0165 Fish Biogeography & Phylogeography, Symphony III

Total Page:16

File Type:pdf, Size:1020Kb

0165 Fish Biogeography & Phylogeography, Symphony III 0165 Fish Biogeography & Phylogeography, Symphony III, Saturday 9 July 2011 Amanda Ackiss1, Shinta Pardede2, Eric Crandall3, Paul Barber4, Kent Carpenter1 1Old Dominion University, Norfolk, VA, USA, 2Wildlife Conservation Society, Jakarta, Java, Indonesia, 3Fisheries Ecology Division; Southwest Fisheries Science Center, Santa Cruz, CA, USA, 4University of California, Los Angeles, CA, USA Corroborated Phylogeographic Breaks Across the Coral Triangle: Population Structure in the Redbelly Fusilier, Caesio cuning The redbelly yellowtail fusilier, Caesio cuning, has a tropical Indo-West Pacific range that straddles the Coral Triangle, a region of dynamic geological history and the highest marine biodiversity on the planet. Caesio cuning is a reef-associated artisanal fishery, making it an ideal species for assessing regional patterns of gene flow for evidence of speciation mechanisms as well as for regional management purposes. We evaluated the genetic population structure of Caesio cuning using a 382bp segment of the mitochondrial control region amplified from over 620 fish sampled from 33 localities across the Philippines and Indonesia. Phylogeographic analysis showed that sites in Western Sumatra formed a single population, resulting in pronounced regional structure between Western Sumatra and the rest of the Coral Triangle (ΦCT=0.4596, p<0.0031). The species' range and measures of genetic diversity at these Indian Ocean localities point toward low effective population size west of Sumatra and indicate that historic changes in sea level and ocean currents during periods of Pleistocene glaciation may have led to divergence between Caesio cuning populations west and east of the Sunda shelf. East of Sumatra, there were significant genetic differences between the central sites sampled from the Philippines south to Java and Nusa Tenggara and the sites west of Halmahera to the edge of our sampling range at Cenderawasih Bay indicating haplotype frequency differences likely driven by regional ocean currents and isolation by distance. ______________________________________________________________________________ 0143 Invasive Species, Symphony I & II, Sunday 10 July 2011 Cory Adams, Daniel Saenz Southern Research Station, USDA Forest Service, Nacogdoches, Texas, USA Chinese Tallow (Triadica sebifera) Reduces Anuran Hatching Success and Hatchling Size Chinese tallow (Triadica sebifera) is an aggressive invasive tree species found in the southeastern United States and California. It was first introduced into North America in the late 1700s. It has been suggested that Chinese tallow has increased in abundance as much as 500 percent in parts of its invaded range, in just the last two decades. The purpose of this study was to determine the effects of Chinese tallow leaf litter on the hatching of aquatic eggs of a common anuran, the Southern Leopard Frog (Lithobates sphenocephalus), compared to leaf litter of native tree species. In the lab, we observed that hatchlings from eggs exposed to Chinese tallow leaf litter were significantly less developed at hatching and significantly smaller in total length than other treatments. Chinese tallow and red maple (Acer rubrum) reduced hatching success of L. sphenocephalus eggs compared to swamp chestnut oak (Quercus michauxii) and a control. Dissolved oxygen and pH of water, factors possibly affecting hatching success, were lower in treatments containing Chinese tallow and red maple leaf litter than other treatments. We suggest that underdevelopment and reduced hatchling size, caused by Chinese tallow leaf litter, may have lasting effects that negatively impact survival in the larval stage. Also, Chinese tallow can reduce amphibian hatching success, similar to red maple, however, Chinese tallow tends to occur in and around wetlands at much higher densities than many native tree species. ______________________________________________________________________________ 0142 Herp Biogeography & Phylogeography, Minneapolis Ballroom E, Sunday 10 July 2011 Dean Adams, James Church Iowa State University, Ames, Iowa, USA Spurious Body Size Clines and Methodological Artifacts from Grid-cell Assemblages: Pattern and Process in Biogeography A major goal in macroecology is to determine how body size varies geographically, and explain why such patterns exist. Recently, a grid-cell assemblage analysis found significant body size trends with latitude and temperature in Plethodon salamanders, and support for the heat-balance hypothesis as a possible explanation. Here we demonstrate that these patterns are methodological artifacts. Using data from 3,155 local assemblages, we find no relationship between body size and latitude, temperature, or elevation in Plethodon assemblages. These findings are in direct contrast to predictions of the heat- balance model. We then examined the various scenarios under which body size clines across grid-cell assemblages could evolve via heat-balance, and found that none were tenable in light of the existing data. Instead, a single, widely distributed species was responsible for the pattern across grid-cell assemblages. We conclude that there is no support for the heat-balance hypothesis as an evolutionary mechanism driving biogeographic trends in body size in Plethodon. Assemblage-level patterns are a useful means of assessing biogeographic trends, and are an important complement to within- species and cross-species patterns. However, while the use of grid-cell assemblage approaches from digital databases is expedient, their results must be examined critically, and whenever possible, compared with data obtained from local species assemblages (particularly for selective mechanisms that operate at the level of individuals). Finally, our results emphasize the importance of using corroborative data to evaluate alternative hypotheses, so that potential mechanisms that explain bioegeographic patterns are properly assigned. ______________________________________________________________________________ 0292 Herp Conservation, Minneapolis Ballroom E, Saturday 9 July 2011 Collette Adkins Giese Center for Biological Diversity, Minneapolis, MN, USA Protecting Herpetofauna Under the Endangered Species Act In the United States, about 20 percent of amphibians and 10 percent of reptiles are at risk of extinction. In response to the threats facing herpetofauna, the Center for Biological Diversity -- a non-profit, public interest environmental organization dedicated to the protection of all native species and their habitats -- recently hired the world's first attorney dedicated exclusively to the protection of amphibians and reptiles. As both a scientist and a lawyer, the herpetofauna staff attorney will discuss the Center's work to seek and implement protections for herpetofauna under the Endangered Species Act. For example, the Center is developing a database to gather information necessary to evaluate the status of all imperiled amphibians and reptiles in the United States. The Center will use the database to inform petitions for herpetofauna that warrant protection as threatened or endangered species but are not yet listed under the Endangered Species Act. The Center is also working to protect essential habitats for amphibians and reptiles, including the California tiger salamander, Ozark hellbender, and Virgin Islands tree boa. To address significant threats to herpetofauna posed by pesticides, the Center is using litigation to force the Environmental Protection Agency to consider pesticide impacts on listed species during its pesticide registration reviews. Finally, the presentation will address the Center's work to address unsustainable commercial harvest of herpetofauna, including freshwater turtles and the eastern diamondback rattlesnake. ______________________________________________________________________________ 0694 Fish Ecology II, Minneapolis Ballroom G, Monday 11 July 2011 Mia Adreani, Mark Steele California State University, Northridge, Northridge, CA, USA Estimating Fecundity, Spawning Frequency and Spawning Season Length of Temperate Reef Fish: A Comparison of Natural and Artificial Rocky Reefs The reproductive output of fishes is often used as a measure of the health and productivity of a given population. This measure may be of particular importance when habitat is altered in some way. Artificial reefs may provide new space for fishes to inhabit, but it is unclear whether fishes reproduce at the same rate on natural and artificial reefs. We tested whether the overall reproductive output on a large artificial reef was similar to nearby natural reefs using three of the most abundant species on rocky reefs in the Southern California Bight (California sheephead, kelp bass and senorita). Fish were collected during their reproductive season and we measured a range of reproductive parameters, including batch fecundity, spawning frequency and the length of the spawning season using visual assessments, gonad histology and egg counts. While there was some variation in the specific measures, our estimates of reproductive output for each of the three species were similar across all of the reefs. These results, along with additional estimates of overall reef productivity, suggest that artificial reefs have the potential to mitigate damages incurred to natural reefs and give us additional insight into the reproductive ecology of these ecologically important species. ______________________________________________________________________________ 0233 Poster Session III, Sunday 10 July 2011 Windsor
Recommended publications
  • A New State Record for Aguascalientes, Mexico: Phrynosoma Cornutum (Squamata: Phrynosomatidae), the Texas Horned Lizard
    Herpetology Notes, volume 7: 551-553 (2014) (published online on 3 October 2014) A new state record for Aguascalientes, Mexico: Phrynosoma cornutum (Squamata: Phrynosomatidae), the Texas horned lizard José Carlos Arenas-Monroy1*, Uri Omar García-Vázquez1, Rubén Alonso Carbajal-Márquez2 and Armando Cardona-Arceo3 Horned lizards of the genus Phrynosoma are widely most are typical of the Chihuahuan desert herpetofauna distributed through North America and range from (Morafka, 1977); some of these species have only southern Canada to western Guatemala (Sherbrooke, recently been documented (e.g. Quintero-Díaz et al., 2003). The genus comprises 17 species (Leaché and 2008; Sigala-Rodríguez et al., 2008; Sigala-Rodríguez McGuire, 2006; Nieto-Montes de Oca et al., 2014) and Greene, 2009). However, these arid plains still that exhibit exceptional morphological, ecological, remain relatively unexplored, because the majority and behavioral adaptations to arid environments of sampling efforts have focused on the canyons, (Sherbrooke, 1990, 2003). mountains, and sierras on the western half of the state Of these, Phrynosoma cornutum (Harlan, 1825) (Vázquez-Díaz and Quintero-Díaz, 2005). Here, we inhabits grasslands and scrublands from central United document the first records of Phrynosoma cornutum States southward to the Mexican states of Chihuahua, from the state of Aguascalientes. Coahuila, Durango, Nuevo León, San Luis Potosí, During a field trip on 16 July 2008, UOGV collected a Sonora, Tamaulipas, and Zacatecas from sea level up to male Phrynosoma cornutum ca. 4.7 km S of San Jacinto, 1830 m above sea level (m asl); this species has one of Rincón de Romos (22.304219°N, 102.238156°W; the largest ranges in the genus (Price, 1990).
    [Show full text]
  • Marine Fish Conservation Global Evidence for the Effects of Selected Interventions
    Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca0 K. Smith & William J. Sutherland CONSERVATION EVIDENCE SERIES SYNOPSES Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca K. Smith and William J. Sutherland Conservation Evidence Series Synopses 1 Copyright © 2021 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Taylor, N., Clarke, L.J., Alliji, K., Barrett, C., McIntyre, R., Smith, R.K., and Sutherland, W.J. (2021) Marine Fish Conservation: Global Evidence for the Effects of Selected Interventions. Synopses of Conservation Evidence Series. University of Cambridge, Cambridge, UK. Further details about CC BY licenses are available at https://creativecommons.org/licenses/by/4.0/ Cover image: Circling fish in the waters of the Halmahera Sea (Pacific Ocean) off the Raja Ampat Islands, Indonesia, by Leslie Burkhalter. Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/
    [Show full text]
  • Phylogenetic Relationships Within the Speciose Family Characidae
    Oliveira et al. BMC Evolutionary Biology 2011, 11:275 http://www.biomedcentral.com/1471-2148/11/275 RESEARCH ARTICLE Open Access Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling Claudio Oliveira1*, Gleisy S Avelino1, Kelly T Abe1, Tatiane C Mariguela1, Ricardo C Benine1, Guillermo Ortí2, Richard P Vari3 and Ricardo M Corrêa e Castro4 Abstract Background: With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity. Results: In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses.
    [Show full text]
  • N REPTILIA: SQUAMATA: SAURIA: PHRYNOSOMATIDAE PHRYNOSOMA Phrynosoma Modestum Girard
    630.1 n REPTILIA: SQUAMATA: SAURIA: PHRYNOSOMATIDAE PHRYNOSOMAMODESTUM Catalogue of American Amphibians and Reptiles. Whiting, M.J. and J.R. Dixon. 1996. Phrynosoma modestum. Phrynosoma modestum Girard Roundtail Homed Lizard Phrynosoma modesturn Girard, in Baird and Girard, 1852:69 (see Banta, 1971). Type-locality, "from the valley of the Rio Grande west of San Antonio .....and from between San Antonio and El Paso del Norte." Syntypes, National Mu- seum of Natural History (USNM) 164 (7 specimens), sub- Figure. Adult Phrynosoma modestum from Doha Ana County, adult male, adult male, and 5 adult females, USNM 165660, New Mexico. Photograph by Suzanne L. Collins, courtesy of an adult male, and Museum of Natural History, University The Center for North American Amphibians and Reptiles. of Illinois at Urbana-Champaign (UIMNH) 40746, an adult male, collected by J.H. lark in May or June 1851 (Axtell, 1988) (not examined by authors). See Remarks. Phrynosomaplatyrhynus: Hemck,Terry, and Hemck, 1899: 136. Doliosaurus modestus: Girard, 1858:409. Phrynosoma modestrum: Morafka, Adest, Reyes, Aguirre L., A(nota). modesta: Cope, 1896:834. and Lieberman, 1992:2 14. Lapsus. Content. No subspecies have been described. and Degenhardt et al. (1996). Habitat photographs appeared in Sherbrooke (1981) and Switak (1979). Definition. Phrynosoma modestum is the smallest horned liz- ard, with a maximum SVL of 66 mm in males and 71 mm in Distribution. Phrynosoma modestum occurs in southern and females (Fitch, 1981). It is the sister taxon to l? platyrhinos, western Texas, southern New Mexico, southeastern Arizona and and is part of the "northern radiation" (sensu Montanucci, 1987). north-central Mexico.
    [Show full text]
  • US Fish & Wildlife Service Seabird Conservation Plan—Pacific Region
    U.S. Fish & Wildlife Service Seabird Conservation Plan Conservation Seabird Pacific Region U.S. Fish & Wildlife Service Seabird Conservation Plan—Pacific Region 120 0’0"E 140 0’0"E 160 0’0"E 180 0’0" 160 0’0"W 140 0’0"W 120 0’0"W 100 0’0"W RUSSIA CANADA 0’0"N 0’0"N 50 50 WA CHINA US Fish and Wildlife Service Pacific Region OR ID AN NV JAP CA H A 0’0"N I W 0’0"N 30 S A 30 N L I ort I Main Hawaiian Islands Commonwealth of the hwe A stern A (see inset below) Northern Mariana Islands Haw N aiian Isla D N nds S P a c i f i c Wake Atoll S ND ANA O c e a n LA RI IS Johnston Atoll MA Guam L I 0’0"N 0’0"N N 10 10 Kingman Reef E Palmyra Atoll I S 160 0’0"W 158 0’0"W 156 0’0"W L Howland Island Equator A M a i n H a w a i i a n I s l a n d s Baker Island Jarvis N P H O E N I X D IN D Island Kauai S 0’0"N ONE 0’0"N I S L A N D S 22 SI 22 A PAPUA NEW Niihau Oahu GUINEA Molokai Maui 0’0"S Lanai 0’0"S 10 AMERICAN P a c i f i c 10 Kahoolawe SAMOA O c e a n Hawaii 0’0"N 0’0"N 20 FIJI 20 AUSTRALIA 0 200 Miles 0 2,000 ES - OTS/FR Miles September 2003 160 0’0"W 158 0’0"W 156 0’0"W (800) 244-WILD http://www.fws.gov Information U.S.
    [Show full text]
  • Forage Fish Management Plan
    Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis ....................................................................................................................................
    [Show full text]
  • Taxonomia, Sistemática E Biogeografia De Brachyrhamdia Myers, 1927 (Siluriformes: Heptapteridae), Com Uma Investigação Sobre Seu Mimetismo Com Outros Siluriformes
    UNIVERSIDADE DE SÃO PAULO FFCLRP - DEPARTAMENTO DE BIOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA COMPARADA Taxonomia, sistemática e biogeografia de Brachyrhamdia Myers, 1927 (Siluriformes: Heptapteridae), com uma investigação sobre seu mimetismo com outros siluriformes VOLUME I (TEXTOS) Veronica Slobodian Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da USP, como parte das exigências para a obtenção do título de Mestre em Ciências, Área: Biologia Comparada. Ribeirão Preto-SP 2013 UNIVERSIDADE DE SÃO PAULO FFCLRP - DEPARTAMENTO DE BIOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA COMPARADA Taxonomia, sistemática e biogeografia de Brachyrhamdia Myers, 1927 (Siluriformes: Heptapteridae), com uma investigação sobre seu mimetismo com outros siluriformes Veronica Slobodian Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da USP, como parte das exigências para a obtenção do título de Mestre em Ciências, Área: Biologia Comparada. Orientador: Prof. Dr. Flávio A. Bockmann Ribeirão Preto-SP 2013 Slobodian, Veronica Taxonomia, sistemática e biogeografia de Brachyrhamdia Myers, 1927 (Siluriformes: Heptapteridae), com uma investigação sobre seu mimetismo com outros siluriformes. Ribeirão Preto, 2013. 316 p.; 68 il.; 30 cm Dissertação de Mestrado, apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/USP. Departamento de Biologia. Orientador: Bockmann, Flávio Alicino. 1. Gênero Brachyrhamdia. 2. Taxonomia. 3. Sistemática. 4. Biogeografia. 5. Anatomia. i Resumo Brachyrhamdia é um gênero de bagres da família Heptapteridae do norte da América do Sul, ocorrendo nas bacias Amazônica (incluindo o Tocantins), do Orinoco e das Guianas. O presente trabalho compreende uma revisão taxonômica do gênero, com sua análise filogenética e inferências biogeográficas decorrentes. Atualmente, Brachyrhamdia é considerado ser constituído por cinco espécies, às quais este trabalho inclui a descrição de duas espécies novas, além do reconhecimento de uma possível terceira espécie.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • A Guide to the Parasites of African Freshwater Fishes
    A Guide to the Parasites of African Freshwater Fishes Edited by T. Scholz, M.P.M. Vanhove, N. Smit, Z. Jayasundera & M. Gelnar Volume 18 (2018) Chapter 2.1. FISH DIVERSITY AND ECOLOGY Martin REICHARD Diversity of fshes in Africa Fishes are the most taxonomically diverse group of vertebrates and Africa shares a large portion of this diversity. This is due to its rich geological history – being a part of Gondwana, it shares taxa with the Neotropical region, whereas recent close geographical affnity to Eurasia permitted faunal exchange with European and Asian taxa. At the same time, relative isolation and the complex climatic and geological history of Africa enabled major diversifcation within the continent. The taxonomic diversity of African freshwater fshes is associated with functional and ecological diversity. While freshwater habitats form a tiny fraction of the total surface of aquatic habitats compared with the marine environment, most teleost fsh diversity occurs in fresh waters. There are over 3,200 freshwater fsh species in Africa and it is likely several hundreds of species remain undescribed (Snoeks et al. 2011). This high diversity and endemism is likely mirrored in diversity and endemism of their parasites. African fsh diversity includes an ancient group of air-breathing lungfshes (Protopterus spp.). Other taxa are capable of breathing air and tolerate poor water quality, including several clariid catfshes (e.g., Clarias spp.; Fig. 2.1.1D) and anabantids (Ctenopoma spp.). Africa is also home to several bichir species (Polypterus spp.; Fig. 2.1.1A), an ancient fsh group endemic to Africa, and bonytongue Heterotis niloticus (Cuvier, 1829) (Osteoglossidae), a basal actinopterygian fsh.
    [Show full text]
  • DNA Barcoding Reveals Novel Insights Into Pterygophagy and Prey Selection in Distichodontid fishes (Characiformes: Distichodontidae) Jairo Arroyave & Melanie L
    DNA barcoding reveals novel insights into pterygophagy and prey selection in distichodontid fishes (Characiformes: Distichodontidae) Jairo Arroyave & Melanie L. J. Stiassny Division of Vertebrate Zoology, Department of Ichthyology, American Museum of Natural History, Central Park West at 79th St., New York, New York 10024 Keywords Abstract Ectoparasitic fin-eating behaviors, mtDNA, stomach contents, trophic ecology. DNA barcoding was used to investigate dietary habits and prey selection in members of the African-endemic family Distichodontidae noteworthy for dis- Correspondence playing highly specialized ectoparasitic fin-eating behaviors (pterygophagy). Fin Jairo Arroyave, Division of Vertebrate fragments recovered from the stomachs of representatives of three putatively Zoology, Department of Ichthyology, pterygophagous distichodontid genera (Phago, Eugnathichthys, and Ichthyborus) American Museum of Natural History, were sequenced for the mitochondrial gene co1. DNA barcodes (co1 sequences) Central Park West at 79th St., New York, were then used to identify prey items in order to determine whether pterygo- NY 10024 Tel: +1 212 769 5841, Fax: 212 769 5642; phagous distichodontids are opportunistic generalists or strict specialists with E-mail: [email protected] regard to prey selection and, whether as previously proposed, aggressive mim- icry is used as a strategy for successful pterygophagy. Our findings do not sup- Funding Information port the hypothesis of aggressive mimicry suggesting instead that, despite the The Department of Ichthyology of the possession of highly specialized trophic anatomies, fin-eating distichodontids American Museum of Natural History are opportunistic generalists, preying on fishes from a wide phylogenetic spec- (AMNH) through the Axelrod Research trum and to the extent of engaging in cannibalism. This study demonstrates Curatorship provided the bulk of funding for this study.
    [Show full text]
  • Ancient Transformation, Current Conservation: Traditional Forest Management on the Iriri River, Brazilian Amazonia
    Human Ecology https://doi.org/10.1007/s10745-020-00139-3 Ancient Transformation, Current Conservation: Traditional Forest Management on the Iriri River, Brazilian Amazonia William Balée1 & Vinicius Honorato de Oliveira2 & Raquel dos Santos3 & Márcio Amaral4 & Bruna Rocha2 & Natalia Guerrero3 & Stephan Schwartzman5 & Mauricio Torres6 & Juarez Pezzuti6 # Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract Legislation governing strict-protection nature reserves in Brazil in principle precludes human habitation, but virtually all Amazon reserves are nonetheless inhabited. Historical ecology research reported herein assesses the impacts of occupation and resource use by beiradeiros (forest peasants) on the forests of a strictly designated nature reserve in the Iriri River basin (Brazilian Amazon). The hypothesis is that traditional beiradeiros activities are congruent with the aims of conservation of the reserve because their impacts are either neutral or enhance diversity of forest landscapes and biota. We designed the methodology underlying data collection to integrate forest inventory with archaeological techniques in two contrasting forest types (terra firme and seasonally inundated forest), faunal surveys, freelisting of tree terms by beiradeiros, and participant observation, in order to determine biological diversity indices, forest age and the parameters of traditional knowledge that encode such diversity in local vocabulary. Our research results lead us to reject the premise that traditional peasant activities lead to ecological degradation or impoverishment, and suggest that the rationale underpinning strictly protected nature reserves should be re- examined. Keywords Historical ecology . Iriri River basin . Amazonian forests . Ecological degradation . Forest landscape diversity . Conservation . Traditional societies . beiradeiros (forest peasants) . Brazil Introduction northeastern Brazil in the last decade of the nineteenth century.
    [Show full text]