lebesgue and G. H. Hardy below) seemed ambivalent (or allowed it to depend on the context?)1 The first column, titled `prime,' is yes when the author defined one to be prime. This is just a raw list of sources; for an evaluation of the history see our articles [17] and [110]. Any date before 1200 is an approximation. We would be glad to hear of significant additions or corrections to this list. Date: May 17, 2016. 2010 Mathematics Subject Classification.
    [Show full text]
  • The First 50 Million Prime Numbers*
    7 sin ~F(s) The First 50 Million I - s ; sin -- Prime Numbers* s Don Zagier for the algebraist it is "the characteristic of a finite field" or "a point in Spec ~" or "a non-archimedean valuation"; To my parents the combinatorist defines the prime num- bers inductively by the recursion (I) 1 Pn+1 = [I - log2( ~ + n (-1)r )] r~1 ISil<'~'<irSn 2 pi1"''pir - I ([x] = biggest integer S x); and, finally, the logicians have recent- iv been defininq the primes as the posi- tive values of the polynomial (2) F(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q, r,s,t,u,v,w,x,y,z) = [k + 2] [1 - (wz+h+j-q) 2 - (2n+p+q+z-e) 2 - (a2y2-y2+1-x2)2 - ({e4+2e3}{a+1}2+1-o2) 2 - (16{k+1}3{k+2}{n+1}2+1-f2)2 - ({(a+u~-u2a) 2-1}{n+4dy}2+1-{x+cu}2) 2 - (ai+k+1-l-i) 2 - I would like to tell you today about a ({gk+2g+k+1}{h+j}+h-z) 2 - subject which, although I have not worked (16r2y~{a2-1}+1-u2) 2 - in it myself, has always extraordinarily (p-m+l{a-n-1}+b{2an+2a-n2-2n-2}) 2 - captivated me, and which has fascinated (z-pm+pla-p21+t{2ap-p2-1}) 2 - mathematicians from the earliest times (qTx+y{a-p-1}+s{2ap+2a-p2-2~-2})2 - until the present - namely, the question (a~12-12+1-m2) 2 - (n+l+v-y) ].
    [Show full text]
  • Package 'Numbers'
    Package ‘numbers’ May 14, 2021 Type Package Title Number-Theoretic Functions Version 0.8-2 Date 2021-05-13 Author Hans Werner Borchers Maintainer Hans W. Borchers <[email protected]> Depends R (>= 3.1.0) Suggests gmp (>= 0.5-1) Description Provides number-theoretic functions for factorization, prime numbers, twin primes, primitive roots, modular logarithm and inverses, extended GCD, Farey series and continuous fractions. Includes Legendre and Jacobi symbols, some divisor functions, Euler's Phi function, etc. License GPL (>= 3) NeedsCompilation no Repository CRAN Date/Publication 2021-05-14 18:40:06 UTC R topics documented: numbers-package . .3 agm .............................................5 bell .............................................7 Bernoulli numbers . .7 Carmichael numbers . .9 catalan . 10 cf2num . 11 chinese remainder theorem . 12 collatz . 13 contFrac . 14 coprime . 15 div.............................................. 16 1 2 R topics documented: divisors . 17 dropletPi . 18 egyptian_complete . 19 egyptian_methods . 20 eulersPhi . 21 extGCD . 22 Farey Numbers . 23 fibonacci . 24 GCD, LCM . 25 Hermite normal form . 27 iNthroot . 28 isIntpower . 29 isNatural . 30 isPrime . 31 isPrimroot . 32 legendre_sym . 32 mersenne . 33 miller_rabin . 34 mod............................................. 35 modinv, modsqrt . 37 modlin . 38 modlog . 38 modpower . 39 moebius . 41 necklace . 42 nextPrime . 43 omega............................................ 44 ordpn . 45 Pascal triangle . 45 previousPrime . 46 primeFactors . 47 Primes
    [Show full text]
  • Numbers 1 to 100
    Numbers 1 to 100 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 30 Nov 2010 02:36:24 UTC Contents Articles −1 (number) 1 0 (number) 3 1 (number) 12 2 (number) 17 3 (number) 23 4 (number) 32 5 (number) 42 6 (number) 50 7 (number) 58 8 (number) 73 9 (number) 77 10 (number) 82 11 (number) 88 12 (number) 94 13 (number) 102 14 (number) 107 15 (number) 111 16 (number) 114 17 (number) 118 18 (number) 124 19 (number) 127 20 (number) 132 21 (number) 136 22 (number) 140 23 (number) 144 24 (number) 148 25 (number) 152 26 (number) 155 27 (number) 158 28 (number) 162 29 (number) 165 30 (number) 168 31 (number) 172 32 (number) 175 33 (number) 179 34 (number) 182 35 (number) 185 36 (number) 188 37 (number) 191 38 (number) 193 39 (number) 196 40 (number) 199 41 (number) 204 42 (number) 207 43 (number) 214 44 (number) 217 45 (number) 220 46 (number) 222 47 (number) 225 48 (number) 229 49 (number) 232 50 (number) 235 51 (number) 238 52 (number) 241 53 (number) 243 54 (number) 246 55 (number) 248 56 (number) 251 57 (number) 255 58 (number) 258 59 (number) 260 60 (number) 263 61 (number) 267 62 (number) 270 63 (number) 272 64 (number) 274 66 (number) 277 67 (number) 280 68 (number) 282 69 (number) 284 70 (number) 286 71 (number) 289 72 (number) 292 73 (number) 296 74 (number) 298 75 (number) 301 77 (number) 302 78 (number) 305 79 (number) 307 80 (number) 309 81 (number) 311 82 (number) 313 83 (number) 315 84 (number) 318 85 (number) 320 86 (number) 323 87 (number) 326 88 (number)
    [Show full text]
  • About the Author and This Text
    1 PHUN WITH DIK AND JAYN BREAKING RSA CODES FOR FUN AND PROFIT A supplement to the text CALCULATE PRIMES By James M. McCanney, M.S. RSA-2048 has 617 decimal digits (2,048 bits). It is the largest of the RSA numbers and carried the largest cash prize for its factorization, US$200,000. The largest factored RSA number is 768 bits long (232 decimal digits). According to the RSA Corporation the RSA-2048 may not be factorable for many years to come, unless considerable advances are made in integer factorization or computational power in the near future Your assignment after reading this book (using the Generator Function of the book Calculate Primes) is to find the two prime factors of RSA-2048 (listed below) and mail it to the RSA Corporation explaining that you used the work of Professor James McCanney. RSA-2048 = 25195908475657893494027183240048398571429282126204032027777 13783604366202070759555626401852588078440691829064124951508 21892985591491761845028084891200728449926873928072877767359 71418347270261896375014971824691165077613379859095700097330 45974880842840179742910064245869181719511874612151517265463 22822168699875491824224336372590851418654620435767984233871 84774447920739934236584823824281198163815010674810451660377 30605620161967625613384414360383390441495263443219011465754 44541784240209246165157233507787077498171257724679629263863 56373289912154831438167899885040445364023527381951378636564 391212010397122822120720357 jmccanneyscience.com press - ISBN 978-0-9828520-3-3 $13.95US NOT FOR RESALE Copyrights 2006, 2007, 2011, 2014
    [Show full text]
  • Prime Numbers
    Prime numbers Frans Oort Department of Mathematics University of Utrecht Talk at Dept. of Math., National Taiwan University (NTUmath) Institute of Mathematics, Academia Sinica (IoMAS) 17-XII-2012 ··· prime numbers “grow like weeds among the natural numbers, seeming to obey no other law than that of chance, and nobody can predict where the next one will sprout.” Don Zagier Abstract. In my talk I will pose several questions about prime numbers. We will see that on the one hand some of them allow an answer with a proof of just a few lines, on the other hand, some of them lead to deep questions and conjectures not yet understood. This seems to represent a general pattern in mathematics: your curiosity leads to a study of “easy” questions related with quite deep structures. I will give examples, suggestions and references for further study. This elementary talk was meant for freshman students; it is not an introduction to number theory, but it can be considered as an introduction: “what is mathematics about, and how can you enjoy the fascination of questions and insights?” Introduction In this talk we study prime numbers. Especially we are interested in the question “how many prime numbers are there, and where are they located”? We will make such questions more precise. For notations and definitions see § 2. The essential message of this talk on an elementary level: mathematicians are curious; we like to state problems, find structures and enjoy marvelous new insights. Below we ask several questions, and we will see that for some of them there is an easy an obvious answer, but for others, equally innocent looking, we are completely at loss what the answer should be, what kind of methods should be developed in order to understand possible approaches: fascinating open problems.
    [Show full text]
  • Prime Numbers
    Prime numbers The classical Greek mathematicians were more interested in geometry than in what we would call al- gebra. (One notable exception was Diophantus, whose surviving work is concerned with integer solutions of polynomial equations, and who was the first Western mathematician to develop any sort of algebraic notation.) However, one of the Definition 1. A positive integer n is called prime if it has exactly two factors, namely itself and 1. Notice that 1 is not prime, because it has only one factor, not two. The first several prime numbers are 2, 3, 5, 7, 11, 13, 17, 23, ...., 1999, 2003, 2011, . , 999983, 1000003, 1000033, . Does the sequence of primes ever come to an end? In Book IX of the Elements, Euclid gave an elegant proof that the answer is no: there are infinitely many prime numbers. Euclid did not use the term “infinite”, as the Greeks were not comfortable with the idea of infinity1. Instead, he stated the theorem in the following way. Theorem 2. No finite set of prime numbers can possibly be the complete list of all prime numbers. Proof. Suppose that we have a list of prime numbers: p1; p2; : : : ; pn. Let x = (p1p2 pn) + 1: · · · Then x is a positive integer. Observe that p1 can't be a factor of x (because dividing x by p1 leaves a remainder of 1); • p2 can't be a factor of x (because dividing x by p2 leaves a remainder of 1); • . pn can't be a factor of x (because dividing x by pn leaves a remainder of 1).
    [Show full text]
  • Introduction to Higher Mathematics Unit #4: Number Theory
    Introduction to Higher Mathematics Unit #4: Number Theory Joseph H. Silverman Version Date: January 2, 2020 Contents 1 Number Theory — Lecture #1 1 1.1 What is Number Theory? . .1 1.2 Square Numbers and Triangle Numbers . .5 Exercises . 10 2 Number Theory — Lecture #2 13 2.1 Pythagorean Triples . 13 2.2 Pythagorean Triples and the Unit Circle . 18 Exercises . 20 3 Number Theory — Lecture #3 23 3.1 Divisibility and the Greatest Common Divisor . 23 3.2 Linear Equations and Greatest Common Divisors . 27 Exercises . 32 4 Number Theory — Lecture #4 37 4.1 Primes and Divisibility . 37 4.2 The Fundamental Theorem of Arithmetic . 40 Exercises . 43 5 Number Theory — Lecture #5 45 5.1 Congruences . 45 5.2 Congruences, Powers, and Fermat’s Little Theorem . 49 Exercises . 54 6 Number Theory — Lecture #6 57 6.1 Prime Numbers . 57 6.2 Counting Primes . 61 Exercises . 65 7 Number Theory — Lecture #7 69 7.1 The Fibonacci Sequence . 69 7.2 The Fibonacci Sequence Modulo m ................. 75 7.3 The Fibonacci Sequence: Supplement . 76 Draft: January 2, 2020 2 c 2018, J. Silverman CONTENTS 3 Exercises . 78 8 Number Theory — Lecture #8 83 8.1 Squares Modulo p ........................... 83 Exercises . 88 9 Number Theory — Lecture #9 91 9.1 Is −1 a Square Modulo p? Is 2?................... 91 9.2 Quadratic Reciprocity to the Rescue . 99 −1 (p−1)=2 9.3 Proof that p = (−1) [Supplement] . 102 Exercises . 105 A Class Exercise: Lecture #1: Mix and Match Number Types 107 B Class Exercise: Lecture #2: Pythagorean-Like Triples 108 C Class Exercise: Lecture #3: Least Common Multiples 109 D Class Exercise: Lecture #4: Further Travels in the E-Zone 110 E Class Exercise: Lecture #5: Polynomial Roots Modulo m 111 F Class Exercise: Lecture #6: Sums of Reciprocals 112 G Class Exercise: Lecture #7: The 3n + 1 Problem 113 H Class Exercise: Lecture #8: Cubes Modulo p 115 I Class Exercise: Lecture #9: 116 Draft: January 2, 2020 c 2018, J.
    [Show full text]
  • Prime Numbers List 1-100 Pdf
    Prime numbers list 1-100 pdf Continue Prime figures are positive integers, having only two factors, one and an integer themselves. For example, factors 6 1.2.3 and 6, which are four factors in total. But Factors 7 are only 1 and 7, completely two. So 7 is a simple number, but 6 isn't, instead it's a composite number. But always remember that one is neither simple nor composite. You can also say that the main numbers are the numbers that are divided only into 1 or the number itself. Another way of determining this is a positive number or integrator, which is not the product of any other two positive prices. There is no definite formula to find if the number is prime or not (except for a certain range), except for finding its factors. Content Table: What is a simple number? A simple number is a positive integer having exactly two factors. If p is prime, then it's only factors necessarily one and p itself. Any number that does not follow this is referred to as composite numbers, which means that they can be factored into other positive prices. The first ten prime numbers are the first ten primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. Note: It should be noted that 1 is a non-prime number. Read also: History of prime numbers The first number was discovered by Eratosthenes (275-194 BC, Greece). He took the example of a sieve to filter out prime numbers from a list of natural numbers and drains of composite numbers.
    [Show full text]
  • The Essence of Mathematics Through Elementary Problems
    The Essence of Mathematics Through Elementary Problems ALEXANDRE BOROVIK AND TONY GARDINER To access digital resources including: blog posts videos online appendices and to purchase copies of this book in: hardback paperback ebook editions Go to: https://www.openbookpublishers.com/product/979 Open Book Publishers is a non-profit independent initiative. We rely on sales and donations to continue publishing high-quality academic works. THE ESSENCE OF MATHEMATICS THROUGH ELEMENTARY PROBLEMS The Essence of Mathematics Through Elementary Problems Alexandre Borovik and Tony Gardiner http://www.openbookpublishers.com c 2019 Alexandre Borovik and Tony Gardiner This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the author (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Alexandre Borovik and Tony Gardiner, The Essence of Mathematics through Elementary Problems. Cambridge, UK: Open Book Publishers, 2019. http://dx.doi.org/10.11647/OBP.0168 Further details about CC BY licenses are available at http://creativecommons.org/licenses/by/4.0/ All external links were active on 10/04/2019 and archived via the Internet Archive Wayback Machine: https://archive.org/web/ Every effort has been made to identify and contact copyright holders and any omission or error will
    [Show full text]
  • Finding N Prime Numbers Using Distrusted Computing PVM (Parallel Virtual Machine) Ehab Abdulrazak Al-Asadi College of Science-Kerbala University
    ISSN : 2394-2975 (Online) International Journal of Advanced Research ISSN : 2394-6814 (Print) Vol. 2, Issue 4 (Oct. - Dec. 2015) in Education & Technology (IJARET) Finding N Prime Numbers Using Distrusted Computing PVM (Parallel Virtual Machine) Ehab AbdulRazak Al-Asadi College of Science-Kerbala University Abstract Analysis the feasibility of sequencing as a parallel algorithm for the search for the first N Prime numbers. Design and implement (in C / C ++) program, respectively. Programs in the sequence Algorithm and also a solution based on the transmission of messages between nodes using library system PVM. Both programs must be identical. Distribute the load between nodes so that the computing time A minimum. Find out what is the dependence of acceleration of the implementation and calculation of the number of nodes and the extent of the problem in relation to sequencing program, (insert table and graphs). On the basis of Results estimate: latency communication, for what is the role of the dimension of the architecture (right) Scalable and what is the maximum size when the calculation is available on the architecture more bearable. Discuss in your group about what is the advantage respectively. The efficiency of parallel execution Individual algorithms. If this solution requires the use of input and output files with rows matrix Corresponds to file line and column valuesare ​​ separated by spaces or tabs. Otherwise stated, work with real numbers. Keywords Prime Numbers, Eratosthenes sieve, Parallel Program, Mersenne Prime number. I. Introduction the first 1,000,000 primes this holds true. Checking a million PVM (Parallel Virtual Machine) is a software system that enables primes is certainly energetic, but it is not necessary (and just a collection of heterogeneous computers to be used as a coherent looking at examples.
    [Show full text]
  • Recurrence Relation in Number Theory
    International Journal of Advanced Science and Technology Vol. 29, No.02, (2020), pp. 885-893 RECURRENCE RELATION IN NUMBER THEORY Mannu Arya1 and Vipin Verma2 1,2Department of Mathematics, School of Chemical Engineering and Physical Sciences Lovely Professional University, Phagwara 144411, Punjab (INDIA) ABSTRACT The research is on recurrence relation in number theory, with the sole aim of reviewing subtle and far- ending relationships in selected natural numbers which includes the composite and perfect numbers. Related literature was reviewed on which serves as the basis for critical analysis of the natural numbers. From the findings, it was found that there is a degree of relationship between prime numbers and perfect numbers including composite numbers. The nth composite number (푐푛) can be generated using the Wolfram Language code. This is a machine code. It is very difficult to establish a manual formula to extrapolate far composite numbers, but Dirichlet generating function is used to establish the characteristic function of the composite numbers. Furthermore, the relation in perfect numbers can be addressed thus as follows; (Power of Two) × (Double that Power - 1). The prime number formula is given by(2푛−1). To get the Perfect Number, the formula becomes (2푛−1). (2푛 − 1). Getting the nth sequence of a perfect number is dependent on the equivalent nth sequence of prime numbers. The research finally concludes with the call for researchers to team up to make more explicit, the recurrence relation in composite numbers. Keywords: Number Theory, Recurrence Relation, Perfect numbers, composite numbers, wolfram language code, Dirichlet generating function 1.0. INTRODUCTION The study of subtle and far-reaching relationships of numbers is Number Theory [3].
    [Show full text]